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A phenomenology of isotropic magnetohydrodynamic �MHD� turbulence subject to both rotation and ap-
plied magnetic field is presented. It is assumed that the triple correlation decay time is the shortest between the
eddy turn-over time and the ones associated to the rotating frequency and the Alfvén wave period. For Pm
=1 it leads to four kinds of piecewise spectra, depending on four parameters: injection rate of energy, magnetic
diffusivity, rotation rate, and applied field. With a shell model of MHD turbulence �including rotation and
applied magnetic field�, spectra for Pm�1 are presented, together with the ratio between magnetic and viscous
dissipations.
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I. INTRODUCTION

Magnetohydrodynamic �MHD� turbulence in natural ob-
jects is often subject to global rotation or applied magnetic
field or both. In the Earth’s core the turbulence occurs under
the fast rotation of the planet and is embedded in the dipolar
magnetic field produced by dynamo action. Such double ef-
fect is currently studied in an experiment with liquid sodium
�1�. Waves of different types have been measured that might
be attributed to either Alfvén or Rossby waves or a combi-
nation of both. The frequency spectra show a series of
bumps, attributed to wave frequencies, in addition to piece-
wise slopes. A proper understanding of such rotating MHD
turbulence would require a nonisotropic formalism. Several
ones have been developed for fast rotation �2–4�. Phenom-
enological approaches relying on three-wave �5� or four-
wave �6� resonant interactions have been developed for an
applied field and documented numerically �7�.

In the present paper we come back to the phenomenology
of Iroshnikov �8� and Kraichnan �9� for isotropic MHD tur-
bulence. They argued that the destruction of phase coherence
by the Alfvén waves traveling in opposite directions intro-
duces a new time scale �A. It might control the energy trans-
fer, provided it is shorter than the eddy turn-over time scale
�K. Applying the same idea, Zhou �10� suggested that due to
global rotation the kinetic-energy spectrum is affected
through phase scrambling, leading to a third time scale ��

associated with the rotation frequency. The generalization to
both global rotation and applied magnetic field is therefore
straightforward �see Sec. II�, the energy transfers being con-
trolled by the shortest time scale between �K, �A, and ��.

An advantage of assuming isotropy is that it can be tested
against simulations with shell models. Shell models are toy
models that mimic the original Navier-Stokes and induction
equations projected in the Fourier space within shells which
are logarithmically spaced. There are only two complex vari-
ables per shell—one corresponding to the velocity and the
other to the magnetic field �11,12�. Depending on the model,
the energy transfers may be considered as local or not �13�.
Such models allow for simulations at realistically low vis-

cosity � and magnetic Prandtl number Pm=� /� �14�, where
� is the magnetic diffusivity. The time dependency of the
solutions is strongly chaotic, eventually leading to intermit-
tency. Therefore, though all geometrical details of velocity
and magnetic fields are lost, shell models give relevant infor-
mation on spectral quantities such as energies, helicities, en-
ergy transfers, etc. In Sec. III we introduce such a shell
model of rotating MHD turbulence, taking care to keep the
terms corresponding to rotation and applied magnetic field as
simple as possible. For Pm�1 we calculate the spectra for
different values of rotation � and applied field VA. We also
calculate the ratio of the joule dissipation over the viscous
dissipation, which cannot be estimated from scaling laws.

II. PHENOMENOLOGY

A. Time scales

Following �9� �see also �10,15��, we assume that for ho-
mogeneous isotropic statistically steady turbulence the decay
of triple correlations, occurring in a time scale �3�k�, is re-
sponsible for the turbulent spectral transfer � from wave
numbers lower than k to higher wave numbers. This implies
�3�k���. Assuming in addition that � depends only on the
wave number k and the kinetic-energy spectral density E�k�,
a simple dimensional analysis leads to

� � �3�k�E2�k�k4. �1�

The kinetic-energy spectral density is defined as E�k�
=k−1u2�k�, where u�k� is the characteristic velocity of eddies
at scale k.

In the absence of applied magnetic field and rotation, the
time scale for �3�k� is the eddy turn-over time,

�K�k� = �ku�k��−1, �2�

leading to the Kolmogorov turbulence energy spectrum
E�k���2/3k−5/3.

For fully developed MHD turbulence at Pm=1 the same
Kolmogorov spectrum is assumed for both kinetic and mag-
netic energies provided that the system is much above the
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onset for dynamo action �12�. In that case E�k� denotes either
the kinetic or magnetic energy spectral density. In the pres-
ence of an applied magnetic field B0 another possible time
scale for �3�k� is the Alfvén time scale,

�A�k� = �kVA�−1, �3�

leading to the Alfvén turbulence energy spectrum E�k�
�VA

1/2�1/2k−3/2.
Finally, for rotating turbulence caused by uniform rotation

� a third possible time scale for �3�k� is the rotating fre-
quency

�� = �−1, �4�

leading to the rotating turbulence energy spectrum E�k�
��1/2�1/2k−2.

The value of �3�k� is naturally defined by

�3�k� = min��K�k�,�A�k�,��� . �5�

It corresponds to the fastest way to transfer energy to smaller
scales between nonlinear eddy cascade, Alfén wave interac-
tions, and phase scrambling due to rotation. In addition we
define the magnetic dissipation time scale by

���k� = �k2��−1. �6�

The dissipation range corresponds to k�k�, with k� defined
by �3�k��=���k��.

Therefore, at each scale k−1, we have to compare the four
time scales �K�k� ,�A�k� ,�� and ���k� to figure out what kind
of turbulence occurs.

B. Spectra for Pm=1

At k	1, ��
min��K�k� ,�A�k� ,���k�� implying that
�3�k�=�� unless �=0. This corresponds to a rotating turbu-
lence with E�k�=�1/2�1/2k−2. For larger k, �K�k� ,�A�k� and
���k� decrease while �� stays constant. Therefore, provided
that the dissipation is not too strong, a first transition occurs
at a scale for which ��=min��K�k� ,�A�k��. This scale is ei-
ther �i� k1= ��3 /��1/2 if ���VA

2 or �ii� k1=� /VA if �
��VA

2 . This transition leads to either �i� a Kolmogorov
E�k�=�2/3k−5/3 or �ii� an Alfvén E�k�=VA

1/2�1/2k−3/2 turbu-
lence. This transition does not occur if the dissipation over-
comes the Kolmogorov and Alfvén turbulences, namely, if �i�
��� /�2 and �ii� ��VA

2 /�. In that case the dissipation
scale is given by k�= �� /��1/2.

In case �i� provided again that dissipation is not too
strong, a second transition occurs at k2=� /VA

3 . This transition
leads to an Alfvén turbulence E�k�=VA

1/2�1/2k−3/2 until the
dissipation becomes dominant for k�k� with k�=VA /�. If
VA

4 ��� the dissipation overcomes the Alfvén turbulence and
the dissipation scale is given by k�=�1/4�−3/4.

In case �ii� a second transition toward a Kolmogorov tur-
bulence is not possible. Indeed, it would occur at k=� /VA

3

which cannot be larger than k1 from the condition ���VA
2 .

In that case the Alfvén turbulence simply extends to the dis-
sipation scale given by k�=VA /�.

The four possible types of inertial regimes are sketched in
Fig. 1 in which the spectral energy density is plotted versus k

for Pm=1. The slopes and characteristic wave numbers are
indicated. The conditions to get one of these four possible
inertial regimes are summarized in the plane �VA ,�� in Fig.
2. The case without rotation corresponds to the abscissa axis.
Then, two regimes, KA or K, are possible depending whether
� /VA

2 �VA
2 /� or not. The case without applied magnetic field

corresponds to the vertical axis. Then, the two regimes, R or
RK, are possible depending whether �� /���−1 or not.
Without both rotation and applied magnetic field a K type of
turbulence is found.

From our analysis we note that inertial regimes of type
AK or RAK are never possible. On the other hand, inertial
regimes of type KA, A, or K are possible provided the forcing
scale is sufficiently small. In Fig. 1 it corresponds to begin
the spectra at a larger wave number. For Pm
1 the inertial
range of the kinetic-energy spectrum prolongates at scales
smaller than k� with either an R, K, or RK spectrum.

III. SHELL MODEL

A. Model

The equations of MHD turbulence for an incompressible
fluid embedded in an external uniform magnetic field B0 and
subject to rotation � write

FIG. 1. Possible inertial regimes of energy spectral density in
rotating MHD turbulence for Pm=1. The capital letters R, A, and K
denote a rotating, Alfvén, or Kolmogorov turbulence.

FIG. 2. The four possible turbulent inertial regimes given in the
map �VA ,��.
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�u/�t + �u · ��u − ��B + vA� · ��B + 2� � u

= ��2u + F − �Pt, �7�

�B/�t + �u · ��B − ��B + vA� · ��u = ��2B , �8�

� · u = � · B = 0, �9�

in which vA=B0 /�� is the Alfvén velocity �where � and 
are the fluid magnetic permeability and density, respectively�
and B is given in unit of VA= 	vA	. The total pressure Pt= P
+b2 /2 is a functional of u and B owing to incompressibility
condition �9�. The forcing F insures the fluid motion.

From Eqs. �7�–�9� we derive the following shell model:

U̇n = ikn�Qn�U,U� − Qn�B,B�� + iknVA�t�Bn + i��t�Un

− �kn
2Un + Fn�t� , �10�

Ḃn = ikn�Qn�U,B� − Qn�B,U�� + iknVA�t�Un − �kn
2Bn,

�11�

where

Qn�X,Y� = �2�Xn+1Yn+1 + Xn+1
� Yn+1

� � − Xn−1
r Yn − XnYn−1

r

+ i��2Xn
�Yn−1

i + Xn+1
r Yn+1

i − Xn+1
i Yn+1

r � + Xn−1Yn−1

+ Xn−1
� Yn−1

� − �2�Xn+1
r Yn + XnYn+1

r � + i��2Xn
�Yn+1

i

+ Xn−1
r Yn−1

i − Xn−1
i Yn−1

r � , �12�

represents the nonlinear transfer rates and Fn represents the
turbulence forcing. This model is based on wavelet decom-
position �16�. Compared to other shell models �17–19� it has
the advantage that helicities are much better defined like
those based on helical wave decomposition �20–22�. It has
been introduced in its hydrodynamic form to study spectral
properties of helical turbulence �23� and in its MHD form to
study cross-helicity effect on cascades �24�. The parameter �
is the geometrical factor from which the wave number is
defined kn=k0�n. As explained in �13� an optimum shell
spacing is the golden number �= �1+�5� /2. The terms in-
volving � and VA were already introduced in several previ-
ous papers dealing with either rotation �25,26� or applied
magnetic field �27,28�.

B. Conservative quantities

Expressions for the kinetic energy and helicity, EU and
HU, magnetic energy and helicity, EB and HB, and cross-
helicity HC, are given by

EU = 

n

EU�n�, EU�n� =
1

2
	Un	2, �13�

HU = 

n

HU�n�, HU�n� =
i

2
kn��Un

��2 − Un
2� , �14�

EB = 

n

EB�n�, EB�n� =
1

2
	Bn	2, �15�

HB = 

n

HB�n�, HB�n� =
i

2
kn

−1��Bn
��2 − Bn

2� , �16�

HC = 

n

HC�n�, HC�n� =
1

2
�UnBn

� + BnUn
�� . �17�

In the inviscid and nonresistive limit ��=�=0�, the total
energy E=EU+EB, magnetic helicity, and cross helicity must

be conserved �Ė= ḢB= ḢC=0�. Here, with the additional Co-
riolis and Alfvénic terms the properties of conservation are
not necessarily satisfied. A summary of theses properties is
given in Table I for three-dimensional �3D� MHD turbulence.
In the case of pure hydrodynamic turbulence �without mag-
netic field� the kinetic energy and helicity must be conserved

�ĖU= ḢU=0� even with the Coriolis forces.

C. Time scales

In Eqs. �10� and �11� the forcing FnF
�t� �applied at some

scale knF

−1�, the global rotation ��t�, and the applied field
VA�t� have constant intensities 	FnF

	, �, and VA. Only their
sign may change after a period of time tF, t�, and tVA

, the
probability of changing from one period to the next being
random. Such a trick allows us to control the two character-
istic times ��� t� and �VA

� tVA
. In the simulations we take

t�=1 /� and tVA
=1 / �knF

VA�. It is in the same spirit as the
one used in �25,28� though much simpler. Incidentally, the
random change of sign of ��t� ensures that there is no injec-
tion of kinetic helicity on average. Taking a random sign in
FnF

�t� we ensure that the forcing intensity satisfies 	FnF
	

��2� / tF. It is also important that tF is the shortest among all
other characteristic times of the problem �K, ��, and �VA

�and
of course ���. We choose tF�

1
10min��K ,�� ,�VA

�.

D. No injection of cross helicity

In addition, it is important to control the injection of cross
helicity as was shown in �24�. Indeed, any spurious injection
of cross helicity may lead to a supercorrelation state where
Un�Bn implying equality not only in intensity �as in equi-
partition� but also in phase. In that case the flux of kinetic
energy is depleted, implying an accumulation of energy at
large scale and steeper spectral slopes. In order to compare
the results to the phenomenological approach we impose the

TABLE I. In 3D MHD turbulence, conservation properties of
total energy E, cross helicity HC, and magnetic helicity HM depend-
ing on global rotation � and applied field VA.

� =0 �0 =0 �0

VA =0 =0 �0 �0

E Y Y Y Y

HC Y N Y N

HM Y Y N N
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injection of cross helicity to be zero. For that we could use
the forcing

FnF

	FnF
	

= � i
BnF

	BnF
	
, �18�

where again the sign is randomly changed after each period
of time tF. This forcing is however ill-defined as soon as
	BnF

		 	UnF
	�1. To fix this problem we use the following

forcing:

FnF

	FnF
	

=

aei� � i�
BnF

	BnF
	

a + �
, �19�

with �= 	BnF

2 	 / 	UnF

2 	, in which � is a phase randomly changed
after each period of time tF and a is an additional parameter.
In the case ��a, Eq. �18� is recovered, and the phase of FnF
is mainly determined by the phase of BnF

so that it corre-
sponds to zero injection of cross helicity. In the case �	a
the phase of FnF

is controlled by the random phase �. Since
BnF

is small there is no cross-helicity injection too. The value
a=10−6 provides a robust forcing with always a low level of
cross helicity.

E. Dissipations

We define the dissipation of U and B at scale kn by
DU�kn�=�kn

2	Un	2 and DB�kn�=�kn
2	Bn	2. From the phenom-

enological formalism above we expect the total dissipation to
be equal to the injection rate of energy at the forcing scale
��+��=�, with ��=
nDU�kn� and ��=
nDB�kn�. Equiva-
lently in pure HD we would have ��=�. On the other hand,
the ratio of both dissipations =�� /�� cannot be predicted. It
can only be calculated numerically.

IV. RESULTS

A. Spectra for Pm=1

In Fig. 3 the spectra are plotted for �=10−7 and Pm=1 in
the three cases VA=0, �=0, and VA��0. For VA=0, the
horizontal and k1/3 dashed lines disclose a RK regime. For
�=0, the dashed line k1/6 disclose a KA regime. For VA�
�0, the k−1/2 and horizontal dashed lines disclose a RA re-
gime. In each case the transition between two power laws is
rather smooth and occurs over a scales range of about two
orders of magnitude.

For ��1 and taking the numerical values for �, VA, and
� given in Fig. 2 we find that the three sets of spectra found
with the shell model belong indeed to the three parts RK,
�R�KA, and RA of Fig. 2. We tried to track the transition
from one part to the other, varying � and VA. It is however
not possible to handle it numerically as the spectral slopes
are not so well defined at the neighborhood of the frontiers
delimiting the four parts of Fig. 2.

B. Spectra for Pm
1

In Fig. 4 the kinetic and magnetic spectra are plotted for
�=10−7 and several values of Pm for the three previous
cases.

For VA=0 ��a� and �b�� increasing Pm decreases the mag-
netic dissipation scale while the viscous scale is not signifi-
cantly changed. This is in agreement with a simple Kolmog-
orov phenomenology �14�, the ratio of dissipation scales
being given by k� /k��Pm−3/4. For Pm�10−2 the effect of
rotation is visible in the spectra flatness. At smaller values of
Pm it is however difficult to determine any slope at all.

For �=0 and VA=1.28 ��c� and �d�� both kinetic and mag-
netic spectra are almost the same whatever the value of Pm.
The effect of an applied magnetic field is to correlate both
fields as expected in the Alfvén waves. In particular, the
dissipation scale is governed by the magnetic diffusivity,
with k��k�. The same conclusions are found for �VA ,��
= �0.32,400� �e� and �VA ,��= �20.48,6.25� �f�. In these two
cases the horizontal slopes are due to rotation �e� and applied
magnetic field �f�.

We note that for �=0 and VA=1.28 �d� the normalized
curves are not horizontal. They correspond to spectral energy
density slopes between k−5/3 and k−3/2. The latter is obtained
for values of VA about ten times larger.
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10�5 0.001 0.1 10 1000 105 107
0.01

0.1

1

10

100
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FIG. 3. �Color online� Normalized spectra for �=10−7 and Pm
=1. Curves �a� are shown for VA=0 and �=12.5, 25, 50, 10, 200,
400, 800, and 1600 �from right to left, from darker to lighter�.
Curves �b� are shown for �=0 and VA=0.16, 0.32, 0.64, 1.28, 2.56,
5.12, 10.24, and 20.48 �from left to right, from darker to lighter�.
Curves �c� are shown for �VA ,��= �0.16,800�; �0.32, 400�; �0.64,
200�; �1.28, 100�; �2.56, 50�; �5.12, 25�; �10.24, 12.5�; and �20.48,
6.25� �from left to right, from darker to lighter�.
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C. Dissipation ratio

In Fig. 5 the ratio =�� /�� is plotted versus Pm for VA
=�=0 �a�, VA=0 �b�, �=0 �c�, and VA��0 �d�. In the limit
Pm→0 the dynamo action does not occur, implying →0.
For Pm=1 both kinetic and magnetic spectra are identical,
implying ��=��=� /2, and then =1. We always find an in-
termediate value of Pm for which  reaches a maximum.
This is related to a superequipartition state in which the mag-
netic energy is higher than the kinetic energy at large scales.
Varying VA and � we find that this maximum value can
increase by several orders of magnitude and that it does not
occur at the same Pm. For the two last cases an asymptotic
curve =O�Pm−1� is obtained for large values of VA. This is
a direct consequence of the equipartition regime 	Un	�	Bn	
obtained at any scale �see Fig. 4�. In that cases the definition
of  directly implies the scaling O�Pm−1�.

V. DISCUSSION

For Pm=1 both approaches, phenomenological and shell
model, give consistent results in terms of inertia regimes.

They are controlled by the shortest time scale corresponding
either to rotation, applied magnetic field, inertia, or a combi-
nation of them. For Pm
1 the magnetic dissipation occurs
at a scale larger than the viscous scale implying that the
different regimes are not so easy to discriminate. However,
for a sufficiently strong applied magnetic field, both kinetic
and magnetic energy spectra are merged, implying a strong
increase of the viscous dissipation scale. Whether this is due
to our isotropic assumption is not clear and cannot be an-
swered with our models. A consequence is that, for a strong
applied field, the ratio of magnetic to kinetic dissipation
scales like O�Pm−1� and can reach very high values for Pm
	1. Without the applied field, this ratio is also maximum for
some value of Pm	1, depending on the fluid viscosity and
global rotation.
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