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Scale separation between the flow and the magnetic field is a common feature of natural dynamos.
It has also been used in the Karlsruhe sodium experiment in which the scale of the magnetic field
is roughly seven times larger than the scale of the flowfR. Stieglitz and U. Müller, “Experimental
demonstration of the homogeneous two-scale dynamo,” Phys. Fluids13, 561 s2001dg. Recently,
Fauve and PétrélisfPeyresq Lectures on Nonlinear Phenomena, edited by J. SepulchresWorld
Scientific, Singapore, 2003d, p. 1g have shown that the power needed to reach the dynamo threshold
in a dynamo experiment increases with the scale separation in the limit of large scale separation.
With a more elaborate method based on subharmonic solutionsfF. Plunian and K.-H. Rädler,
“Subharmonic dynamo action in the Roberts flow,” Geophys. Astrophys. Fluid Dyn.96, 115
s2002dg, we show, for the Roberts flow, the existence of an optimal scale separation for which this
power is minimum. Previous results obtained by Tilgnerf“A kinematic dynamo with a small scale
velocity field,” Phys. Lett. A226, 75 s1997dg with a completely different numerical method are also
reconsidered here. Again, we find an optimal scale separation in terms of minimum power for
dynamo action. In addition we find that this scale separation compares very well with the one
derived from the subharmonic solutions method. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1884065g

We consider a dynamo experiment with a horizontal
scale separation between the characteristic scalel of the flow
and the sizeL of the container as, for example, in the
Karlsruhe experiment.1 In addition, the flow is assumed to
have a geometry which can lead to the self-excitation of a
magnetic field at the size of the container. For that we con-
sider a Roberts2 flow within a cubic box as in Ref. 3. In the
x andy directionsswherex, y, andz are the Cartesian coor-
dinatesd, the size of a flow cell isl 3 l and the size of the box
is L3L. In the perpendicular directionz the flow cells and
the box have the common sizeH. Then the number of cells is
Nc=L2/ l2.

Following Ref. 4, we assume that the powerP is dissi-
pated by turbulence, leading toP=rL2HU3/ l wherer is the
density andU the characteristic speed of the fluid. Defining
the magnetic Reynolds number byRm=Ul /h, whereh is the
magnetic diffusivity of the fluid, we find after some simple
algebra that

P = rh3 H

L2Nc
2Rm

3 . s1d

As a preliminary step, we assume that the first-order
smoothing approximation is validsa sufficient condition be-
ing Rmø1d. Then we have the relationhb/ l2<UB/ l be-
tween the small scaleb and the large scaleB magnetic field
intensities. Furthermore at the onset we have the following
relation aK=hK2 derived from the mean part of the induc-
tion equation and wherea corresponds to the anisotropica
effect produced by the Roberts flow,K being the vertical

wave number of the magnetic field. Here we takeK=1/H,
leading to a=h /H. Writing that the mean electromotive
force Ub is equal toaB leads to the following relation:

UÎHl/h < 1. s2d

Then we can show thatÎsH /LdRm<Nc
−1/4, leading to

P <
rh3

ÎLH
Nc

5/4. s3d

From this simple estimate we conclude that the power con-
sumption increases with the number of cells which is not in
favor of scale separation. This was found previously by
Fauve and Pétrélis4 for a scale separation in the three Carte-
sian directionssinstead of only two in our cased, leading to a
different scalingNc

5/6. Both estimates are based on the first-
order smoothing approximation which has been proved to be
too simplistic in the theoretical predictions of the Karlsruhe
experiment. Therefore we reconsider this problem below in
the light of the subharmonic solutions as studied in Ref. 3.

The original Roberts2 flow is defined by

U = USsin
y

LU
,sin

x

LU
,cos

x

LU
− cos

y

LU
D s4d

and the relations between the dimensions defined above and
those defined in Ref. 3 arel =pÎ2LU, L=pLB, N=LB/LU,
Nc=N2/2, andRm

* =Rm/ spÎ2d whereRm
* =ULU /h is the mag-

netic Reynolds number defined in Ref. 3. For a given value
of N, we look for the subharmonic solution embedded in the
box of sizeL3L3H and corresponding to the dimension-
less wave numbersf =1/N in the horizontal directions and
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k=s1/NdsL /Hd in the vertical direction. Thens1d writes in
the form

PH = rh3p3

Î2
SN

k
D2

sRm
* d3. s5d

For a given value ofN the critical Rm
* versusk has been

plotted in Fig. 4 of Ref. 3. Then replacingN, k, andRm
* in s5d

we can calculate the corresponding powerP times H. For
r=103 andh=0.1 we plot, in Fig. 1,PH sin kW md versus
kN=L /H for different values ofNc. We find that the mini-
mum value ofPH is obtained forL /H=2.16 andNc=18
cells. The case of the Karlsruhe experiment corresponds ap-
proximatively toL /H=2 andNc=50 for which we findPH
=19 kW m. For the same value ofL /H but for Nc=18 cells,
the power consumption is reduced roughly by a factor 2. In
Fig. 2, PH is plotted versusNc for L /H=2 sfull curved. We
see that there is indeed a minimum aroundNc=20 and that at
large Nc, PH increases withNc as predicted bys3d. In a
previous study,5 Tilgner calculated the critical magnetic Rey-

nolds number for the Karlsruhe experiment geometry, vary-
ing the number of cells inside the devicesFig. 4 of Ref. 5d.
The resolution was made with a completely different method
than the one used in Ref. 3 and it is then of interest to
reconsider the results of Ref. 5 in terms of power consump-
tion and see how they compare to our results. For that we
need to make preliminary correspondance between our
present notations and those used in Ref. 5. In Ref. 5 the flow
container is a cylinder then the consumption power, instead
of s1d, writes in the formPH=srh3/pdsH /Rd2Nc

2Rm
3 whereR

is the cylinder radius. In Ref. 5 we havel =s8/4.1dsR/NT97d
where we call hereNT97 the parameterN of Ref. 5. This leads
to a number of cellsNc=pR2/ l2=0.825NT97

2 . Furthermore the
magnetic Reynolds number in Ref. 5 is defined byRmT97

=Ur0/h where r0=Î1.25R is the radius of the conducting
sphere in which the cylinder is embedded. This leads toRm

=s1.745/NT97dRmT97. Finally using the results from the Fig. 4
of Ref. 5, the consumption power is plotted versus the cells
number on Fig. 2sdashed curved. We find that there is again
an optimal scale separation for which the dissipated power is
minimum and again it corresponds toNc close to 20. Further-
more the levels of power are of the same order of magnitude.
We could not expect better agreement as the geometries and
boundary conditions of Refs. 3 and 5 are really different.
Now considering the design of the Karlsruhe experiment,
most of the dissipation power occurs in the pieces of pipes
which redirect the flow into neighboring cells at the end of
each cell. The dissipation scaling in there is somewhat
slower thanU3 but, most importantly, it is not proportional to
the volume of the experiment. Therefore the scale separation
of that experiment was guided by the characteristics of the
available pumps6 in order to minimize the criticalRm, instead
of minimizing the dissipated power, leading toNc=52 sor
alternatively toNT97=8 corresponding to the minimum criti-
cal Rm in Ref. 5d. Therefore the criterion that we derived here
is relevant for propeller driven experiments, but the require-
ments are more complicatedsand also less universald for
pump driven experiments.

The author is indebted to Jean-François Pinton for hav-
ing suggested this work, to Stephan Fauve for stimulating
discussions at the Isaac Newton Institute during the Work-
shop on Magnetohydrodynamics of Stellar Interiors, and to
Andreas Tilgner for useful comments concerning the design
of the Karlsruhe experiment.
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FIG. 1. The consumption powerPH sin kW md vs L /H for different num-
bers of cellssad Nc=8, sbd Nc=18, scd Nc=32, sdd Nc=50.

FIG. 2. The consumption powerPH sin kW md vs the cells numberNc. The
full sdottedd curve is derived from Ref. 3sfrom Ref. 5d for L /H=2 sR/H
=1d.
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