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An optimal scale separation for a dynamo experiment
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Scale separation between the flow and the magnetic field is a common feature of natural dynamos.
It has also been used in the Karlsruhe sodium experiment in which the scale of the magnetic field
is roughly seven times larger than the scale of the flBwStieglitz and U. Mdller, “Experimental
demonstration of the homogeneous two-scale dynamo,” Phys. FiilBd§61 (2001)]. Recently,

Fauve and PétrélifPeyresq Lectures on Nonlinear Phenomeadited by J. SepulchréNorld
Scientific, Singapore, 2003p. 1] have shown that the power needed to reach the dynamo threshold
in a dynamo experiment increases with the scale separation in the limit of large scale separation.
With a more elaborate method based on subharmonic solugfi@nBlunian and K.-H. Radler,
“Subharmonic dynamo action in the Roberts flow,” Geophys. Astrophys. Fluid Bgn.115
(2002], we show, for the Roberts flow, the existence of an optimal scale separation for which this
power is minimum. Previous results obtained by Tilgf@r kinematic dynamo with a small scale
velocity field,” Phys. Lett. A226, 75(1997] with a completely different numerical method are also
reconsidered here. Again, we find an optimal scale separation in terms of minimum power for
dynamo action. In addition we find that this scale separation compares very well with the one
derived from the subharmonic solutions method2@5 American Institute of Physics
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We consider a dynamo experiment with a horizontalwave number of the magnetic field. Here we take1/H,
scale separation between the characteristic $azfl¢he flow  leading to a=»/H. Writing that the mean electromotive
and the sizeL of the container as, for example, in the force Ub is equal toaB leads to the following relation:
Karlsruhe experimerit.In addition, the flow is assumed to —
have a geometry which can lead to the self-excitation of a UvHI/np~ 1. 2
magnetic field at the size of the container. For that we con- 14 )
sider a Roberfsflow within a cubic box as in Ref. 3. In the 11en we can show thaf(H/L)R,~ N, leading to

x andy directions(wherex, y, andz are the Cartesian coor-

dinates, the size of a flow cell i< | and the size of the box P~ [,)_LNEM- (3

is LX L. In the perpendicular directionthe flow cells and VLH

the box have the common sige Then the number of cells is o .

N.=L2/|2 From this simple estimate we conclude that the power con-

sumption increases with the number of cells which is not in
favor of scale separation. This was found previously by
Fauve and Pétréfifor a scale separation in the three Carte-
sian directionginstead of only two in our cageleading to a
different scalingN'®. Both estimates are based on the first-
order smoothing approximation which has been proved to be
too simplistic in the theoretical predictions of the Karlsruhe
H experiment. Therefore we reconsider this problem below in
P= PﬂgpNgRﬁw- (1) the light of the subharmonic solutions as studied in Ref. 3.
The original Roberfsflow is defined by

Following Ref. 4, we assume that the powris dissi-
pated by turbulence, leading B=pL?HU3/| wherep is the
density andU the characteristic speed of the fluid. Defining
the magnetic Reynolds number By,=Ul/ 5, wherey is the
magnetic diffusivity of the fluid, we find after some simple
algebra that

As a preliminary step, we assume that the first-order

smoothing approximation is valith sufficient condition be- Yy X y

ing R,<1). Then we have the relatiogb/I1°~UB/I be- u= U(SmLU SlnL_U COS’L_U CoslI) @
tween the small scale and the large scalB magnetic field

intensities. Furthermore at the onset we have the followingnd the relations between the dlmenS|ons defined above and
relation oK = 7K? derived from the mean part of the induc- those defined in Ref. 3 a"ﬂ:W\ZLu, L=mlg, N=Lg/Ly,

tion equation and where corresponds to the anisotropic ~ N.=N?/2, andR_ =R - (m\2) whereR, =UL,/ 7 is the mag-
effect produced by the Roberts flow, being the vertical netic Reynolds number defined in Ref. 3. For a given value

of N, we look for the subharmonic solution embedded in the

Electronic  mail:  Franck.Plunian@hmg.inpg.fr;  URL:  http:y 00X Of sizeL XL X'H and corresponding to the dimension-
legi.hmg.inpg.ff7plunian less wave number§=1/N in the horizontal directions and
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FIG. 1. The consumption powétH (in kW m) vs L/H for different num-
bers of cells(a) N.=8, (b) N.=18, (c) N.=32, (d) N.=50.

k=(1/N)(L/H) in the vertical direction. Therjl) writes in
the form

= (N ) (R° ©
V2\k '

For a given value oiN the critical R, versusk has been
plotted in Fig. 4 of Ref. 3. Then replacirg k, andR., in (5)
we can calculate the corresponding poviretimes H. For
p=10° and »=0.1 we plot, in Fig. 1PH (in kW m) versus
kN=L/H for different values ofN.. We find that the mini-
mum value ofPH is obtained forL/H=2.16 andN,=18
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nolds number for the Karlsruhe experiment geometry, vary-
ing the number of cells inside the devieig. 4 of Ref. 5.

The resolution was made with a completely different method
than the one used in Ref. 3 and it is then of interest to
reconsider the results of Ref. 5 in terms of power consump-
tion and see how they compare to our results. For that we
need to make preliminary correspondance between our
present notations and those used in Ref. 5. In Ref. 5 the flow
container is a cylinder then the consumption power, instead
of (1), writes in the formPH=(p7*/ 7)(H/R)?N?R% whereR

is the cylinder radius. In Ref. 5 we have(8/4.1)(R/N+g7)
where we call herélry; the parameteN of Ref. 5. This leads

to a number of cell§l.= 7R?/12=0.829\3,,. Furthermore the
magnetic Reynolds_number in Ref. 5 is defined Ry
=Ury/ 7 wherery,=v1.25R is the radius of the conducting
sphere in which the cylinder is embedded. This leadRto
=(1.745N+97)R97- Finally using the results from the Fig. 4

of Ref. 5, the consumption power is plotted versus the cells
number on Fig. Zdashed curje We find that there is again

an optimal scale separation for which the dissipated power is
minimum and again it correspondsi close to 20. Further-
more the levels of power are of the same order of magnitude.
We could not expect better agreement as the geometries and
boundary conditions of Refs. 3 and 5 are really different.
Now considering the design of the Karlsruhe experiment,
most of the dissipation power occurs in the pieces of pipes
which redirect the flow into neighboring cells at the end of

cells. The case of the Karlsruhe experiment corresponds agach cell. The dissipation scaling in there is somewhat

proximatively toL/H=2 andN.=50 for which we findPH
=19 kW m. For the same value &fH but for N;=18 cells,

slower thanU® but, most importantly, it is not proportional to
the volume of the experiment. Therefore the scale separation

the power consumption is reduced roughly by a factor 2. Irof that experiment was guided by the characteristics of the

Fig. 2, PH is plotted versu$\, for L/H=2 (full curve). We
see that there is indeed a minimum aroie 20 and that at
large N;, PH increases withN, as predicted by3). In a
previous stud?,TiIgner calculated the critical magnetic Rey-
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FIG. 2. The consumption pow&H (in kW m) vs the cells numbeX.. The
full (dotted curve is derived from Ref. 8from Ref. § for L/H=2 (R/H
=1).

available pump%in order to minimize the criticaR,,, instead

of minimizing the dissipated power, leading =52 (or
alternatively toN1q7=8 corresponding to the minimum criti-
cal R, in Ref. 5. Therefore the criterion that we derived here
is relevant for propeller driven experiments, but the require-
ments are more complicate@nd also less universafor
pump driven experiments.
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