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B.P. 53, 38041 Grenoble Cedex 9, France

2 Astrophysical Institute Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Two different approaches to the Roberts dynamo problem are considered. Firstly, the
equations governing the magnetic field are specified to both harmonic and subharmonic
solutions and reduced to matrix eigenvalue problems, which are solved numerically. Sec-
ondly, a mean magnetic field is defined by averaging over proper areas, corresponding
equations are derived, in which the induction effect of the flow occurs essentially as an
anisotropic α-effect, and they are solved analytically. In order to check the reliability
of the statements on the Karlsruhe experiment which have been made on the basis of a
mean-field theory, analogous statements are derived for a rectangular dynamo box con-
taining 50 Roberts cells, and they are compared with the direct solutions of the eigenvalue
problem mentioned. Some shortcomings of the simple mean-field theory are revealed.

1. Introduction. The dynamo model proposed by Roberts 1972 [13] has
been chosen as the starting point for an experimental demonstration of homoge-
neous fluid dynamo at the Forschungszentrum Karlsruhe [1, 3, 4, 6, 10, 11, 17, 18,
20]. The fluid velocity field considered by Roberts which is of particular interest
in this context is given by

U = U
(
sin(Y/LU ), cos(X/LU), χ(cos(X/LU)− cos(Y/LU ))

)
. (1)

Here a Cartesian coordinate system (X, Y, Z) is used. The flow pattern is sketched
in Fig. 1. LU is the length of the diagonal of a cell in the XY –plane and the
parameter χ, which is a constant, determines the Z–component of the flow and
so the helicity of the velocity field. Roberts has demonstrated that a flow of this
kind is capable of dynamo action. He investigated, however, only magnetic fields
which show the same periodicity in X and Y as the flow pattern. These fields,
which we call here “harmonic fields”, possess parts which do not depend on X
and Y but only on Z or, in other words, they have infinite wave lengths in the
X and Y directions. As Roberts himself pointed out the considered flow allows
also non–decaying magnetic fields with finite wave lengths in all directions. For
a particular case such fields were investigated by Tilgner and Busse [19], who
called them “subharmonic”, and in a more general frame by Plunian and Rädler
[5]. Despite the finite dimensions of the Karlsruhe experimental device many
estimates concerning excitation conditions etc. have been made on the basis of
findings about harmonic magnetic fields. It is, however, of high interest to compare
these results with such derived from results on subharmonic fields.

In this paper we start with the basic equations of the Roberts dynamo problem
and some general consequences (Section 2.), present some findings on its harmonic
solutions (Section 3.) and explain a mean–field approach to the dynamo problem on
that level (Section 4.). After that we turn to subharmonic solutions and give some
results for them (Section 5.). We then deal with the Karlsruhe experiment, derive in

92



Fig. 1. The stream lines of the
Roberts flow in the xy-plane. They
coincide with the isolines of the ve-
locity in z-direction. Dimensionless
coordinates x = X/LU and y =
Y/LU are used.
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the framework of a mean–field approach and under simplifying assumptions on the
dynamo module an excitation condition and compare it with a corresponding result
of the subharmonic analysis (Section 6.). Finally summarize the main consequences
of our findings (Section 7.).

2. The Roberts dynamo. To discuss the Roberts dynamo problem in
some detail we consider the induction equation governing the magnetic field B,
assuming that it applies in all infinite space. We use its dimensionless form

∂B
∂t

= ∇× (u×B) + Rm−1∇2B, ∇ ·B = 0 (2)

with

u = (sin y, sin x, χ(cosx− cos y)) . (3)

Instead of X = (X, Y, Z) we have introduced here dimensionless coordinates x =
(x, y, z) defined by x = X/LU , instead of U the dimensionless velocity u defined
by u = U/U , and we measure the time in units of LU/U . Further Rm is the
magnetic Reynolds number defined by

Rm =
ULU

η
(4)

with η being the magnetic diffusivity of the fluid.
For a steady flow as envisaged here we may expect solutions B varying like

exp(pt) in time, where the real part of p is the dimensionless growth rate. In
this case an eigenvalue problem for B with the eigenvalue parameter p occurs.
Furthermore, since the flow is z-independent, B can be assumed to possess the
form

B = <e{b(x, y, k) exp(pt + ikz)} , (5)

where b(x, y, k) is a complex vector field independent of z, and k a dimensionless
wave number with respect to the z-direction. When inserting (5) into (2) we find

pb + (u · ∇)b = (b · ∇)u− ikuzb + Rm−1(∇2 − k2)b (6)
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Fig. 2. The growth rate p versus k for various Rm (given by the labels at the curves)
and χ = 1. For each given Rm the circle corresponds to the maximum growth rate pmax

occurring at kmax.

∇ · b + ikbz = 0. (7)

The x and y components of (6) are equations for bx and by which do not contain
bz. They constitute the mentioned eigenvalue problem. After solving it, we can
calculate bz from (7) without any integration.

We may easily conclude from (6) that the results for p for any χ can be
inferred from those for χ = 1 with the help of the relation

p(k, Rm, χ) = p(kχ, Rm, 1) + k2Rm−1(χ2 − 1). (8)

As long as we deal with direct solutions of the Roberts dynamo problem (up to
Section 5.) we therefore restrict our attention to the solutions with χ = 1. In the
discussion of the Karlsruhe dynamo experiment (Section 6.) we admit also other
values of χ.

3. Harmonic solutions. As mentioned above, Roberts solved the relevant
equations only for magnetic fields with the same periods in x and y as the flow pat-
tern. We consider first this case only, in which we speak of “harmonic solutions”.
Then b(x, y, k) must have the same periodicity in x and y as the flow pattern.

Solving the eigenvalue problem defined by (6) Roberts found growth rates,
that is real parts of p, in its dependence on k for values of Rm up to 64 as shown
in Fig. 2. The imaginary parts of p proved to be equal to zero (numerically
always close to zero), attesting that the dynamo instability is an absolute one.
This implies that the magnetic field geometry is stationary while the intensity in
general varies in time.

Soward [14] has shown that in the limit of large Rm the order of the maximum
of the dimensionless growth rate, pmax, is given by pmax = O(ln(ln Rm)/ ln Rm).
It occurs at a wave number kmax for which kmax = O(Rm1/2(ln Rm)−1/2). That
is, pmax → 0 as Rm → ∞. Thus the Roberts dynamo proves to be a slow one.
This applies not only in the context of harmonic solutions, for it turns out that
other solutions never grow faster than the fastest of the harmonic ones.
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Table 1. Maximum growth rates pmax, the corresponding wave numbers kmax and the
quantities Γ1 and Γ2 for various Rm and χ = 1.

Rm 2 4 8 16 32 64 128 256 512
pmax 0.12 0.16 0.17 0.16 0.15 0.14 0.13 0.12 0.11
kmax 0.33 0.45 0.54 0.66 0.89 1.2 1.62 2.18 2.87
Γ1 -0.24 0.69 0.49 0.44 0.41 0.40 0.40 0.39 0.37
Γ2 0.19 0.26 0.28 0.28 0.29 0.31 0.31 0.32 0.32

Results for finite Rm obtained in our calculations are given in Fig. 2 and in
Table 1; see also [15, 16]. Note that the quantities Γ1 = pmax ln Rm/ ln(ln Rm)
and Γ2 = kmax(ln Rm)1/2/Rm1/2 given in Table 1 approach constant values as Rm
grows and thus illustrate the mentioned asymptotic laws.

4. A mean-field approach. The Roberts dynamo with harmonic mag-
netic fields B can also be understood in terms of mean fields. For any field Q we
define a mean field Q by averaging over an area of one periodic unit, or four half
cells, of the flow pattern in the xy-plane as depicted in Fig. 1, for example

Q(x, y, z, t) =
∫ +π

−π

∫ +π

−π

Q(x + ξ, y + η, z, t)dξdη. (9)

Whereas B is in general non-zero we have u = 0.
Subjecting the induction equation (2) to this kind of averaging we obtain

∂B
∂t

= ∇× E + Rm−1∇2B, ∇ ·B = 0, (10)

where E is a mean electromotive force due to the fluid motion,

E = u×B. (11)

We admit here no other magnetic fields B than harmonic ones in the above sense.
Then B and E depend no longer on x and y but only on z and t.

Let us further use Fourier representations for B, B and E according to

Q(x, y, z, t) =
∫

Q̂(x, y, k, t)eikzdk , (12)

where the integral is over −∞ < k < ∞. The corresponding representation of
B clearly includes the ansatz (5). B̂ depends on x, y, k and t, but B̂ and Ê
depend only on k and t. The requirements that B, B and E are real lead to
B̂∗(x, y, k, t) = B̂(x, y,−k, t) and analogous relations for B̂ and Ê .

According to (11) we have

Ê(k, t) = u(x, y)× B̂(x, y, k, t) . (13)

With standard reasoning of mean-field theory we conclude that E is linear and
homogeneous in B. For the sake of simplicity we assume that E at a given time
depends only on B at the same time, that is, ignore any dependence on B at
earlier times. We therefore write

Êi(k, t) = α̂ij(k)B̂j(k, t) , (14)
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where α̂ij is a complex tensor determined by the fluid flow. Analogous to E and
B it has to satisfy α̂∗ij(k) = α̂ij(−k). From the symmetry properties of the u-field
we conclude further that the relation (14) remains its validity if both E and B
are simultaneously subject to a 90o rotation about the z-axis, and that E has no
z-component and does not depend on the z-component of B. The first fact means
that the tensor α̂ij is axisymmetric with respect to the z-axis, that is, can only
be a linear combination of δij , eiej and εijlel, where δij is the Kronecker tensor,
εijl the Levi–Civita tensor and e the unit vector in z-direction. The second fact
implies that δij and eiej occur only in the combination δij − eiej . Thus we may
write

α̂ij(k) = −α̂1(k)(δij − eiej) + ikα̂2(k)εijlel (15)

with two complex functions α̂1(k) and α̂2(k). The signs in this relation and the
factor ik of the last term have here to be considered as arbitrary but will prove to
be useful in the following.

As can be easily seen from the equations (10) and (11) their solutions must
have the form

B = <e{C exp(pt + ikz)} (16)

with a complex vector C lying in the xy-plane. If we use (14) and (15) we find
that

Cx = ±iCy (17)

and

p + Rm−1k2 = α̂(k)k , α̂(k) = ±α̂1(k)− α̂2(k)k (18)

The two signs in (17) and (18) indicate the existence of two classes of solutions
and had been already identified by Roberts [13]. Relations of the same kind have
also been found by Soward [14] (who used the notations αC and αD instead of -α̂1

and α̂2). We can calculate α̂(k) with the help of the harmonic solutions of the
induction equation (2) obtained with the ansatz (5). There are again two classes of
these harmonic solutions, which correspond to the two signs in (17) and (18). The
two classes lead to two different functions α̂(k). In agreement with the finding
that p is real also α̂ proves to be real. Among the two function α̂(k) only the
largest one (the upper sign in (17) and (18)) has been retained as it corresponds
to the largest growthrate p (see also [5]). Fig. 3 shows the dependence of α̂ on k
for various Rm and χ = 1. The values of α̂ for arbitrary χ can be inferred from
the values for χ = 1 with the help of the relation

α̂(k, Rm, χ) = χα̂(kχ, Rm, 1) , (19)

which follows from (8) and (18).
Since α̂ is real we may assume that also α̂1 and α̂2 are real. Moreover we

may then conclude from α̂∗ij(k) = α̂ij(−k) that both are even in k, that is α̂1(k) =
α̂1(−k) and α̂2(k) = α̂2(−k). If we know α̂(k) for positive and negative k we may
find α̂1(k) and α̂2(k).

We may conclude with the help of (14) and (15) that

E(z, t) = −
∫

α̂1(k)
(
B̂(k, t)− (e · B̂(k, t))e

)
exp(ikz)dk

−e× ∂

∂z

∫
α̂2(k)B̂(k, t) exp(ikz)dk . (20)
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Fig. 3. The coefficient α̂ versus k for various Rm (given by the labels on the curves)
and χ = 1.

This is equivalent to

E(z, t) = − 1
2π

∫
α1(ζ)

(
B(z + ζ, t)− (e ·B(z + ζ, t))e

)
dζ

− 1
2π

e× ∂

∂z

∫
α2(ζ)B(z + ζ, t)dζ (21)

with

α1(ζ) =
∫

α̂1(k) exp(ikζ)dk , α2(ζ) =
∫

α̂2(k) exp(ikζ)dk . (22)

The integrals are again over −∞ < k < ∞ or over −∞ < ζ < ∞. Note that both
α1 and α2 are even in ζ.

Let us now expand α̂ij(k) in a Taylor series. From (15) we have

α̂ij(k) = −α̂1(0)(δij − eiej) + ikα̂2(0)εijlel + · · · . (23)

The second relation (18) together with the symmetry properties of α̂1 and α̂2 leads
to

α̂1(0) = α̂(0) , α̂2(0) = −∂α̂

∂k
(0) . (24)

The corresponding expansion of E reads

E = −α⊥
(
B− (e ·B)e

)− βe× ∂B
∂z

+ · · · , (25)

where

α⊥ = α̂(0) , β = −∂α̂

∂k
(0) . (26)

The same result can be derived from (21) by expanding B(z + ζ, t) with respect to
ζ. The first term on the right-hand side of (25) describes the anisotropic α-effect.
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Table 2. The coefficients α⊥ and β of the expansion (25) and the quantity Γ3 for various
Rm and χ = 1.

Rm 0.25 0.50 1 2 4 8 16 32 64
α⊥ 0.24 0.44 0.66 0.62 0.39 0.27 0.19 0.13 0.09
β 0.25 0.46 0.54 -0.3 -0.4 -0.12 -0.07 -0.05 -0.03
Γ3 0.12 0.32 0.66 0.87 0.79 0.75 0.75 0.75 0.75

Since here e× ∂B
∂z = ∇×B it seems at the first glance reasonable to consider the

second term as a contribution to a mean-field diffusivity. By a reason mentioned
later in Section 6.2., however, this interpretation is not compelling.

Values of α⊥ and β for various Rm are given in Table 2. Remarkably enough
β is negative as soon as Rm exceeds a value between 1 and 2. This means that
then the corresponding term in (25) supports the dynamo action of the flow. For
the limit of large Rm it was shown that α⊥ = O(Rm−1/2) [2, 9]. This is illustrated
by the values of the quantity Γ3 = α⊥Rm1/2 given in Table 2.

5. Subharmonic solutions. In order to check a simple mean-field theory
of the Karlsruhe dynamo experiment we are interested in solutions B of the induc-
tion equation (2) with period lengths exceeding those of the flow pattern, which we
call “subharmonic solutions”. We consider the case in which the period lengths of
B are larger by an integer factor N than those of the flow pattern. As mentioned
above, this problem has already been investigated by Tilgner & Busse [19] for a
few special values of N and later by Plunian and Rädler [5].

We focus our attention again on the induction equation (2) governing the
magnetic field B in all space. We use again (5) but consider b no longer as a
field with the same periodicity in x and y as the flow pattern. Instead we put
b = b̃(x, y, fx, fy, k) exp(i(fxx + fyy)), where b̃ has now the same periodicity as
the flow pattern and fx and fy are subharmonic wave numbers in the x and y
directions. In that sense we look for solutions of the induction equation of the
form

B = <e
{
b̃(x, y, f) exp(pt + if · x)

}
. (27)

with b̃(x, y, f) being a complex periodic vector field with the same period length
in x and y direction as the flow pattern, f the real vector (fx, fy, k), and p again
a complex quantity; for more details see [5]. We restrict our attention here to the
case fx = fy = f = 1/N . Then the period lengths of the magnetic field B are
just N times that of the flow pattern. The harmonic solutions B discussed above
correspond to the limit N →∞.

Inserting (27) in (2) we find

pb̃ + (u · ∇)b̃ = (b̃ · ∇)u− i(f · u)b̃ + Rm−1(∇2b̃ + 2i(f · ∇)b̃− f2b̃),
(28)

∇ · b̃ + ib̃ · f = 0 . (29)

The system (28) defines an eigenvalue problem with p being the eigenvalue parameter1.
It has been solved numerically. Marginal values of Rm versus k for fx = fy = f

1These equations have already been derived by Roberts (1972) though used only with fx =
fy = 0 in his numerical calculations.
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Fig. 4. Marginal values of Rm versus k for fx = fy = f and χ = 1. The curve (a)
belongs to f = 0, (b) to f = 1/10, (c) to f = 1/8, (d) to f = 1/6, (e) to f = 1/4.

are shown in Fig. 4 for different values of f and again χ = 1. For f 6= 0 there
are both a critical Rm and a critical k below which dynamo action is not possible.
In general p is no longer real, that is, we have no longer stationary but moving
field structures. We point out that relation (8) allows us the calculation of p for
arbitrary χ from that for χ = 1.

6. Applications to the Karlsruhe experiment.
6.1. The Karlsruhe “dynamo module”. The essential piece of the Karlsruhe

dynamo experiment is the “dynamo module”, a cylindrical container with both
radius and height somewhat less than 1 m, through which liquid sodium is driven
by external pumps [3, 4, 17, 18]. By means of a system of channels with conducting
walls, constituting 52 “spin generators”, a helical motion is organized. The flow
pattern is similar to that defined by (1). The 52 spin generators correspond to 26
periodic units of the flow pattern such as the one shown in Fig. 1. The arrangement
of the pumps allows to vary the parameters U , or Rm, and χ independently from
each other.

6.2. A simple mean-field theory of the experiment. In order to give an esti-
mate for the self-excitation condition of the experimental device a simple mean-
field theory has been developed [7, 8, 9, 10, 11, 12]. The mean magnetic field
B defined as above is assumed to satisfy the equations (10) and (11) inside the
dynamo module and to continue in some way in outer space. Of course, in this
context B can no longer be independent on x and y, and E can no longer have
the simple forms (20), (21) or (25). Relying on some traditional concept it was
assumed that the variations of B in space are sufficiently weak so that E in a
given point can be represented by B and its first spatial derivatives in this point.
Together with the symmetry properties of the Roberts flow this leads to

E = −α⊥(B− (e ·B)e)− β⊥∇×B− (β‖ − β⊥)(e · (∇×B))e

−β3e× (∇(e ·B) + (e · ∇)B) , (30)

where α⊥, β⊥, β‖ and β3 are constants depending on Rm and χ, and e is again
the unit vector in z-direction [6, 11]. As in (25) the term with α⊥ describes the
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anisotropic α-effect acting in the xy-plane only. The terms with β⊥ and β‖ can
be interpreted by introducing an anisotropic mean-field diffusivity different from
the molecular magnetic diffusivity. Finally the term with β3 describes a part of E
depending on derivatives of B which cannot be expressed by ∇×B and therefore
not be interpreted as a contribution to a modified diffusivity. Several results have
been derived on the dependence of α⊥ on the fluid flow [6, 7, 8, 9, 10, 11], and
also such on β⊥, β‖ and β3 [6].

For a field B not depending on x and y and having no z-component we have
∇ × B = e × ∂B

∂z , and the last three terms on the right-hand side of (30) can be
written in the form −(β⊥ + β3)e× ∂B

∂z . As to be expected, in this special case the
structures of (25) and (30) coincide, and we have β = β⊥ +β3. Our above remark
on the β3-term in (30) explains why the interpretation of the β-term in (25) as a
contribution to a mean-field diffusivity is not compelling.

The assumption on small variations of B in space means in particular that
B does not change markedly across a spin generator. In that sense the usage
of (30) in a theory of the dynamo module can only be justified for a very large
number of spin generators within the module. Quite a few solutions of the equation
(10) for B, applied to the dynamo module, with E according to (30) and various
boundary conditions have been calculated [9, 10, 11]. In most cases, however, no
other contribution to E than the α-effect, that is, only the first term on the right-
hand side of (30) was taken into account. Contributions with higher than first
derivatives of B have never been considered. By these and other reasons a check
of the results of the simple mean-field theory on a way that avoids the mentioned
shortcomings seems very desirable.

6.3. Comparison of results of mean-field approach and subharmonic analysis.
For this purpose we deal now with a very simple model of the dynamo module.
We consider no longer a cylindrical module but instead a rectangular “dynamo
box” with a quadratic basis area in the xy-plane and denote the edge lengths of
the box in this plane by L and its hight by H . Thinking of the shape of the real
dynamo module we put L/H = 2. We will study the excitation condition for a
mean magnetic field B which satisfies the equation (10) and the relation (11) in
all space and is periodic in x and y with the period length 2L and in z with the
period length 2H . This periodicity means that the dynamo box contains just a
“half wave” of the field B. For the sake of simplicity we use (11) in its reduced
form containing no other induction effect than the α-effect. We will then compare
this excitation condition with that for a subharmonic B-field whose longest wave
lengths show the same periodicity, that is, which fits in the same sense to the
dynamo box. In this context we put N = 10 so that an area of (2L)2 in the
xy-plane contains just 100 period units, that is, 200 cells of the flow pattern,

consequently the basis area of the dynamo box 50 cells, which have to be
compared with the 52 spin generators in the real dynamo module. N = 10 means
f = 1/10, and with L/H = 2 we arrive at k = 1/5.

Instead of a realistic boundary condition for the dynamo module we use here in
fact the condition of periodic continuation of the magnetic fields both on the mean-
field and the subharmonic level. Such a condition might be in general problematic
but seems acceptable for the comparison which we have in mind.

From Fig. 3 we see that the value of α̂ for k = 1/5 can, except for small
Rm, not be inferred from α̂(0) and ∂α̂

∂k (0) only. This suggests that there will be
discrepancies between the excitation conditions obtained with a mean-field theory
which ignores contributions to E with higher than first-order spatial derivatives
and those derived from the subharmonic analysis.
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As already explained we assume for our mean-field consideration that equation
(10) and the reduced form of (30), that is,

∂B
∂t

= −∇× (
α⊥(B− (e ·B)e)

)
+ Rm−1∇2B, ∇ ·B = 0 , (31)

apply in all space with constant α⊥. We may represent B as a sum of a poloidal
and a toroidal part,

B = −∇× (e×∇S)− e×∇T , (32)
with two defining scalars S and T . Inserting this in (31) and dropping unimportant
constants we find

Rm−1∆S − α⊥T − ∂S

∂t
= 0

Rm−1∆T + α⊥
∂2S

∂z2
− ∂T

∂t
= 0 . (33)

The special periodic solution of (31) which we are looking for is obtained with the
ansatz

S = S0 cos (fx) cos (fy) cos (kz) exp(pt)
T = (T0/S0)S , (34)

where S0 and T0 are constants, f and k the parameters specified above and p,
which will prove to be real, is again the growth rate. When inserting this in (33)
we arrive at two linear homogeneous equations for S0 and T0. The requirement
that they allow non-trivial solutions leads to

p = −2f2 + k2

Rm
± |α⊥|k . (35)

Growing B are possible in the case of the upper sign of the last term if |α⊥| is
sufficiently large. The excitation condition reads

|α⊥| ≥ 2f2 + k2

Rmk
. (36)

In the representations of results on α⊥ on which we now rely [6, 7, 8, 9]
the latter is given in its original dimension so that it corresponds Uα⊥ with our
dimensionless α⊥. Furthermore these results are given in terms of the two magnetic
Reynolds numbers Rm‖ and Rm⊥ for the flow in the xy-plane and in z-direction,
respectively. These are connected with our Rm and χ by

Rm‖ =
8
√

2
π

χRm, Rm⊥ = 2Rm. (37)

The marginal states of the dynamo, in which B neither grows nor decays, are
given by pairs of Rm⊥ and Rm‖, or by the corresponding neutral curve in the
(Rm⊥Rm‖)-diagram. We may represent the result for arbitrary f and k by using
the modified magnetic Reynolds number Rm∗

‖ defined by

Rm∗
‖ =

π

16
√

2
Rm‖

k

2f2 + k2
(38)

instead of Rm‖. Note that Rm∗
‖ is no longer determined by U alone but also by

B. Fig. 5 shows a (Rm⊥Rm∗
‖)-diagram in which curve (a) gives just the result

of our mean-field calculation. Clearly dynamo action requires that Rm∗
‖ exceeds

a critical value. It appears, however, to be possible for any Rm⊥ if only Rm∗
‖ is

sufficiently large.
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Fig. 5. Marginal values of Rm∗
‖ versus Rm⊥. Curve (a) results from a mean-field

calculation [6]. Curve (b) is derived from the subharmonic analysis with f = 1/10 and
k = 1/5.

Let us now compare this result with that for a corresponding subharmonic
solution B of the induction equation. In Fig. 5 the curve (b) is the neutral one
for the subharmonic solution with the values of f and k specified above. Clearly
dynamo action requires now not only that Rm∗

‖ exceeds a critical value but also
that Rm⊥ lies above such a value. In addition for each given Rm⊥ allowing
dynamo action the marginal value of Rm∗

‖ derived in the subharmonic approach
is higher than that concluded from the mean-field approach. In the range of Rm⊥
between 1.2 and 2, which corresponds to the actual situation in the Karlsruhe
experiment, the deviation is larger than 20 %. Of course it will become smaller
in a comparison with a mean-field model which involves also the induction effects
connected with first derivatives of B indicated in (30); see [6]. But even then the
mean-field approach underestimates the requirements for self-excitation.

7. Conclusions. We have dealt with several aspects of the Roberts dynamo
problem and derived some results which are of interest for the Karlsruhe dynamo
experiment. Although a rectangular dynamo box was considered, there are good
reasons to assume that the main conclusions apply as well to the real experimental
device with a cylindrical dynamo module. In the framework of the simple mean-
field theory of the experiment self-excitation seems possible for arbitrary values of
the magnetic Reynolds number Rm⊥ describing the flow perpendicular to the axes
of the spin-generators if only the magnetic Reynolds number Rm‖ for the axial flow
is sufficiently large. An analysis based on subharmonic solutions revealed that a
dynamo is only possible if both Rm⊥ and Rm‖ exceed critical values. Apart from
this it was found that the simple mean-field theory underestimates the excitation
condition of the dynamo. This discrepancy of the mean-field results with those
obtained with subharmonic solutions cannot be completely removed by taking into
account the effect of the mean-field diffusivity.

The authors are indebted to Dr. M. Rheinhardt for several helpful comments
on the draft of this paper.
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experiment. A mean-field approach. Studia geoph. et geod., vol. 42 (1998), pp. 224–231.
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