seedy

o

Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 1169—1183, August 1994

Three-Dimensional Scattering by Two-Dimensional Topographies

by H. A. Pedersen, F. J. Sanchez-Sesma, and M. Campillo

Abstract Three-dimensional seismic responses of two-dimensional topogra-
phies are studied by means of the indirect boundary element method (IBEM).
The IBEM yields, in the presented form, very accurate results and has the ad-
vantage of low computational cost. In IBEM, diffracted waves are constructed
in terms of single-layer boundary sources. The appropriate Green’s functions
used are those of a harmonic point force moving along the axis of the topog-
raphy in a full space. Obtained results are compared against those published by
other authors. Examples of simulations are presented for different geometries,
for different types of incident wave fields, and, in particular, for different arrival
angles to the topography to quantitatively study three-dimensional effects of the
scattering. The accuracy of the results makes it possible to analyze them in both
the time and frequency domains. Frequency-space representations allow iden-
tification of diffraction and interference patterns in the seismic response of the
topography. Synthetic seismograms are obtained by Fourier analysis. Using time-
space domain representations, the nature of each of the scattered waves are
identified in terms of, for example, creeping waves and reflected compressional

waves.

Introduction

Surface topography has been reported to produce
significant site effects (e.g., Davis and West, 1973;
Griffiths and Bollinger, 1979; Bard and Tucker, 1985).
These effects take the form of a relative amplification of
seismic signals recorded at the top of a mountain with
respect to a reference station located at the base of the
mountain. The relative amplification can be significant
over a large frequency interval. Knowledge of these ef-
fects is important for the prediction of ground movement
close to topographic features.

Two-dimensional topographic effects on wave fields
have been numerically modeled by a number of authors.
Analytical solutions have been found for simple geom-
etries (Trifunac, 1973; Lee and Cao, 1989; Todorovska
and Lee, 1990, 1991). Bouchon (1973), Bard (1982),
and Geli et al. (1988) have used techniques based on the
method proposed by Aki and Larner (1970) to model
topographic effects. A large number of simulations have
been performed with techniques based on representation
theorems. These methods include the direct boundary
element method (BEM) (Wong and Jennings, 1975; Zhang
and Chopra, 1991), the indirect boundary element method
(IBEM) (Sinchez-Sesma and Rosenblueth, 1979; Wong,
1982; Luco et al., 1990; Sanchez-Sesma and Campillo,
1991, 1993), and combinations of integral representa-
tions with discrete wavenumber expansions of Green’s
functions (Bouchon, 1985; Kawase, 1988; Pei and Pa-

pageorgiou, 1993a). While BEM directly finds the un-
known tractions and displacements, IBEM searches a force
distribution for which the radiated field satisfies the
boundary conditions. Displacements are obtained by su-
perposition of the radiation from these sources. A more
detailed discussion of the use of these methods in site
effect simulations can be found in Sanchez-Sesma and
Campillo (1993).

While theoretical models predict significant scatter-
ing by topographies, they have not yet quantitatively ex-
plained observations (e.g., Bard and Tucker, 1985; Geli
et al., 1988). Some observations seem to show both higher
and more broadband amplification than predicted by nu-
merical simulations. To evaluate whether topographic
effects alone can account for the observed amplifica-
tions, it is necessary to extend the numerical simulation
to geologically more realistic models, taking into ac-
count the three-dimensional character of real topogra-
phies and the presence in nature of all types of incident
wave fields.

Different attempts have been made to extend the
simulation of scattering by two-dimensional structures
from pure two-dimensional scattering (incident wave field
perpendicular to the structure) to three-dimensional scat-
tering (incident wave field with an arbitrary arrival angle
to the structure). In particular, to study the diffraction
by a canyon, Luco et al! (1990) use IBEM and locate
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sources off the surface of the canyon to displace sin-
gularities in the Green’s functions from the surface. In
this approach, sources must be carefully located to avoid
numerical problems and the location off the surface leads
to an approximate solution. Pei and Papageorgiou (1993a)
simulate the scattered wave field across a canyon by us-
ing half-space Green’s functions to solve the boundary
integral equation on the surface itself. While more ac-
curate, the latter method has a high computational cost
as a result of the calculation of half-space Green’s func-
tions. Three-dimensional scattering by two-dimensional
structures has also been treated in the case of alluvial
valleys (Khair et al., 1989; Khair et al., 1991; Liu et
al., 1991; Pei and Papageorgiou, 1993b).

In this article we present a method to simulate three-
dimensional scattering by ridge and canyon structures of
arbitrary shapes. The IBEM, with full space Green’s
functions, is used to create the scattered wave field. By
using compact expressions of Green’s functions appro-
priate to the problem, highly accurate results are pro-
duced for a low computational cost. The method, there-
fore, makes it possible to perform a large number of
simulations for the study of how different parameters in-
fluence the scattering and for the study of three-dimen-
sional effects due to the obliquely incident waves. It is
possible, in particular, to quantitatively model observed
site effects on topographies because the arrival angle of
the incident waves on the structure can be taken into ac-
count.

The article is organized as follows: first, a brief in-
troduction is given to IBEM, and then compact expres-
sions for Green’s functions are derived for use in the
simulations. The theoretical part is concluded by a dis-
cussion of the implementation of the method. Results
from applying the method are compared against those
from other approaches, and finally, examples are pre-
sented of simulations performed for simple geometries.

Integral Representation of Elastic Wave Fields

The IBEM is based on an integral representation of
wave fields. Neglecting body forces, the displacement
field in a domain V with boundary S occupied by an
elastic material can be written (see Sanchez-Sesma and
Campillo, 1991)

ui(x) = ""llj(g) G,‘,(X, C)dsg’ (1)

where u/x) is the ith component of displacement at x.
The term Gy(x, {) is the Green’s function; i.e., the dis-
placement in direction i at x due to a point force in di-
rection j applied at the point §; ¢({) is the force density
in direction j at {. The term ({)dS; is therefore a force
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distribution on S. The integration is performed over the
space variable {.

Equation (1) shows that if G; is known, one simply
needs to find the force density #; on the surface § to
calculate the displacement at any point in V. Further-
more, the displacement field is continuous across S if ¢;
is continuous on § (Kupradze, 1963). When displace-
ments u; are known, it is possible to calculate stresses
and tractions by applying Hooke’s law. Special care must
be taken at boundary singularities. The contribution of
the singularity to the traction equals half the surface force
applied, assuming a smooth boundary (e.g., Kupradze,
1963),

t(X) = c(x) + f%(Q)Tq(X, Das, (2)

where £,(x) is the ith component of traction at x; ¢ equals
0 if x is outside S, ¢ equals 1/2 if x tends to S from the
inside of V, and ¢ equals —1/2 if x tends to S from the
outside of V. T(x, {) is the traction Green’s function;
i.e., the traction in direction i at point x of a point source
in direction j applied at point {. The T; is found by ap-
plication of Hooke’s law to equation (1).

In the following sections, the displacement and trac-
tion Green'’s functions are first derived for use in finding
the three-dimensional scattered field for a two-dimen-
sional structure. Then, the procedure used to solve the
problem of three-dimensional scattering by a two-di-
mensional topography is defined.

Green’s Functions for Moving Point Sources
in an Elastic Medium

The geometry of the problem is shown in Figure 1.
A two-dimensional structure that is infinite in the di-

(a) (b)

Figure 1. Geometry of the problem of scatter-
ing by two-dimensional topographies. (a) Hori-
zontal plane; definition of azimuth ¢. (b) Vertical
plane; definition of incidence angle 6.
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rection of the y axis is considered. The problem of
three-dimensional scattering of plane waves by a two-
dimensional structure is somewhat simpler than the full
three-dimensional problem; at two cross sections per-
pendicular to the y axis the wave field will be identical
but shifted in time. Point sources moving parallel to the
y axis are therefore used to represent the diffracted field.
This approach has also been used by Luco ez al. (1990).
The incoming wave arrives with an azimuth ¢ relative
to the structure and an incidence @ to the vertical axis
(see Fig. 1). It propagates with a velocity ¢. The wave
has an apparent velocity ¢’ along the y axis

c' ; (3)

sin ¢ sin 6

The scattered wave field can be expressed by point sources
that move parallel to the y axis with a constant velocity
¢’ along the interfaces of the model. In the case of a
topography, the point sources move along the free sur-
face.

To derive compact expressions for traction and dis-
placement Green’s functions for these moving point
sources, one can start by solving the same problem for
an acoustic medium. The solution g’ to the inhomoge-
neous scalar wave equation for a fixed point source at
the origin is given by

— 'k
g' = exp (iwp) M, “4)

where o is the circular frequency, k = w/V is the wave-
number, V is the acoustic wave propagation velocity, and
r is the distance to the point source. This scalar Green’s
function can be expressed with a decomposition into plane
waves (Weyl integral, see Aki and Richards, 1980)

1
g’ = exp (iwt) —
27

© ® _.k — —
. J j exp (Cikox — iky — D &, )
-0 -—00 7

where k, and k, denote the x and y components of the
wavenumber k = (k,, k,, iy)". The vertical wavenumber
v is defined as

y=VIE+E - (@/V)Y] real(y)=0. (6)

The Green’s function g is searched for a moving point
source. To obtain g, the influence of the source is in-
tegrated over all positions € along the y axis, taking into
account the position of the source:
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B € 1
8= f de exp (iw(t - —')> —
e c 27
Qo o0 _ 'k _ 'k _ _
, f " exp (—ikx — ik(y — € — Yz)) di dk,
- J —~m ‘)’
Q)

Integration over the space variable € and substitution of
v as w/c’ gives

g=f f (v — k)

exp (—ikx — Yz

- exp (—ik,y) dk.dk,, (8)

ignoring the factor exp (iwr). Integration over k, yields

J’” exp[-ikx — vy — VI + (w/c') — (0/ V)] "
8= X
- VE +(@/c' = (0/V)

9

Rearrangement of equation (9) leads to

g = iexp (—ivy)
J“’ exp [—ikx — iV(w/V): — © — V] "
. Ve/w-2-¢

(10)

with

Im [V (0/V) - & - v} = 0.

This integral is the plane wave decomposition of the wave
field radiated by a moving point source. It can be ex-
pressed using Lamb’s (1904) representation for Hankel
functions as

g = miexp (—ivy) HY (VI — ¥*R) (11)

with

R = \/(x - XY+ (z -2, (12)
where (x’, z') is the source location in the (x — z) plane.
It is possible to express directly the equivalent of

equation (11) for an elastic material with density p by
(Morse and Feshbach, 1953; Pao and Varatharajulu, 1976)
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G,:,(X, g) = {ksgs(x’ g)ay

4mpe’
2

ox;0x;

+ [g,(x, O — g.(x, §)]}, (13)

where indices s and p refer to shear and compressional
waves, respectively.

The insertion of equation (12) in equation (13) gives
the required displacement Green’s functions. As dis-
cussed earlier, traction Green’s functions can be ob-
tained by applying Hooke’s law. The compact expres-
sions for the Green’s functions are given in the Appendix.

These expressions were validated by comparison with
well-known expressions of Green’s functions in three di-
mensions. The spatial Fourier transform over y of the
latter provides G (x, k,, z, w) by replacing k, by w/c’.

Implementation of the Method

In implementing the method, the total wave field is
assumed to be the superposition of the diffracted field
and the “free field” «°; i.e., the field in the absence of
the irregularity. The definition of the free field is ad-
dressed later in this section.

Under this assumption, equation (1) becomes

u(x) = up(x) + f ¥ (OG(x, ) dS;. (14)

At the free surface, tractions vanish. Denoting tractions
of the free field ¢°, this condition gives

1
Elll,(x) + f%({)ﬂ,-(x, Ods;= —ix). (15

This continuous integral must be replaced by a discrete
one for computer-based analysis. Again, the methodol-
ogy of Sanchez-Sesma and Campillo (1991) was fol-
lowed: the surface is discretized into N segments of equal
length As. For each frequency, N is chosen so that As
is much smaller than the wavelength of the shear waves.
Consequently, the force density (x) is chosen to be
constant on each of the segments. Testing of the discre-
tization parameters showed that five segments per wave-
length is sufficient to ensure accurate results. A finite
portion of the surface is discretized. A discretization of
five times the length L of the irregularity, as used in the
results presented here, yielded results within a few per-
cent of those obtained by discretizing 3L of the surface.

A discrete version of equation (15) can be used to
find the surface force ¥«({;) on each segment. The eval-
uation of the traction at the center of each segment leads
to the system of linear equations
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v

N
> @)%, &) = —12(x,) n=1,N (16)
=1

where

L+ ass2

1
tij(xn, Cl) = 5 aijanl + f Tij(xm gl)dsg (17)

L-asp2

The integral in equation (17) is evaluated by Gaussian
integration, except when n = [. In this particular case,
it is calculated analytically by using ascending series for
Bessel functions (e.g., Abramowitz and Stegun, 1972).

Once ¢({,) has been found by resolution of the sys-
tem of equations (16), the displacement at any point can
be evaluated by the following discrete equivalent of
equation (14):

N
ulx) = u2X) + Y, &gy (x, L), (18)
1=1

where

Li+asy2
gi(x, L) = f G;(x, £)as;. (19)

L-asp2

If x is located on the surface, the integral is again eval-
uated by analytical expressions over the segment on which
x is located. Gaussian integration is used on other seg-
ments.

This section is concluded by a short discussion of
the definition of the free fields u° and #°. In the examples
presented in the next sections, a free field is used that
includes the reflection of the incoming wave on the free
surface of the half-space. For ridges, this field is ex-
tended analytically to the points on the ridge that are
located outside the reference half-space. This procedure
has the advantage of reducing boundary effects due to
the truncation of the model; the surface forces y; will
decrease in amplitude toward the limits of the model be-
cause the effect of the irregularity decreases. On the other
hand, the analytically extended field is both nonphysical
and noncausal. For strongly antisymmetrical ridges, we
encounter problems in the form of noncausal arrivals when
we use the half-space reference field. Use of the full
space free field solves these problems but introduces ar-
tifacts in the form of reflections on the boundary of the
model.

For canyons, analytical expressions for Rayleigh
waves are used to define the free field. The problem of
defining the free field for incoming Rayleigh waves on
ridges is not addressed, as the exponential decrease with
depth of the amplitude of Rayleigh waves leads to nu-
merical problems for high frequencies when the analyt-
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ical expression is extended upward. For the two-dimen-
sional case, the Rayleigh waves can be simulated by a
vertical point load applied far from the topographic relief
(Sanchez-Sesma and Campillo, 1991).

Validation of the Method

The two-dimensional case is a limiting case of the
method (¢ = 0°). In this case, the Green’s functions listed
in the Appendix are equivalent to well-known two-di-
mensional compact expressions for Green’s functions
(e.g., Sanchez-Sesma and Campillo, 1991). Our results
agree with those of Sanchez-Sesma and Campillo (1991)
for the two-dimensional case where the two methods are
strictly equivalent. As Sanchez-Sesma and Campillo
(1991) have compared their results to those of other au-
thors, the two-dimensional case is not addressed further
here, and the reader is referred to Sdnchez-Sesma and
Campillo (1991).

Literature on three-dimensional scattering by two-
dimensional topographies is scarce. We compared our
results with those of Luco et al. (1990) using the model
depicted in Figure 2. The topographic irregularity is a
semi-circular canyon of radius a in a homogeneous half-
space. The half-space is characterized by a shear-wave
velocity B and a compressional-wave velocity a = 28.
Figure 3 shows the comparison with Luco et al. for an
incident P wave arriving with an azimuth of 45° and an
incidence angle of 45° for three normalized frequencies
7 where

wa

- (20)

n

For n = 1, the shear wavelength equals the diameter of
the canyon.

The agreement between our results and those of Luco
et al. (1990) is generally good. Especially at low fre-
quencies, the agreement is excellent, while small dif-
ferences arise at higher frequencies. The level of am-
plification and deamplification are slightly different across
the topography, while the general shape of the curves is
similar.

~—— 2a
- ww R

a=2p
Qs=Qp=100.

Figure 2. Model of the semi-circular canyon
used in the simulations.
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Numerical Results

Parameters for simulations of a wave field scattered
by a two-dimensional topography include the geometry,
the elastic parameters of the model, the type of the in-
cident plane wave (P, SV, SH, Rayleigh), its azimuth ¢,
and incidence 6 with respect to the z axis. Simulations
were performed for incident P, SV, SH, and Rayleigh
waves (except for Rayleigh waves incident on a ridge).
Selected results are presented here for simulations with
two simple geometries (semi-circular canyon, semi-cir-
cular ridge) and two types of incident waves (P and SV
waves). Results will be presented in both the space-time
(x, ©) and in the space-frequency (x, ) domains for —2
= x/a = 2, where a is the radius of the canyon or the
ridge. The normalized frequency 7, defined previously,
is used. Simulations were carried out between 7 = 0 and
n = 6.4. Traces in time were obtained by convolution
with a Ricker wavelet of central frequency n = 2, fol-

2.5

amplitude

[6)] 00

2.5

2.0

1.5+

amplitude

0.5+

b 0.0

2.5

2.0

amplitude

—
. kmx

D oy

- ampe
A ooz

© 0.0

Figure 3. Example of comparison of obtained
results with those of Luco et al. (1990). Contin-
uous lines, dotted lines, and dashed lines; our re-
sults. Solid circles, open circles, and triangles; Luco
etal. (1990). (@) n =05, (b)n=1,and (c)
= 2.
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Frequency

2 1 0 I
@ x/a -

Figure 4.  Spectral amplitude of total horizontal displacements across the semi-
circular canyon. Incident wave field, SV wave with 8 = 45°. (a) ¢ = 0°, (b) ¢
= 30° (c) ¢ = 60°, and (d) ¢ = 90°.

(a) xfa (b) x/a

@

Figure 5. Same as Figure 4 for vertical displacements.
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lowed by an inverse Fourier transform. The amplitude
scale is the same in all synthetic seismograms shown in
this article.

Semi-Circular Canyon

In the case of the semi-circular canyon, the model
presented in Figure 2 was used with only one difference
compared to the previous simulations: in the following,
the quality factor for shear and compressional waves is
1000. Figures 4 and 5 show the (x, 17) image of the wave
field across the canyon for an incident SV wave with
incidence 0 = 45° and differing azimuths (¢ = 0°, 30°,
60°, and 90°). Figure 4 shows the total horizontal dis-
placement and Figure 5 the vertical displacement.

As the azimuth increases, the amplitude of the scat-
tering changes. Figures 4 and 5 show that for small and
intermediate azimuths (¢ = 60°), it is dominated by scat-
tering generated by the edge of the canyon at x/a = —1.
The vertical displacement for ¢ = 90° shows clearly how
the scattered field across the canyon is the result of in-
terference between scattered waves generated at the edges.
Spectral amplitudes generally seem to decrease as the
azimuth of the incident wave increases.

The synthetic seismograms for the four azimuths
(Figs. 6 through 9) show that the scattered field is mainly
composed of creeping waves across the canyon, while

L
~
»
(a) Time
; 5
4 T
N w ]
IS i
3 -
9 [ 5 ]
3 - B J
= 2+ : ]
&, [ ]
g — 5
L] L o
1| 3
(1} AP AR S P
-2 -1 0 1 2
(C) x/a

1175

outside the canyon the scattered waves are mostly Ray-
leigh waves and waves reflected by the surface of the
canyon. The general image seems to be the same for all
azimuths, but the relative amplitudes and the apparent
velocity of the diffracted waves are strongly dependent
on the azimuth. Diffraction is less for an azimuth of 90°,
but amplitudes can nevertheless be high at specific points
because of the interference of waves. Even when the in-
cident wave field has displacements only along the y and
z axis, the scattered field has significant displacements
on the x component.

The apparent velocity of the diffracted waves can be
understood by considering the meaning of ¢’, the ap-
parent velocity along the y axis, in a simplified way us-
ing Huygen’s principle. The ¢’ can take any value be-
tween ¢ and infinity, where c¢; is the Rayleigh wave
velocity in the half-space. The source emits S and P
waves, with velocities ¢g and c,. If ¢’ is greater than c,,
the field of the moving point source corresponds to
supersonic waves. This situation is illustrated in Figure
10a. The resulting wave front moves with an angle ¢’
to the y axis, where

C,
cos ¢’ =—£ =
c

S8 Gin 0 sin . 1)
c

x/a

A P PR AR
0 1 2 3 4 5
(b) Time

Figure 6. Displacement amplitudes across a semi-circular canyon. Incident wave
field, SV wave with ¢ = 0° and @ = 45°. (a) Synthetic seismograms, u,, (b)
synthetic seismograms, u,, and (c) spectral amplitudes for n = 2.
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Same as Figure 6 with ¢ = 30°. (a) Synthetic seismograms, u,, (b)

synthetic seismograms, u,, (c) synthetic seismograms, u,, and (d) spectral am-
plitudes for n = 2.
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Figure 9. Same as Figure 7 with ¢ = 90°.

The use of these simple formulas to explain the apparent

velocity of the diffracted waves was verified in several

examples. They also explain why the scattered wave field

almost equals the superposition of the two-dimensional

in-plane and out-of-plane solutions (Pei and Papageor-

giou, 1993a) when the incident waves arrive almost ver-
@ (b) tically (6 is small).

There is clearly a singularity when ¢’ equals ¢, or
cg- This is illustrated in Figure 10b. The singularity is,
in fact, weak, as the Green’s functions near the source
can be integrated. Simulations with ¢’ slightly smaller
and greater than c, and ¢z confirmed that there is no
particular effect to expect in practice in that particular
situation. The wave field of the moving source when
¢’ < cp is illustrated in Figure 10c. No plane wave is
created and the wave field presents a “Doppler effect.”
The absence of a clearly defined wave front may explain

Figure 10. Simplified wave field radiated by a why diffraction seems to decrease for large azimuths.
source moving with constant velocity ¢ in medium When ¢z < ¢’ < ¢,, the situation is a mixture of the
of wave propagation velocities V,g. () ¢ > V, g, supersonic and the subsonic case, as illustrated in Figure
(b) ¢ = Vap, (€) ¢ < Vap, and (d) Vg < ¢ < V. 10d.

The apparent velocity ¢, along the x axis of this wave Semi-Circular Ridge

front is consequently The various parameters of the model of a semi-cir-

cular ridge are identical to the model of the semi-circular
] (22)  canyom; the models differ only by the sign of the topog-
sin ¢’ raphy. In this section, we show examples of scattering

Cap

Cx =
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(a) xfa b x/fa

-2 -1 0 1 2
@ x/a

Figure 11. Spectral amplitude of horizontal displacements across a semi-cir-
cular ridge. Incident wave field, P wave with 8 = 45°. (a) ¢ = 0°, (b) ¢ = 30°,
(c) ¢ = 60°, and (d) ¢ = 90°.

-2 -1 0 1 2 -2 -1 0 1 2
© x/a @ x/a

Figure 12. Same as Figure 11 for vertical displacements.
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by the ridge of a plane P wave with an incidence 6 of
45° to the z axis.

Figures 11 and 12 show results of these simulations
for various azimuths of the incident P wave (¢ = 0°,
30°, 60°, and 90°). Total horizontal displacement is shown
in Figure 11 and vertical displacement in Figure 12. For
all azimuths, the interference is significant. Apparently,
scattered waves are created by both edges of the canyon
and the interference pattern is very complicated. The
amplitude of horizontal displacement is far from being
symmetrical over the ridge when the azimuth is small;
it is generally greatest near the far corner of the ridge
x/a = 1).

The synthetic seismograms for ¢ = 0° and 90° are
shown in Figures 13 and 14, respectively. Analysis of
the apparent velocities of the scattered waves indicate
that creeping shear waves are generated at both edges of
the ridge. The P waves are reflected away from the ridge
at x/a = —1 and into the ridge near x/a = 1. The time
duration of the signal is long because scattered waves
bounce back and forth across the ridge.

Conclusions

An indirect boundary element method was presented
for calculating the three-dimensional scattered wave field

o
~
»
0 1 2 3 4 5
(a) ; Time
A L BT
° il ]
° s ]
E 3 ~ ]
= 2 -1
A 3 E
£ L ]
o L 5
1 [ 7
[ | ISR AT RO SR T o A §
-2 -1 v} 1 2
(C) x/a
Figure 13.
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of plane waves incident on a two-dimensional topogra-
phy. Results were presented in the frequency and time
domains for two topographies of simple geometry: a semi-
circular canyon and a semi-circular ridge. The signal to
noise ratio of the synthetic seismograms was in general
very low, so it was possible to interpret not only the
amplification of the incident waves, but also the nature
of the scattered wave field. The interpretations are based
upon analysis of particle motions and apparent velocities
of the waves. The total scattered wave field presents a
complicated pattern of amplification and deamplification
because it is the result of interference between different
scattered waves: Rayleigh waves, reflected compres-
sional and shear waves, and creeping waves. The com-
plexity does not seem to change considerably when the
incident plane waves arrive outside the symmetry axis
of the topography. The points where amplification or
deamplification occur change as a function of geometry,
azimuth, incidence angle, and type of incident wave field,
but the general level of amplification does not change
significantly. Of all the simulations that we performed,
the maximum spectral amplification of displacement was
4.9 (for Rayleigh waves, the reference value is the hor-
izontal motion, which is assumed to be unitary). The
simulations also showed that there is, in practice, no par-
ticular effect when the incident wave field is such that

0 1 2 3 4 5

Displacement amplitudes across a semi-circular ridge. Incident wave

field, P wave with ¢ = 0° and 6 = 45°. (a) Synthetic seismograms, u,, (b)
synthetic seismograms, u,, and (c) spectral amplitudes for n = 2.
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Figure 14.
(b) synthetic seismograms, u,, (c) synthetic seismograms, u,, and (d) spectral
amplitudes for n = 2.

there is a singularity in the Green’s function for a mov-
ing point source.

Our results indicate that in the three-dimensional case,
as in the two-dimensional one, the wave field scattered
by a topography is significant over large distances. Of
course, the introduction of damping in the model will
diminish this effect; nevertheless, it is not surprising to
find extreme values of spectral ratios between the top
and the base of mountains. Peaks in the spectral ratio
are expected for frequencies where deamplification takes
place at the reference station; there is no theoretical evi-
dence, however, of broadband amplification at any lo-
cation on the topography.

We needed to make only one approximation for the
implementation of the method: we divided the topogra-
phy into a number of segments, each with a constant
force distribution. Tests showed that five segments per
wavelength is sufficient to obtain a good accuracy of the
results. In this way, performing each of the simulations
presented here requires only a few hours CPU time on a
medium-sized workstation (IBM Risc 6000, 9 Mflops).
The low computation time means that the method can
be extended to more complex problems, such as scat-
tering of plane waves by alluvial valleys or propagation
of crustal phases across large structures. Direct use of
the method presented in this article could be parametric
studies or modeling of observed topographic effects.

H. A. Pedersen, F. J. Sanchez-Sesma, and M. Campillo
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Appendix

Green’s Functions for a Moving Point Source in
an Elastic Unbounded Medium

Consider a point source moving in a homogeneous
isotropic elastic unbounded medium with density p, Lamé
constants g and A, and shear- and compressional-wave
velocities a and B, respectively. The point source moves
with velocity ¢ parallel to the x, axis along the line through
(1}, 0, x3). The observation point is situated at (x,, x,,
x3). The term i* = —1, t = time, @ = circular frequency,
and Hy, is the Hankel functions of the second kind and
order m. Other notations used are

R= V(xl = x)’ + ( — 29,

x = x5 X - X
Y= — V3=
R R
w ) w
g=—, k=—, v=-—
a B c

with

Imag(Q) = 0; Imag(K) = 0

+

—2> HE(QR) + ( 2) HP(KR)

Qlu—l

A 7
B

( 1 1
o ¢
( 1 1

a2 Cz

1 1
S - S5 HP©@R
a C
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D(2) = zH'?(z).

The Green’s functions for harmonic time dependence
exp (iwt) of the moving point source can be expressed
by the following compact forms:

1
Gy = gip 18w — @y, — 8Bl exp (—iu),

1 11
G, =G, =— [ i — HP(KR)

1 1 . .
B \/—2 - —ZH?’(QR>] v exp (—ivx), j=1,3
a C

Gp = "i) [(Biz - cl) HP(KR) + H (2)(QR)]
- exp (—ivx,)

Ty = Aeiny + pleng + €31n3)

T5, = Aeyns + p(esn + €33m3)

Tyy = Aesny + plesn + €133n3)

T5; = Aesny + plen, + €3n;)

Ty = Aeyny + uleqon, + €3n3)

Ty = pl€n, + €3,n3)
T5; = Aeyns + plen + €33n;)
Ty = plenn, +exns)
Ty, = pl€mn, + €3n3)

where

€, ik
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D(QR)

i
e, =—ex ivx,) v, i=1,3
40R p (—ivxy) v >

i . 0 o
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