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Three-Oimensional Scattering by Two-Oimensional Topographies

by H. A. Pedersen, F. J. Sanchez-Sesma, and M. Campillo

Abstract Three-dimensionaI seismic responses of two-dimensional topogra-
1 phies are studied by means of the indirect boundary element method (IBEM).

The IBEM yields, in the presented form, very accurate results and bas the ad-
vantage of low computational cost. ln IBEM, diffracted waves are constructed
in terms of single-layer boundary sources. The appropriate Green's functions

: used are those of a harmonic point force moving along the axis of the topog-
; raphy in a full space. Obtained results are compared against those published by

other authors. Examples of simulations are presented for different geometries,
c for different types of incident wave fields, and, in particular, for different arrivaI

angles to the topography to quantitatively study three-dimensionaI effects of the
scattering. The accuracy of the results makes it possible to analyze them in both
the rime and frequency domains. Frequency-space representations allow iden-
tification of diffraction and interference patterns in the sei smic response of the
topography. Synthetic seismograms are obtained by Fourier anaIysis. Using time-
space domain representations, the nature of each of the scattered waves are
identified in terms of, for example, creeping waves and reflected compressional
waves.

Introduction

Surface topography has been reported to produce pageorgiou, 1993a). Whi1e HEM directly finds the un-
significant site effects (e.g., Davis and West, 1973; known tractions and disp1acements, ffiEM searches a force
Griffiths and Bo11inger, 1979; Bard and Tucker, 1985). distribution for which the radiated field satisfies the
These effects take the form of a relative amplification of boundary conditions. Disp1acements are obtained by su-
seismic signaIs recorded at the top of a mountain with perposition of the radiation from these sources. A more
respect to a reference station located at the base of the detai1ed discussion of the use of these methods in site
mountain. The relative amplification cao be significant effect simulations can be round in Sânchez-Sesma and
over a large frequency interval. Knowledge of these ef- Campillo (1993).
fects is important for the prediction of ground movement While theoretical models predict significant scatter-

. close to topographic features. ing by topographies, they have Dot yet quantitative1y ex-
Two-dimensional topographic effects on wave fields plaîned observations (e.g., Bard and Tucker, 1985; Ge1i

have been numerically modeled by a number of authors. et al., 1988). Some observations seem to show both higher. Analytical solutions have been round for simple geom- and more broadband amplification than predicted by nu-

etries (Trifunac, 1973; Lee and Cao, 1989; Todorovska merical simulations. To evaluate whether topographic
and Lee, 1990, 1991). Bouchon (1973), Bard (1982), effects atone cao account for the observed amplifica-
and Ge1i et al. (1988) have used techniques based on the tions, it is necessary to extend the numerica1 simulation
method proposed by Aki and Lamer (1970) to model to geo10gically more realistic models, taking into ac-
topographic effects. A large number of simulations have count the three-dimensional character of real topogra-
been performed with techniques based on representation phies and the presence in nature of aIl types of incident
theorems. These methods inc1ude the direct boundary wave fields.
element method (HEM) (Wong and Jennings, 1975; Zhang Different attempts have been made to extend the
and Chopra, 1991), the indirect boundary element method simulation of scattering by two-dimensional structures
(IHEM) (Sânchez-Sesma and Rosenblueth, 1979; Wong, from pure two-dimensional scattering (incident wave field
1982; Luco et al., 1990; Sânchez-Sesma and Campillo, perpendicular to the structure) to three-dimensional scat-
1991, 1993), and combinations of integral representa- tering (incident wave field with an arbitrary arrivaI angle
tions with discrete wavenumber expansions of Green' s to the structure). ln particular, to study the diffraction

1

functions (Bouchon, 1985; Kawase, 1988; Pei and Pa- by a canyon, Luco et al. (1990) use IHEM and locate
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sources off the surface of the canyon to displace sin- distribution on S. The integration is performed over the
gularities in the Green's functions from the surface. ln space variable t.
this approach, sources must be carefully located to avoid Equation (1) shows that if G;j is known, one simply
numerical problems and the location off the surface leads needs to find the force density I/Ij on the surface S to
to an approximate solution. Pei and Papageorgiou (1993a) calculate the displacement at any point in V. Further-
simulate the scattered wave field across a canyon by us- more, the displacement field is continuous across S if I/Ij

ing half-space Green's functions to solve the boundary is continuous on S (Kupradze, 1963). When displace-
integral equation on the surface itself. While more ac- ments U; are known, it is possible to calculate stresses
curate, the latter method has a high computational cost and tractions by applying Hooke's law. Special care must
as a result of the calculation of half -space Green' s func- be taken at boundary singularities. The contribution of
lions. Three-dimensional scattering by two-dimensional the singularity to the traction equals half the surface force
structures has also been treated in the case of alluvial applied, assuming a smooth boundary (e.g., Kupradze,
valleys (Khair et al., 1989; Khair et al., 1991; Liu et 1963), -"

al., 1991; Pei and Papageorgiou, 1993b).
ln this article we present a method to simulate three-

Ldimensional scattering by ridge and canyon structures of t;(x) = cl/l;(x) + I/Ij(t)T;j(x, t)dS" (2)
arbitrary shapes. The IBEM, with full space Green's s

functions, is used to create the scattered wave field. By
using compact expressions of Green's functions appro- where t;(x) is the ith component of traction at x; c equals
priate to the problem, highly accurate results are pro- 0 if x is outside S, c equals 1/2 if x tends to S fromthe
duced for a low computational cost. The method, there- inside of V, and c equals -1/2 if x tends to S from the
fore, makes it possible to perform a large number of outside of V. T;/x, t) is the traction Green's function;
simulations for the study of how different parameters in- i.e., the traction in direction i at point x of a point source
fluence the scattering and for the study of three-dimen- in direction j applied at point t. The Tjj is found by ap-
sional effects due to the obliquely incident waves. It is plication of Hooke's law to equation (1).
possible, in particular, to quantitatively model observed ln the following sections, the displacement and trac-
site effects on topographies because the arrivai angle of lion Green's functions are first derived for use in finding
the incident waves on the structure cao be taken into ac- the three-dimensional scattered field for a two-dimen-
count. sional structure. Then, the procedure used to solve the

The article is organized as follows: first, a brief in- problem of three-dimensional scattering by a two-di-
troduction is given to IBEM, and then compact expres- mensional topography is defined.

sions for Green's functions are derived for use in the
simulations. The theoretical part is concluded by a dis- Green's Functions for Moving Point Sources
cussion of the implementation of the method. Results in an Elastic Medium
from applying the method are compared against those
from other approaches, and finally, examples are pre- The geometry of the problem is shown in Figure 1.
sented of simulations performed for simple geometries. A two-dimensional structure that is infinite in the di-

Integral Representation of Elastic Wave Fields P,SV,R

The IBEM is based on an integral representation of .
wave fields. Neglecting body forces, the displacement
field in a domain V with boundary S occupied by an
elastic material cao be written (see Sanchez-Sesma and x x'

Campillo, 1991)

u,{x) = L I/Ij(t) G;j{x, t)dS" (1) z

where u;(x) is the ith component of displacement at x. (a) (b)

The term G;/x, t) is the Green's function; i.e., the dis- F. 1 G f h bl f1 . d. . . d . 4' . d. Igure. eometry 0 t e pro em 0 scatter-
p ac.eme.nt m. lrectl0n l a~ X ue to ~ poInt J.orce m . 1- ing by two-dimensional topographies. (a) Hori-

rechonJ applled at the pOInt t; I/Ij{t) IS the force densny zontal plane; detinition of azimuth q,. (b) Vertical
in direction j at t. The term l/I/t)dS, is therefore a force plane; detinition of incidence angle 8.
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rection of the y axis is considered. The problem of
f oo (, ( E)) 1 three-dimensional scattering of plane waves by a two- g = - dE exp lCù t - ~ :2;

dimensional structure is somewhat simpler than the full 00

three-dimensional problem; at two cross sections per- f oo f oo exp (-ik..x - ik (y - E) - 'Ylz!)

pendicu1ar to the y axis the wave field will be identical. y dkxdky,

but shifted in time. Point sources moving paral1el to the -00 -00 'Y
y axis are therefore used to represent the diffracted field, (7)
This approach has a1so been used by Luco et al. (1990).
The incoming wave arrives with an azimuth «p relative, , . .

th d . 'd (J h ' 1 ' Integration over the space vanab1e E and substitution ofto e structure an an mC1 ence to t e vert1ca aX1S 1 .
( F ' 1) l ' h l , Th vas Cù/c glves
see 19, . t propagates wrt a ve ocrty c. e wave

has an apparent velocity c' along the y axis 00 00

g = f f S(v - ky)
c' = c (3) -00 -00

.. sin «p sin (J
, exp (-ik..x - -yjz!)

. exp (-lkyY) dkxdky, (8)
The scattered wave field can be expressed by point sources 'Y

that move parallel to the y axis with a constant velocity
c' a1ong the interfaces of the model. ln the case of a ignoring the factor exp (iCùt). Integration over ky yie1ds
topography, the point sources move along the free sur-
face, J"' exp [-ik.x - ivy - Vk:; + (Cù/c'Y - (Cù/V)2IzIJ

To derive compact expressions for traction and dis- g = dkx'
placement Green's functions for these moving point -", Vk:; + (Cù/C')2 - (Cù/V)2

sources, one can start by solving the same problem for (9)
an acoustic medium. The solution g' to the inhomoge-
neous. s~al~ ~ave equation for a fixed point source at Rearrangement of equation (9) leads to
the ongm lS glven by

( .k ) g = iexp (-ivy)
exp -, rg' = exp(iCùt) , (4) "' .. j, 1.~2 .7 2

r .f ex~ [-ikxx - i V (Cù/V)- - k; -,,~lzl] dkx

.. /, 1.~2 ..2 2. , , -00 V (Cù/V)-- K; - v-where Cù lS the c1rcular frequency, k = Cù/V lS the wave- x

number, V is the acoustic wave propagation velocity, and (10)
r is the distance to the point source, This scalar Green' s
function can be expressed with a decomposition into plane with
waves (Weyl integral, see Aki and Richards, 1980)

lm [Y(Cù/V)2 - k; - vi ~ O.
1g' = exp (iCùt) -

21T This integral is the plane wave decomposition of the wave
"' "' field radiated by a moving point source, It can be ex-.f f exp (-ik..x - ikyy - 'Ylz!) dk dk, (5) press~d using Lamb's (1904) representation for Rankel

-", -", 'Y x y functions as

where kx and ky denote the x and y components of the g = 1Ti exp (-ivy) 8&1) (W~R) (11)
wavenumber k = (kx, ky, i'Y)T. The vertical wavenumber
'Y is defined as with

'Y = Y[k; + ~ - (Cù/v)1 real ('Y) ~ o. (6) R = Y(x - X')2+ (z - zIf, (12)

The Green's function g is searched for a moving point where (x', Z') is the source location in the (x - z) plane.
source. To obtain g, the influence of the source is in- It is possible to express directly the equivalent of
tegrated over aIl positions E along the y axis, taking iota equation (11) for an elastic material with density p by
account the position of the source: (Morse and Feshbach, 1953; Pao and Varatharajulu, 1976)
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~

1 { N

G;j{x, t) = 4~ ksgs(x, t)8;j L I/Ij(tI)t;j(xn, tJ = -tf(xJ n = 1, N (16)
1TpCù 1=1

82 }+ ~ [gp(x, t) - gs(x, t)], (13) where
, J

1 iW+âs/2 where indices s and p refer to shear and compressional t;j(xn, tJ = 2 8;j8nl + T;j(xn, tJdS~ (17)

. W-âs/2
waves, respectIvely.

The insertion ofequation (12) in equation (13) gives . . . . .
the required displacement Green's functions. As dis- ~e mt~gral m equatlon (17) IS eval~ated b.y Gausslan
cussed earlier traction Green's functions cao be ob- mtegratIon, except when n = 1. ln thIS partIcular case,
tained by appiying Hooke' s law. The compact expres- it is calculat~d analytically by usi~g ascending series for
sions for the Green's functions are given in the Appendix. Bessel functIons (e.g., AbramowItz and ~tegun, 1972).

These expressions were validated by comparison with Once 1/I;~tI) has been fo~nd by resolutlon of ~e sys-
well-known expressions of Green's functions in three di- tem of equatlons (16), the dI~place~ent at any.pomt cao
mensions. The spatial Fourier transform over y of the be e~aluated by the followmg dIscrete equIvalent of
latter provides G;j{x, ky, z, Cù) by replacing ky by Cù/c'. equatlon (14):

N

Implementation of the Method u,{x) = uf(x) + L I/Ij(tJg;j(x, tJ, (18)
1=1

ln implementing the method, the total wave field is
assumed to be the superposition of the diffracted field where
and the "free field" uo; i.e., the field in the absence of
the irregularity. The definition of the free field is ad- iW+âs/2 dressed later in this section. g;j(x, tJ = G;j(x, tJdS~. (19)

Under this assumption, equation (1) becomes W-âs/2

u{x) = UO(x) + i ~(t)G.{x t) dS . (14) If x is located .on the surf~ce, the integral is again ev.al-
l , j 'j' ~ uated by analytIcal expressIons over the segment on WhICh

s x is located. Gaussian integration is used on other seg-

At the Cree surface, tractions vanish. Denoting tractions ments.. .. . . f
of the Cree field tO this condition gives ThIS sectIon IS concluded by a short dIScussIon 0

, the definition of the free fields UO and to. ln the examples

1 i presented in the next sections, a Cree field is used that

-I/I,{x) + I/Ij(t)T;j(x, t) dS~ = -tf(x). (15) includes the reflection of the incoming wave on the Cree

2 s surface of the half-space. For ridges, this field is ex-

tended analytically to the points on the ridge that are
This continuous integral must be replaced by a discrete located outside the reference half-space. This procedure
one for computer-based analysis. Again, the methodol- has the advantage of reducing boundary effects due to
ogy of Sânchez-Sesma and Campillo (1991) was fol- the truncation of the model; the surface forces 1/1; will
lowed: the surface is discretized into N segments of equal decrease in amplitude toward the limits of the model be-
length ~s. For each frequency, N is chosen so that ~s cause the effect of the irregularity decreases. On the other
is much smaller than the wavelength of the shear waves. hand, the analytically extended field is both nonphysical
Consequently, the force density l/I;(x) is chosen to be and noncausal. For strongly antisymmetrical ridges, we
constant on each of the segments. Testing of the discre- encounter problerns in the form of noncausal arrivaIs when
tization parameters showed that five segments per wave- we use the half-space reference field. Use of the full
length is sufficient to ensure accurate results. A finite space Cree field solves these problems but introduces ar-
portion of the surface is discretized. A discretization of tifacts in the form of reflections on the boundary of the
five times the length L of the irregularity, as used in the model.
results presented here, yielded results within a few per- For canyons, analytical expressions for Rayleigh
cent of those obtained by discretizing 3L of the surface. waves are used to define the Cree field. The problem of

A discrete version of equation (15) cao be used to defining the Cree field for incoming Rayleigh waves on
find the surface force l/I;(tI) on each segment. The eval- ridges is DOt addressed, as the exponential decrease with
uation of the traction at the center of each segment leads depth of the amplitude of Rayleigh waves leads to nu-
to the system of linear equations merical problems for high frequ.encies when the analyt-
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ical expression is extended upward. For the two-dimen- Numerical Results
sional case, the Rayleigh waves can be simulated by a P .,. 1 t.

f fi Id scattered. .. arameters lor Slmu a Ions 0 a wave le

vertical point load applIed far from the topographlc relIef b d.. 1 h . 1 d th try, . y a two- lmenSlona topograp y mc u e e geome ,
(Sanchez-Sesma and Camp1l10, 1991). the elastic parameters of the model, the type of the in-

cident plane wave (P, SV, SH, Rayleigh), its azimuth <1>,
Validation of the Method and incidence 8 with respect to the z axis. Simulations

were performed for incident P, SV, SH, and Rayleigh
The two-dimensional case is a limiting case of the waves (except for Rayleigh waves incident on a ridge).

method «1> = O~. ln this case, the Green's fonctions listed Selected results are presented here for simulations with
in th~ Appendix are equiva~ent to well-kn~wn tw~-di- two simple geometries (semi-circular canyon, semi-cir-
menslonal compact expressIons .for Green s functlons cular ridge) and two types of incident waves (P and SV
(e.g., Sânchez-Sesma and Camp1l10, 1991). Our results waves). Results will be presented in both the space-time
agree with those of Sânchez-Sesma and Campillo (1991) (x, t) and in the space-frequency (x, 11) domains for -2
for the two-dimensional case where the two methods .are ~ x/a ~ 2, where a is the radius of the canyon or the
strictly equivalent. As Sânchez-Sesma and Camp1l10 ridge. The normalized frequency 11, defined previously,
(1991) have compared their results to those of other au- is used. Simulations were carried out between 11 = 0 and
thors, the two-dimensional case is DOt addressed further 11 = 6.4. Traces in time were obtained by convolution
here, and the reader is referred to Sanchez-Sesma and with a Ricker wavelet of central frequency 11 = 2, fol-

Campillo (1991).
Literature on three-dimensional scattering by two-

dimensional topographies is scarce. We :ompared our 2.5
results with those of Luco et al. (1990) usmg the model
depicted in Figure 2. The topographic irregularity is a 2.0
semi-circular canyon of radius a in a homogeneous half- ..
space. The half-space is characterized by a shear-wave ~ 1.5

velocity fJ and a compressional-wave velocity a = 2fJ. ~ 1.0
Figure 3 shows the comparison with Luco et al. for an œ

incident P wave arriving with an azimuth of 45° and an 0.5
incidence angle of 45° for three normalized frequencies

(a) o.11 where -2 -1 0 1.;1: ,-~ 2

2. xia
CùQ

11 = -. (20) 2.
1TfJ

..~ 1.
For 11 = 1, the shear wavelength equals the diameter of j

œ 1.
the canyon.

The agreement between our results and those of Luco 0
et al. (1990) is generally good. Especially at low fre-
quencies the agreement is excellent, while small dif- (b) o., . . Th 1 1 f -2 -1 0 1 2ferences arise at hlgher frequencles. e eve 0 am- 2.5 xia
plification and deamplification are slightly different across
the topography, while the general shape of the curves is 2.0
similar. ..

." 1.5
a
:a. rnE 1.0 -- œ 0 ..,

2 a --- ..;- :~\~~~;:-:-:- D "J
O. ---

~ ..,a-2IJ -/ Qs-Qp-IOO. (c) 0

/ // Figure 3. Example of comparison of obtained/ / results with those of Luco et al. (1990). Contin-
uous lines, dotted lines, and dashed lines; our re-
sults. Solid circles, open circles, and triangles; Luco

Figure 2. Model of the semi-circular canyon et al. (1990). (a) 11 = 0.5, (b) 11 = l, and (c) 11
used in the simulations. = 2.
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Figure 4. Spectral amplitude of total horizontal displacements across the serni-
circular canyon. Incident wave field, SV wave with (J = 45°. (a) cp = 0°, (b) cp

= 30°, (c) cp = 60°, and (d) cp = 90°.

6 6

g 4- ~ 4
8 8
'[ [u. u.

2 2-

0 0
-2 -1 () 1 2 -2 -.1 () 1 2

(a) xIa (b) xia

6 6

>- 4- >- 4
~ ~
8 ~
[ [u. u.

2 2

() 0
-2 -1 () 1 2 -2 -1 0 1 2

(c) xia (d) xia

Figure 5. Same as Figure 4 for vertical displacements.
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lowed. by an inve~se Fourier t:ans~orrn. The amplitude outside the canyon the scattered waves are mostly Ray-
sc~le IS. the same m all synthetlc selsmograms shown in leigh waves and waves reflected by the surface of the
thlS artIcle. canyon. The general image seems to be the same for all

S . C. 1 C azimuths, but the relative amplitudes and the apparent
eml- lrcu ar anyon 1 . f th d. ve ocrty 0 e Iffracted waves are strongly dependent

ln the case of the semi-circular canyon, the model on the azimuth. Diffraction is legs for an azimuth of 90°,
presented in Figure 2 was used with only one difference but amplitudes can nevertheless be high at specific points
compared to the previous simulations: in the following, because of the interference of waves. Even when the in-
the quality factor for shear and compressional waves is cident wave field has displacements only along the y and
1000. Figures 4 and 5 show the (x, 11) image of the wave z axis, the scattered field has significant displacements
field across the canyon for an incident SV wave with on the x component.
incidence (J = 45° and differing azimuths «1> = 0°, 30°, The apparent velocity of the diffracted waves can be
60°, and 90°). Figure 4 shows the total horizontal dis- understood by considering the meaning of c', the ap-
placement and Figure 5 the vertical displacement. parent velocity along the y axis, in a simplified way us-

As the azimuth increases, the amplitude of the scat- ing Huygen's principle. The c' can take any value be-
tering changes. Figures 4 and 5 show that for small and tween CR and infinity, where CR is the Rayleigh wave
interrnediate azimuths «1> ~ 60°), it is dominated by scat- velocity in the half-space. The source emits S and P
tering generated by theedge of the canyon at x/a = -1. waves, with velocities cJ3 and Ca' If c' is greater than Ca,
The vertical displacement for <1> = 90° shows clearly how the field of the moving point source corresponds to
the scattered field across the canyon is the result of in- supersonic waves. This situation is illustrated in Figure
terference between scattered waves generated at the edges. 10a. The resulting wave front moves with an angle <1>'

Spectral amplitudes generally seem to decrease as the to the y axis, where

azimuth of the incident wave increases.
The synthetic seismograms for the four azimuths

(Figs. 6 through 9) show that the scattered field is mainly , ca.J3 ca.J3. .composed of creeping waves across the canyon, while cos <1> = -;;;- = ~ sm (J sm <1>. (21)

2 2

1 1

tU tU
'" 0 '" 0
x x

-1 -1

-2 -2

0 1 2 3 4 5 0 1 2 3 4 5
(a) Time (b) Time

4

3

Q)
'C
~

...
;:: 2
~
8tU "

1

0
-2 -lOt 2

(c) x/a.

Figure 6. Displacement amplitudes across a semi-circular canyon. Incident wave
field, ~V w~ve with 4> = 0° and 8 = 45°. (a) Synthetic seismograms, ux, (b)
synthetlc selsmograms, Uz, and (c) spectral amplitudes for 11 = 2.
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Figure 7. Same as Figure 6 with cf> = 30°. (a) Synthetic seismograms, ux, (b)
synthetic seismograms, Uy' (c) synthetic seismograms, u" and (d) spectral am-
plitudes for TJ = 2.
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Figure 8. Same as Figure 7 with cf> = 60°.
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2

1
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0 1 2 3 4 5
(c) Time (d) x a

Figure 9. Same as Figure 7 with I/J = 90°. '

4) The use of these simple formulas to explain the apparent

velocity of the diffracted waves was verified in several

examples. They also exp1ain why the scattered wave field
almost equals the superposition of the two-dimensional
iD-plane and out-of-plane solutions (Pei and Papageor-

( ) giou, 1993a) when the incident waves arrive almost ver-
a (b) tically (fJ is small).

There is clearly a singularity when c' equals Ca or
/:::::~::::::-'" ~~ cp. This is illustrated in Figure lOb. The singularity is,

in fact, weak, as the Green's functions near the source
cao be integrated. Simulations with c' slightly smaller

\ and greater than Ca and cp confirmed that there is no
1 Il particular effect to expect in practice in that particular
1 ~ situation. The wave field of the moving source when

1
c' < cp is illustrated in Figure IOc. No plane wave is

(c (d) created and the wave field presents a "Doppler effect."
- The absence of a clearly defined wave front may explain

Figure 10. Simplified wave field radiated by a why diffraction seems to decrease for large azimuths.
source moving with constant velocity c in medium When cp < c' < ca, the situation is a mixture of the
of wave propagation velocities Va.lI. (a) c > Va.lI' supersonic and the subsonic case, as illustrated in Figure
(b) c = Va.lI' (c) c < Va.lI' and (d) VII < c < Va. IOd.

The apparent velocity Cx along the x axis of this wave Semi-Circular Ridge

front is consequently The various parameters of the model of a semi-cir-

cular ridge are identical to' the model of the semi-circular
c =~. (22) canyon; the models differ only by the sign of the topog-

x sin </>' raphy. ln this section, we show ex amples of scattering
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Figure Il. Spectral amplitude of horizontal displacements across a semi-cir-
cular ridge. Incident wave field, P wave with (} = 45°. (a) <p = 0°, (b) <p = 30°,
(c) <p = 60°, and (d) <p = 90°.
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Figure 12. Saille as Figure Il for vertical displacements.
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by the ridge of a plane P wave with an incidence (J of of plane waves incident on a two-dimensional topogra-
45° to the z axis. phy. Results were presented in the frequency and lime

Figures Il and 12 show results of these simulations domains for two topographies of simple geometry: a serni-
for various azimuths of the incident P wave (cf> = 0°, circu1ar canyon and a semi-circular ridge. The signal to
30°, (i)°, and 90°). Total horiwntal displacement is shown noise ratio of the synthetic seismograms was in general
in Figure Il and vertical displacement in Figure 12. For very low, SI:) it was possible to interpret DOt only the
all azimuths, the interference is significant. Apparently, amplification of the incident waves, but also the nature
scattered waves are created by both edges of the canyon of the scattered wave field. The interpretations are based
and the interference pattern is very complicated. The upon analysis of particle motions and apparent velocities
amplitude of horizontal displacement is far from being of the waves. The total scattered wave field presents a
symmetrical over the ridge when the azimuth is small; complicated pattern of amplification and deamplification

. it is generally greatest near the far corner of the ridge because it is the result of interference between different
(xia = 1). scattered waves: Rayleigh waves, reflected compres-

The synthetic seismograms for cf> = 0° and 90° are sional and shear waves, and creeping waves. The com-
shown in Figures 13 and 14, respective1y. Analysis of p1exity does DOt seem to change considerably when the
the apparent velocities of the scattered waves indicate incident plane waves arrive outside the symmetry axis
that creeping shear waves are generated at both edges of of the topography. The points where amplification or
the ridge. The P waves are reflected away from the ridge deamplification occur change as a function of geometry,
at xia = -1 and into the ridge near xia = 1. The lime azimuth, incidence angle, and type of incident wave field,
duratio:n of the signal is long because scattered waves but the general level of amplification does DOt change
bounce back and forth across the ridge. significantly. Of all the simulations that we performed,

the maximum spectral amplification of displacement was
Conclusions 4.9 (for Rayleigh waves, the reference value is the hor-

izontal motion, which is assumed to be unitary). The
An indirect boundary element method was presented simulations also showed that there is, in practice, no par-

for calculating the three-dimensional scattered wave field ticular effect when the incident wave field is such that
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Figure 13. Displacement amplitudes across a semi-circular ridge. Incident wave
field, P wave with 4> = 0° and f} = 45°. (a) Synthetic seismograms, ux, (b)
synthetic seismograms, Uz, and (c) spectral amplitudes for 11 = 2.
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Figure 14. Same as Figure 13 with cf> = 90°. (a) Synthetic seismograms, ux,
(b) synthetic seismograms, Uy, (c) synthetic seismograms, uz, and (d) spectral
amplitudes for 17 = 2.
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D(z) = ZH\2)(Z). i { (1 1)EIII = exp (-ivxJ - YI 2 2 - 2 'YiD(QR)
4pR a c

The Green' s functions for harmonic time dependence
exp (iwt) of t?e moving point source cao be expressed + 2(~ - .!.)rP(KR)by the fo11owmg compact forms: /32 C2

1 2
}G.. = - [5..A - (2"'."'. - 5..)B

] exp (-ivx ) + 2(3~ - 'Yi)B + 2 D(KR)
I} 8. I} Ill} I} 2 , C

lp

.. 13 i { (11 )l,j = , EI31 = exp (-ivxJ - Y3 2 2 - 2 'YiD(QR)

4pR a c :

1 [~ 1 (2) (1 1)G2. = G'2 = - - - - HI (KR) + - - - ( 2 - 2) D(KR)} } 4pc /32 C2 /32 c2 Y3 YI ;

- -JRH\2)(QR)] Yjexp (-ivxJ, j = 1,3 - 2(3yi - y~)B + ~D(KR)}

. i { (11 ) 2 1 [( 1 1) 1 ] EI33 = exp (-lVXJ - YI 2 2 - 2 Y3D(QR)
G = - - - - H(2) (KR) + -H(2) (QR) 4pR a c

22 4 . a2 2 0 2 0
lp 1-' C c (1 1) 2 2. + 2 - 2 (YI - Y3)D(KR)

. exp (-lVXJ /3 c

TII = Àelnl + JL(Elllnl + E131n3) - 2(3~ - yi)B + ~ D(KR) }

T 31 = Àeln3 + JL( EI31nl + E331n3)
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) 2 2 2 } ,

T22 = JL(E122nl + E232n3) - 2 f32 - ~ YI D(KR) - 2(3YI - Y3)B

where . i { (1 1) 2E331 = exp (-'VXJ - YI 2 2 - 2 Y3 D(QR)
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5Gik 5Gjk ( ) }Eijk = - + - 1 1 2 2 2
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