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a b s t r a c t

Shell models of hydrodynamic turbulence originated in the seventies. Their main aim
was to describe the statistics of homogeneous and isotropic turbulence in spectral space,
using a simple set of ordinary differential equations. In the eighties, shell models of
magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their
hydrodynamic counter-part but also incorporating interactions between magnetic and
velocity fields. In recent years, significant improvements have been made such as the
inclusion of non-local interactions and appropriate definitions for helicities. Though shell
models cannot account for the spatial complexity of MHD turbulence, their dynamics are
not over simplified and do reflect those of real MHD turbulence including intermittency
or chaotic reversals of large-scale modes. Furthermore, these models use realistic values
for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high
magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate.
Using modern computers it is difficult to attain an inertial range of three decades with
direct numerical simulations, whereas eight are possible using shell models.

In this reviewwe set up a general mathematical framework allowing the description of
any MHD shell model. The variety of the latter, with their advantages and weaknesses, is
introduced. Finally we consider a number of applications, dealing with free-decayingMHD
turbulence, dynamo action, Alfvén waves and the Hall effect.
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1. Introduction

In astrophysical objects most fluids are electrically conducting and generally exhibit highly turbulent motion due to the
large dimensions involved (Schekochihin and Cowley, 2007). Such magnetohydrodynamic (MHD) turbulence is at the heart
of the dynamo action generatingmagnetic fields in planets, stars and galaxies (Brandenburg and Subramanian, 2005; Tobias
et al., 2011). Dynamo action has been the object of several experiments (Gailitis et al., 2000; Stieglitz and Müller, 2001;
Shew and Lathrop, 2005; Monchaux et al., 2007; Spence et al., 2007; Nataf et al., 2008; Frick et al., 2010) and is suspected
to occur in nuclear reactors cooled with liquid sodium (Plunian et al., 1999). MHD turbulence is also responsible for the
propagation of Alfvén waves (Alfvén, 1942) in the presence of an external magnetic field as in e.g. the solar wind. Such
waves can be reproduced in MHD experiments (Alboussière et al., 2011) and measured in plasma tokamaks (Gekelman,
1999). Complementary to observation and experiment, direct numerical simulations aimed at reproducing the finest details
of MHD turbulence have been performed (Müller et al., 2003). However, one serious difficulty faced by simulations is that
the processes involved are strongly non-linear implying, for example, that the energy is transferred over an extended
range of scales (Verma, 2004). This range is several orders of magnitude larger than what is attainable with present day
or, indeed, projected computers. In this respect shell models are of primary importance in building up our understanding.
First introduced to deal with hydrodynamic (HD) turbulence, shell models have now been generalized to MHD, leading to
interlocked progresses of both types of model. We will now summarize the evolution of these ideas.

Obukhov (1971) introduced a multilevel system of non-linear triplets to mimic the energy transport, in the spirit of the
Richardson–Kolmogorov scenario for the energy cascade in HD turbulence. This idea has been successfully developed by his
team (Gledzer, 1973; Desnianskii and Novikov, 1974; Glukhovskii, 1975; Gledzer et al., 1981). At the same time Lorenz
(1971) started from the full Fourier representation of the Navier–Stokes equations. Aiming at studying the statistical
properties of turbulent flow with limited computer facilities, he reduced the set of equations to a ‘‘very low order model’’.
Though both approaches were different, Lorenz (1972) and Gledzer (1973) eventually derived the same shell model of
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HD turbulence.1 They both applied the conservation of kinetic energy and enstrophy with the description of atmospheric
turbulence statistics in mind. We note that these two quantities, kinetic energy and enstrophy, are positive definite and so
are rather straightforward to define in the framework of shell models, explaining why shell models of 2D-turbulence were
preferred at that time. It took a further 20 years (Kadanoff et al., 1995) to identify and adequately describe kinetic helicity
(not sign definite) in shell models, leading to 3D-turbulence modeling (for which kinetic helicity, instead of enstrophy, is
ideally conserved).

Other low order models of turbulence appearing in the seventies were all based on the same principle: the division of
isotropic spectral space into a set of concentric shells using only one variable per shell to characterize velocity fluctuations.
The main difference between the models were the degree of locality between two interacting shells, each shell interacting
either with one first neighbor (Obukhov, 1971; Desnianskii and Novikov, 1974; Bell and Nelkin, 1978; Kerr and Siggia, 1978)
– with only one quadratic invariant (kinetic energy) – or two first neighbors (Lorenz, 1972; Gledzer, 1973; Glukhovskii,
1975; Gledzer and Makarov, 1979) — with two quadratic invariants (kinetic energy and enstrophy).

In the next decade, Zimin (1981) introduced the so-called ‘‘hierarchical model of turbulence’’ with self-similar functions
localized in both physical and Fourier spaces.2 Projecting the Navier–Stokes equations on this base of functions, he obtained
a set of ordinary differential equations organized in a hierarchical tree. By reducing this hierarchical tree to one vertical
chain, Frik (1983)3 constructed a shell model for 2D-turbulence – with two quadratic invariants (kinetic energy and
enstrophy) – including not only local interactions as in Lorenz (1972) and Gledzer (1973) but also non-local interactions.

From the very first numerical simulations of the shell model equations, it was clear that the Kolmogorov solution (or
Kraichnan’s in 2D) gave an unstable fixed point, and that a Kolmogorov spectrum of energy could be obtained only by
averaging over time, as expected in real turbulence. However, such models failed to show any chaotic behavior. The link to
intermittency was still missing, until the first MHD shell models were derived (Frik, 1984; Gloaguen et al., 1985). Indeed,
by doubling the degrees of freedom (adding the magnetic field), chaotic behavior was obtained. A similar effect had also
been observed with temperature in shell models of convective turbulence (Frik, 1986, 1987). Applying this idea to HD
turbulence, Yamada and Ohkitani (1987, 1988) used a velocity with two real components instead of only one, and obtained
solutions showing chaotic behavior. With such complex velocity they found intermittency statistics in excellent agreement
with real HD turbulence.

In the following years such models of HD turbulence aroused wide interest (Pisarenko et al., 1993; Carbone, 1994b;
Biferale et al., 1995; Kadanoff et al., 1995; Frick et al., 1995). A spurious regularity in the spectral properties (a three-shell
periodicity) identified by Biferale (1993) was corrected either by using a slightly different model (L’vov et al., 1998) or by
considering a velocity with three real components per shell instead of two (Aurell et al., 1994a).

After the identification of kinetic helicity by Kadanoff et al. (1995), the first model of 3D MHD turbulence was de-
rived (Brandenburg et al., 1996; Basu et al., 1998; Frick and Sokoloff, 1998) with total energy, magnetic and cross helicities
as quadratic invariants. Meanwhile, new shell models for HD turbulence were elaborated in which the velocity is projected
onto helical modes (Zimin and Hussain, 1995; Benzi et al., 1996b). In such helical models the helicity is not correlated with
the kinetic energy, contrary to the other models. This gives rise to important differences when dealing with kinetic helicity
in HD turbulence (Stepanov et al., 2009; Lessinnes et al., 2011). It is also suitable to study magnetic and cross helicities in
MHD turbulence (Frick and Stepanov, 2010).

Within the last ten years more complex shell models have been elaborated to account for characteristics peculiar to
MHD turbulence. These models include non-local interactions, directly within triads (Plunian and Stepanov, 2007) or with
the help of multi-scale models (Frick et al., 2006), anisotropy (Nigro et al., 2004), and the Hall effect (Frick et al., 2003).

Our review is organized as follows. After a short description of MHD turbulence in Section 2, a general framework is
introduced in Section 3 providing a description of various shell models derived so far. This is followed in Section 4 by a
review of results obtained for different applications. For the sake of clarity, HD shell models will often be introduced before
MHD shell models. However, wewill focus onMHD applications only. For HD applications the reader can refer to reviews by
e.g. Bohr et al. (1998), Biferale (2003), Frick (2003), Ditlevsen (2011). A list of notations that are used in the review is given
in Table 1.

2. MHD turbulence

In this section we simply review some background information necessary to address the next sections. For deeper
knowledge the reader can refer to reference books on HD (Frisch, 1995; Lesieur, 1997) and MHD (Moreau, 1990; Davidson,
2001; Biskamp, 2003) turbulence.

2.1. Physical space

2.1.1. MHD equations
The incompressible MHD equations that govern the time evolution of the velocity u and the magnetic induction b are

1 First denoted ‘‘cascade’’ or ‘‘scalar’’ models, such models have been called ‘‘shell’’ in the beginning of the nineties.
2 In terms of contemporary scientific language, these functions would be called wavelets, as discussed by Frick and Zimin (1993).
3 In papers, translated from Russian journals, Peter Frick was spelt as Frik P.G. and we keep each time the spelling from the cited paper.
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Table 1
Table of notations.

Variables u, b, p, z± , a, u± , b±

External magnetic field, forcing, vorticity b0 , f, ω
Wave numbers k, p, q
Energies, helicities, enstrophy, squared magnetic potential Eu , Eb , Hu , Hb , Hc , Ξ , A
Complex conjugation, complex conjugate of z c.c., z∗

Dimensionless numbers Re, Rm, Pm, RH
Viscosity, diffusivity, density ν, η, ρ
Injection rate of energy, kinetic helicity, cross helicity, magnetic helicity ϵ, ζ , χ , ξ
Viscous, Joule dissipation rate ϵν , ϵη

Rotation rate, Alfvén wave velocity Ω , b0
Characteristic time scales tNL , tΩ , tA , tν , tη
Characteristic length scales lF , lν , lη
Characteristic velocity and magnetic fluctuations at scale l ul, bl
Velocity and magnetic structure functions, scaling exponent Sup (l), S

b
p (l), ζp

Specific wave number modulus kF , kν , kη , k⊥ , k∥

Shell common ratio λ

Kinematic growth rate Γkin
Shell variables Un , Bn , Z±

n , U±
n , B±

n
Shell wave number, forcing kn , Fn
Quadratic functions Q(X),W(X, Y), W(X, Y)

Quadratic quantities in shell n EU
n , E

B
n , H

U
n , H

B
n , H

C
n , Ξn An

Energy transfer T XY
i , T XY

ij
Energy flux ΠX<

Y< , ΠX<
Y> , ΠX>

Y>

Mode-to-mode energy transfer SXY (i|j|k)
Non-locality parameter γ


∂t − ν∇

2u = −(u · ∇)u + (b · ∇)b − ∇p + f, ∇ · u = 0, (1)
∂t − η∇

2 b = −(u · ∇)b + (b · ∇)u, ∇ · b = 0, (2)

where ν is the viscosity, η the magnetic diffusivity, p the total pressure (including the magnetic pressure) and f the flow
forcing, normalized by the fluid density ρ. These equations are derived from the Navier–Stokes equations supplemented by
the Lorentz force, andMaxwell equations for which advantage has been taken of fast charge redistribution commonly found
in liquid metals. The magnetic induction has been normalized by

√
4πρ such that b is given in units of velocity. Here we

are interested only in fluctuation, assuming that u and b average to zero in space and time.
The non-linear terms on the r.h.s. (right hand side) redistribute kinetic and magnetic energies among the full range of

scales from the largest, defined by the system boundaries, to the smallest at which the total energy dissipates. Different
kinds of helicities are also transferred. Such transfers are called direct or inverse, depending on whether they occur towards
smaller or larger scales. They are also described as local or non-local depending on whether they occur between neighboring
scales or not.

We speak of forced or decaying turbulence depending on whether f is different from or equal to zero and dynamo action
when the magnetic energy does not decay in time, meaning that the energy transfer from kinetic to magnetic is sufficient
to compensate for the magnetic dissipation.

In the presence of an external magnetic field b0 (having a velocity dimension as it is normalized by
√
4πρ), Eqs. (1)–(2)

can be rewritten by replacing b by b + b0. Introducing the so-called Elsässer variables defined as

z±
= u ± b, (3)

the MHD equations become

∂tz±
+ (z∓

· ∇)z±
= ±(b0 · ∇)z±

− ∇p + r+
∇

2z±
+ r−

∇
2z∓

+ f±, (4)

where r±
=

1
2 (ν ± η) and b0 is assumed to be independent of space coordinates. Provided b0 is sufficiently strong, Eq. (4)

can be linearized and thus becomes a wave equation the solutions of which are the so-called Alfvén waves (Alfvén, 1942).
This set of equations is only symmetric for Pm = 1. Taking Pm = 1 has the effect of suppressing the reflection of Alfvén
waves at the walls (Schaeffer et al., 2011).

2.1.2. Quadratic invariants
In MHD three integral quantities play a special role: the total energy, the cross helicity and the magnetic helicity. The

total energy, E, is the sum of the kinetic energy Eu and the magnetic energy Eb,

E = Eu
+ Eb, Eu

=
1
2


V
u2dV , Eb

=
1
2


V
b2dV , (5)
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where V is the volume of integration. The cross helicity Hc and magnetic helicity Hb are defined as

Hc
=


V
u · b dV , Hb

=


V
a · b dV , (6)

where a is the vector potential satisfying ∇ × a = b. The absolute value of cross helicity is maximal if u and b are aligned
(and zero if they are perpendicular).

The quadratic quantities E,Hc and Hb are called invariant because in the ideal limit of a non-viscous and non-diffusive
fluid ν = η = 0, and in the absence of forcing and an external magnetic field (f = b0 = 0), they are conserved in time,

dtE = dtHc
= dtHb

= 0. (7)

The first two conservation laws can be shown from Eqs. (1)–(2) provided appropriate boundary conditions are used while
the third conservation law is obtained from Eq. (2). We can also show that the first two conservation laws are equivalent
using the following property

V
y · (x · ∇)y dV = 0, (8)

which is satisfied for any divergence-free vectors x and y. Then the conservation of total energy and cross helicity take the
following forms

V
u · (b · ∇)b dV +


V
b · (b · ∇)u dV = 0 (9)

V
b · (u · ∇)u dV +


V
u · (u · ∇)b dV = 0. (10)

Exchanging u and b does not change E and Hc . However, Eqs. (9) and (10) are exchanged, showing the equivalence of the
two conservation laws.

We note that the kinetic helicity, defined by

Hu
=


V
u · ωdV , (11)

where ω = ∇ × u is the vorticity, is not conserved in MHD. Hence

dtHu
= 2


V
b · ∇ × (b × ω) dV , (12)

indicating that kinetic helicity can be created or suppressed by the interaction between the vorticity and the magnetic field.
For b = 0 the kinetic energy and helicity are conserved. In the presence of an external magnetic field b0, the magnetic
helicity is not conserved anymore.

Finally, in 2D HD turbulence the kinetic helicity is always zero. Instead enstrophy

Ξ =
1
2


V

ω2dV (13)

is conserved along with the kinetic energy.
In 2D MHD turbulence magnetic helicity is always constant. Instead the square potential

A =
1
2


V
a2dV (14)

is conserved together with the total energy and cross helicity.

2.1.3. Dimensionless parameters
The Reynolds number is defined as

Re = ull/ν, (15)

where ul is a characteristic velocity and l is a characteristic scale. Putting b = 0 in Eq. (1), Re shows how strong the non-linear
interactions are, compared with viscous dissipation.

In MHD the magnetic Reynolds number is defined as

Rm = ull/η. (16)

From Eq. (2) Rm shows how strong the non-linear interactions are, compared with magnetic dissipation.
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Fig. 1. Map of typical objects in the plane (Re, Rm). DNS stands for Direct Numerical Simulation and FBR for Fast Breeder Reactor (cooled with liquid
sodium). Yellow dashed lines are Pm isolines.

The ratio of both numbers is called the magnetic Prandtl number

Pm = Rm/Re = ν/η (17)

and depends only on the fluid properties. The dimensionless form of Eqs. (1)–(2) is obtained by replacing ν and η by Re−1

and Rm−1 respectively.
Fully developed turbulence implies high Re (greater than 103 at the largest scale). Dynamo action requires Rm > 1 at

the scale where themagnetic energy grows. This corresponds to typical Rm of 10 to 103 when Rm is calculated at the largest
scale of the system. The latter condition is difficult to meet experimentally with liquid metals. Indeed the power necessary
to run a liquid metal experiment increases as Rm3 (Pétrélis and Fauve, 2001), demanding a considerable effort to reach
Rm > 10 at the largest scale. Liquid sodium is usually used for its high conductivity, and for its density about unity. With
Pm ≈ 10−5, reaching Rm ≈ 102 would require Re ≈ 107.

In Fig. 1 a few typical objects are placed on themap (Re, Rm). Among them liquidmetal experiments, fast breeder reactors,
the Earth’s core, Jupiter’s core and the Sun’s convective zone correspond to Pm ∼ 10−5 to 10−6.We note that such low values
for Pm and also realistic Re values remain beyond the limits of current direct numerical simulations (Sakuraba and Roberts,
2009; Uritsky et al., 2010).

2.1.4. Homogeneity and isotropy
Two assumptions are usually made in order to obtain theoretical predictions for both HD and MHD turbulence. The

first assumes homogeneity, meaning that the statistical quantities derived from the flow and magnetic fields are invariant
under translation in physical space. This assumption fails to predict, for example, the effect of boundary layers. The second
assumes isotropy, meaning that the statistical quantities are independent of direction. In principle isotropy is broken as soon
as a sufficiently strong external magnetic field or rotation is applied.

Most 3D shell models are based upon this double assumption of homogeneity and isotropy. However, several models
have been developed to relax the assumption of isotropy in the context of Alfvén waves (see Section 4.4.2).

2.1.5. Isotropic phenomenology
In his paper Kolmogorov (1941) introduced the structure function for the velocity field

Sup (l) = ⟨|ul|
p
⟩ (18)

where ul is the longitudinal velocity increment

ul = [u(x + l) − u(x)] · l/l, (19)

and ⟨ ⟩ denotes ensemble averaging. In HD turbulence, the power ϵ which drives the flow at forcing scale lF , is transferred
towards smaller scales and, in a stationary state, is equal to the energy dissipation rate ϵν (Kolmogorov, 1941; Obukhov,
1941). This direct energy cascade occurs within the inertial range corresponding to scales l such that lν < l < lF , where
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Fig. 2. Plots of kinetic and magnetic energy density spectra Eu(k) and Eb(k), for Pm = 1, obtained from a 5123 DNS, for forced MHD turbulence.
Source: From Carati et al. (2006).

lν is the viscous scale below which viscous dissipation dominates. In such an inertial range, assuming isotropy, a simple
dimensional analysis leads to the estimation

ul ∝ (ϵl)1/3. (20)

This corresponds to an energy transfer rate u2
l /tNL ∝ ϵ, where tNL = l/ul is the eddy turn-over time. Then for any p,

Sup (l) ∝ (ϵl)p/3. (21)

The viscous scale lν is estimated by assuming that the power ϵ, which is injected into the fluid at some forcing scale, is
subsequently dissipated by viscosity at scale lν , corresponding to ϵ ≈ νu2

lν /l
2
ν . This leads to

lν ∝ ϵ−1/4ν3/4. (22)

In MHD turbulence at high Rm, the estimate of lη depends on Pm. For Pm ≤ 1 applying the same type of phenomenology as
above for u and b, we estimate the viscous and ohmic scales to be

lν ∝ ϵ−1/4
ν ν3/4, lη ∝ ϵ−1/4

η η3/4, (23)

where ϵν and ϵη are the fractions of ϵ that correspond to the viscous and the ohmic dissipation respectively (ϵν + ϵη = ϵ).
The ratio of these two scales is

lη
lν

∝


ϵν

ϵη

1/4

Pm−3/4. (24)

For Pm ≥ 1, assuming that the magnetic energy is produced by the velocity shear which is maximum at scale lν , the scale
at which the magnetic energy dissipates is given by l−1

ν u(lν) ∝ ηl−2
η , leading to

lη
lν

∝ Pm−1/2. (25)

This immediately shows the difference between low-PmMHD turbulence, as in liquid metal, high-PmMHD turbulence,
as in interstellar medium, and Pm ≈ 1, as in direct numerical calculations. For Pm ≪ 1 magnetic energy dissipation occurs
at a much larger scale than that of the kinetic energy, and vice-versa for Pm ≫ 1. For Pm ≈ 1, an example is given in Fig. 2,
both kinetic and magnetic energies dissipate at about the same scale.

The ratio ϵν/ϵη , about which little is known, depends on the level of the magnetic energy compared to the level of the
kinetic energy. In general we have ϵν ≫ ϵη in experiments and ϵν ≤ ϵη in real astrophysical objects. In MHD shell models,
ϵν/ϵη ≈ 1/10 for Pm ≈ 10−5, leading to lη/lν ≈ 103.5 (Plunian and Stepanov, 2010).

The structure functions for the magnetic field are defined similarly to Eq. (18), as

Sbp(l) = ⟨|bl|p⟩. (26)

Assuming a Kolmogorov scaling law, given by Eq. (20), for both magnetic and velocity fields leads to the same scaling for
both structure functions Sup ∝ Sbp ∝ lp/3.

In the presence of an external magnetic field b0, a different mechanism of energy transfer occurs due to the interaction of
Alfvén waves (Iroshnikov, 1964; Kraichnan, 1965). Indeed, such an applied field leads to an additional time scale tA = l/b0.
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Provided b0 is sufficiently strong, tA can be shorter than the eddy turnover time l/ul. Then energy transfer occurs on the
Alfvén time scale, leading to

ul ∝ bl ∝ (ϵb0)1/4l1/4, (27)

and onto

Sup (l) ∝ Sbp(l) ∝ (ϵb0)p/4lp/4. (28)

Deviation from isotropy leads to other time scales and scaling laws (see Section 2.2.3).

2.1.6. Intermittency
If structure functions obtained from HD experimental measurements exhibit clear scaling laws, their slopes, however,

clearly deviate from p/3 as p is increased. This is interpreted as the signature of intermittent events, like bursts, which are
not captured by the self-similarity assumption of the Kolmogorov (1941) theory. Such intermittency is quantified by the
scaling exponent ζp such that

Sp(l) ∝ lζp . (29)

Various models of intermittency have been proposed aiming at an analytical formula for the scaling exponent ζp (Frisch,
1995). Here we draw attention to the elegant parameter-free formula of She and Leveque (1994)

ζHD
p = p/9 + 2


1 − (2/3)p/3


, (30)

which gives ζHD
3 = 1, consistent with the Kolmogorov ‘‘4/5’’ law. It is based on

(i) the Kolmogorov refined similarity hypothesis: ⟨up
l ⟩ ∝ ⟨ϵ

p/3
l ⟩lp/3 where ϵl is the energy dissipation averaged over a

volume l3,
(ii) log-Poisson statistics for the dissipation rate fluctuations,
(iii) one-dimensional (filament-like) form of the ultimate dissipative structures.

The scaling exponent given by Eq. (30) is in excellent agreement with experimental measurements of isotropic HD
turbulence. There is, however, good reason to expect that Eq. (30) is not valid inMHD turbulence, even if bothmagnetic
and velocity fields satisfy the same Kolmogorov scaling law given by Eq. (20). The difference comes from the different
nature of the ultimate dissipative structures, which might be sheet-like rather than filament-like. Thus, after replacing
hypothesis (iii) of She–Leveque by

(iv) the ultimate dissipative structure is two-dimensional (sheet-like), Horbury and Balogh (1997) andMüller and Biskamp
(2000) proposed a MHD version of Eq. (30) for Sz

±

p (l)

ζMHD
p = p/9 + 1 − (1/3)p/3, (31)

which again gives ζMHD
3 = 1.

When applied to Alfvén wave turbulence not only must (iii) be replaced by (iv), but (i) must also be replaced by the
Iroshnikov–Kraichnan relation

(v) ⟨up
l ⟩ ∝ ⟨bpl ⟩ ∝ ⟨(ϵlb0)p/4⟩lp/4. Subsequently Grauer et al. (1994) and Politano and Pouquet (1995) developed the Alfvénic

version of Eq. (30)

ζ IK
p = p/8 + 1 − (1/2)p/4, (32)

with ζ IK
4 = 1.

In experiments and/or numerical simulations, accurate measurements of scaling exponents are needed in order to
discriminate between the three formulas given above by Eqs. (30)–(32). When dealing with high order structure functions,
which is necessary for discrimination, it is even hard to identify the appropriate range of scales which can be used for the
determination of the scaling laws. In this respect, significant progress has beenmade by Benzi et al. (1993b) who discovered
the concept of Extended Self-Similarity (ESS) while calculating high order structure functions fromwind tunnel experimental
results. The ESS takes advantage of the Kolmogorov ‘‘4/5’’ law

⟨u3
l ⟩ = −

4
5
ϵl, (33)

so providing an exact linear relation between the third order structure function ⟨u3
l ⟩ and the scale l within the inertial

range. Instead of plotting the structure function ⟨up
l ⟩ versus l, leading to a power scaling lζp , they plotted ⟨up

l ⟩ versus ⟨u3
l ⟩.

As expected they found that the power scaled as ⟨up
l ⟩ ∝ ⟨u3

l ⟩
ζp/ζ3 . Furthermore, they discovered that this scaling held for

a range of scales l much larger (both in small and large scale directions) than that for which ⟨up
l ⟩ ∝ lζp holds. Benzi et al.

(1993b) therefore claimed an extended self-similarity range of scales. In addition, they found that by using this method the
accuracy in the estimate of the scaling exponents was much improved. ESS was tested and used for the measurement of
scaling exponents in a variety of turbulent flow conditions, including MHD turbulence (Rowlands et al., 2005).
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2.2. Fourier space

2.2.1. Triads
Assuming triply periodic boundary conditions in a cube of volume L3, both fields, flow and induction, can be expanded

into discrete Fourier series:

u(x) =


k

u(k)eik·x, b(x) =


k

b(k)eik·x, k ∈
2π
L

Z3 (34)

where u(k) and b(k) are the complex Fourier coefficients defined as

u(k) =
1
L3


u(x)e−ik·xdx3, b(k) =

1
L3


b(x)e−ik·xdx3. (35)

The conditions u(−k) = u∗(k) and b(−k) = b∗(k) must be satisfied in order that u(x) and b(x) be real vectors. In Fourier
space the divergence-free form of both u(x) and b(x) is given by

k · u(k) = 0, k · b(k) = 0, (36)

indicating that both fields are perpendicular to k. Similarly, both Navier–Stokes and induction equations can be projected
onto a plane perpendicular to k in Fourier space, making it possible to remove the pressure terms without loss of generality.
These equations are (Biskamp, 2003)

∂t + νk2

u(k) = −iP(k) ·


p,q

k+p+q=0


u∗(q) · k


u∗(p) −


b∗(q) · k


b∗(p)


+ P(k) · f(k), (37)


∂t + ηk2


b(k) = −iP(k) ·


p,q

k+p+q=0


u∗(q) · k


b∗(p) −


b∗(q) · k


u∗(p)


(38)

where P(k) is the operator defined by the matrix Pij = δij −
kikj
k2

and corresponds to the projection of x on the plane
perpendicular to k. Only the subset of wave numbers k, p and q satisfying k + p + q = 0, interact together. Such a triad is
illustrated in Fig. 5.

It can be shown that all the quadratic invariants introduced above are also conserved within each triad. Hence we can
define energy and helicity transfer only between threemodes belonging to the same triad. The formalism formode-to-mode
energy transfer in MHD turbulence has been developed in detail by Verma (2004) and can be generalized to helicity (cross
or magnetic) transfer. This formalism will be transposed to shell models in Section 3.

2.2.2. Spectra
The Fourier spectra of the quadratic quantities introduced in Section 2.1.2 are

Eu(k) =
1
2
u(k) · u∗(k), (39)

Eb(k) =
1
2
b(k) · b∗(k), (40)

Hb(k) =
1
2


i
k2

(k × b(k)) · b∗(k) + c.c.


, (41)

Hc(k) =
1
2


u(k) · b∗(k) + c.c.


, (42)

Hu(k) =
1
2


i(k × u(k)) · u∗(k) + c.c.


. (43)

where c.c. means the complex conjugate. Their power density spectra are defined in their integral form

X(k) =


|k|=k

X(k)dk, (44)

or discrete form

X(kn) =


kn≤|k|<kn+1

X(k), (45)

where X denotes any of the above quadratic quantities. In addition the following conditions are satisfied (Frisch et al., 1975)

|Hu(k)| ≤ kEu(k), |Hb(k)| ≤ k−1Eb(k), |Hc(k)| ≤

Eu(k)Eb(k)

1/2
. (46)
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Of course all these quantities depend strongly on time. However, we can look for states which are statistically stationary or
at least with a time dependencymuch larger than that of the time scale of the fluctuations (e.g. in free-decaying turbulence).
Not only energies but also helicities are expected to cascade. From absolute equilibrium distributions, which depend only on
the quadratic invariants, Frisch et al. (1975) found that the cascade is direct for the total energy and cross helicity, and inverse
for the magnetic helicity. This makes a striking difference with the HD case for which, using the same method, Kraichnan
(1973) found that both the kinetic energy and helicity cascades are direct. The results also depend on whether the MHD
turbulence is forced or freely decaying, with or without the presence of an external magnetic field b0.

An example of forced MHD dynamo turbulence for b0 = 0 is given in Fig. 2. From dimensional arguments, if the
velocity and magnetic field increments satisfy ul ∝ bl ∝ lα , then the corresponding spectral energy densities satisfy
Eu(k) ∝ Eb(k) ∝ k−2α−1. Assuming ul ∝ bl ∝ (ϵl)1/3, this leads to the famous ‘‘-5/3’’ Kolmogorov scaling law

Eu(k) ∝ Eb(k) ∝ ϵ2/3k−5/3, (47)

for both kinetic andmagnetic energy density spectra. HD turbulence experiments clearly demonstrate the existence of such
a scaling law over more than three decades (Saddoughi and Veeravalli, 1994; Pope, 2000). This is also observed in DNS over
more than one decade (Gotoh et al., 2002). In MHD turbulence there is, however, not such a clear inertial range for the
magnetic energy density spectrum, as depicted in Fig. 2. Even the kinetic energy inertial range is rather short, less than one
decade in Fig. 2, making it difficult to identify a clear scaling law. Short spectra are due to limited numerical resolution.
Presumably future higher resolution will give rise to wider inertial range. The shape of the magnetic spectrum also depends
on forcing. In particular if the forcing is helical the spectrum can be peaked at the largest possible scale (Brandenburg,
2001, 2009). Such large-scale magnetic field generation by the small-scale MHD turbulence corresponds to the so-called
α-effect (Krause and Rädler, 1980). For free-decaying MHD turbulence and Pm = 1 Müller and Biskamp (2000) and Müller
and Grappin (2005) found clear Kolmogorov scaling laws.

2.2.3. Spectra in the presence of an external magnetic field
As mentioned in Section 2.1.5, the presence of an external magnetic field b0 changes the energy transfer which occurs

at the Alfvén time scale tA rather than at the eddy turn-over time scale tNL, provided b0 = |b0| is strong enough. Assuming
isotropy, the following spectra are expected (Iroshnikov, 1964; Kraichnan, 1965)

Eu(k) ∝ Eb(k) ∝ (b0ϵ)1/2k−3/2. (48)

Unfortunately, inMHD turbulence experiments (Odier et al., 1998; Alemany et al., 2000; Bayliss et al., 2007) the values of Rm
which are possible to achieve are too low (less than 10 at the largest scale) to observe a sufficiently wide magnetic inertial
range. In the left panel of Fig. 3, a typical magnetic energy density spectrum is plotted versus frequency (Bourgoin et al.,
2002). Two slopes are observed, −1 and −11/3, neither of which can be attributed to an inertial range. The first slope is
not easy to understand. On the other hand the second slope can be justified as follows (Golitsyn, 1960; Moffatt, 1961). First
we have to assume that the Taylor hypothesis applies in order to interpret the frequency as a wave number. The induction
equation (2), replacing b by b + b0, where b0 is taken to be independent of any spatial coordinate, and assuming |b| ≪ b0
(low Rm), implies

∂t − η∇
2 b = (b0 · ∇)u. (49)

In a stationary statistic state the induction term (b0 · ∇)u is balanced by the dissipation term η∇
2b, implying b0ku(k) ∼

ηk2b(k). Now assuming that the turbulent velocity obeys the Kolmogorov scaling law (20), we find

Eb(k) ∝ b20ϵ
2/3η−2k−11/3. (50)
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Applying Taylor hypothesis, Eq. (50) implies that Eb(k) ∝ f −11/3. We note that such line of argument assumes non-local
interactions between the applied field b0 and the small-scale turbulence.

If the IK scaling law (48) cannot be tested against experiments, at least it can be compared with observations. The right
panel of Fig. 3 shows themagnetic energy density spectrummeasured in the solarwind. The correspondingMHD turbulence
subjected to the strong magnetic field b0 emanating from the Sun, shows three successive slopes, again −1 at large scales,
−5/3 in the inertial range, and −2.9 at the smallest scales. An interesting point here is that an inertial Kolmogorov scaling
law f −5/3 is obtained instead of the IK scaling law f −3/2 (for a discussion of the two other slopes see e.g. Verdini et al. (2012a)
and Howes et al. (2011)).

In fact anisotropy plays a crucial role in Alfvén wave turbulence (Goldreich and Sridhar, 1995), leading to modified
definitions for both the Alfvén time tA ∝ (k∥b0)−1 and the eddy turn-over time tNL ∝ (k⊥b(k⊥))−1, where the subscripts ∥

and⊥ denote the directions parallel and perpendicular to the applied field b0. Two regimes are possible, dependingwhether
tA ≪ tNL or tA ≈ tNL. They are denoted by weak and strong turbulent regimes respectively. In the weak regime, on the
basis of resonant three-wave interactions, Galtier et al. (2000) found a cascade restricted to the perpendicular plane, with
Eb(k⊥) ∝ k−2

⊥
. This has been numerically confirmed (Boldyrev and Perez, 2009). In the strong regime the cascade occurs in

both perpendicular and parallel directions. Provided the critical balance tA = tNL is satisfied, themagnetic energy spectrum is
now expected to satisfy Eb(k⊥) ∝ k−5/3

⊥
and Eb(k∥) ∝ k−2

∥
(Goldreich and Sridhar, 1995). This seems to be well supported by

solar wind measurements (Horbury et al., 2008), but still lacks numerical confirmation. Instead simulations give an energy
spectrum Eb(k⊥) ∝ k−3/2

⊥
(Müller and Grappin, 2005; Mason et al., 2008). It has been suggested that such discrepancy is due

to the dominance of the one Elsässer variable on the other (Boldyrev, 2006). However, recent results based on shell models
in the perpendicular direction (Section 4.4.2) manage to reproduce the transition between weak and strong turbulence for
a ratio tA/tNL varying from 0 to 1 (Verdini and Grappin, 2012).

2.2.4. Transfer functions
From Eqs. (37)–(38) and following Verma (2004), the time evolution of the Fourier modes of the kinetic and magnetic

energies Eu(k) and Eb(k) is given by

(∂t + 2νk2)Eu(k) =
1
2


p,q

k+p+q=0


Suu(k|p, q) + Sub(k|p, q)


+ ℜ


f(k) · u∗(k)


(51)

(∂t + 2ηk2)Eb(k) =
1
2


p,q

k+p+q=0


Sbu(k|p, q) + Sbb(k|p, q)


, (52)

where each Sxy(k|p, q) term represents the energy transfer rate from the modes p and q of field y, into the mode k of field
x. They are defined as

Suu(k|p, q) = Suu(k|p|q) + Suu(k|q|p) (53)

Sub(k|p, q) = Sub(k|p|q) + Sub(k|q|p) (54)

Sbu(k|p, q) = Sbu(k|p|q) + Sbu(k|q|p) (55)

Sbb(k|p, q) = Sbb(k|p|q) + Sbb(k|q|p), (56)
with

Suu(k|p|q) = −ℑ {[k · u(q)] [u(k) · u(p)]} (57)

Sub(k|p|q) = +ℑ {[k · b(q)] [u(k) · b(p)]} (58)

Sbu(k|p|q) = +ℑ {[k · b(q)] [b(k) · u(p)]} (59)

Sbb(k|p|q) = −ℑ {[k · u(q)] [b(k) · b(p)]} , (60)
and where the terms Sxy(k|q|p) are obtained from Sxy(k|p|q) by exchanging p and q. Each Sxy(k|p|q) term represents the
mode-to-mode energy transfer rate from the mode p of field y into the mode k of field x, with the mode q acting as a
mediator.

Another way to write Eqs. (51)–(52) is

(∂t + 2νk2)Eu(k) = T uu(k) + T ub(k) + ℜ

f(k) · u∗(k)


(61)

(∂t + 2ηk2)Eb(k) = T bu(k) + T bb(k), (62)
where the quantities T xy(k) are interpreted as the energy transfer rate from all modes of the y-field into the k mode of the
x-field. They are defined as

T xy(k) =
1
2


p,q

k+p+q=0

Sxy(k|p, q). (63)
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The Fourier space is divided into spherical shells an that contain all wave vectors k such that kn ≤ |k| < kn+1. The energy
transfer rate from the shellm of field y, to the shell n of field x is given by

T xy
nm =


k∈an,p∈am
k+p+q=0

Sxy(k|p|q). (64)

Defining the kinetic and magnetic energies in shell n as

Eu
n =

1
2


k∈an

|u(k)|2, Eb
n =

1
2


k∈an

|b(k)|2, (65)

we obtain

∂tEu
n =


m


T uu
nm + T ub

nm


− Du

n + F u
n (66)

∂tEb
n =


m


T bu
nm + T bb

nm


− Db

n, (67)

with

Du
n = ν


k∈an

k2|u(k)|2, Db
n = η


k∈an

k2|b(k)|2, F u
n =


k∈an

ℜ

f(k) · u∗(k)


. (68)

Similar definitions of shell-to-shell energy transferswere used inMininni et al. (2005) and Alexakis et al. (2005). A schematic
representation of the shell-to-shell energy transfers is given in Fig. 4 (left), togetherwith, in Fig. 4 (right), the results obtained
from the same DNS used to produce the energy spectrum of Fig. 2. The two top figures in Fig. 4 (right) show that the u-to-
u and b-to-b transfers are local and forward. On the other hand the two bottom figures show that the b-to-u and u-to-b
transfers are non-local, with a strong contribution coming from the velocity forcing shell to all magnetic shells. We stress
that in DNS the sequence of kn is chosen to be arithmetic in contrast to shell models in which the sequence is geometric.

Extending the previous definitions to fluxes, we can separate Fourier space into two parts, inside and outside a sphere of
radius kn. We define four fluxes from y to x, from the inside/outside of the y-sphere to the inside/outside of the x-sphere,

Π x<y<
n =


|k|<kn,|p|<kn

k+p+q=0

Sxy(k|p|q) (69)

Π x>y<
n =


|k|>kn,|p|<kn

k+p+q=0

Sxy(k|p|q) (70)

Π x<y>
n =


|k|<kn,|p|>kn

k+p+q=0

Sxy(k|p|q) (71)

Π x>y>
n =


|k|>kn,|p|>kn

k+p+q=0

Sxy(k|p|q). (72)
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We note that spherical shell transfers are rather unsuited to anisotropic turbulence, e.g. with a strong b0 (Teaca et al.,
2009). Alexakis et al. (2007) introduced cylindrical shells concentric with the direction of b0, and plane layers perpendicular
to the latter, leading to transfermaps between cylindrical shells on the one hand and parallel planes on the other hand. Teaca
et al. (2009) introduced ring-to-ring transfers by dividing each spherical shell into rings. This has the advantage of showing
how the transfers are distributed with the angle between the ring and the direction of b0.

Helicity transfer can also be defined in a way similar to that used for energy transfer. Starting from Eqs. (37)–(38), the
time evolution of the cross helicity Hc(k) and magnetic helicity Hb(k) is

(∂t + (ν + η)k2)Hc(k) =
1
2


p,q

k+p+q=0

Sc(k|p, q) + ℜ

f(k) · b∗(k)


, (73)

(∂t + 2ηk2)Hb(k) =
1
2


p,q

k+p+q=0

Sb(k|p, q), (74)

where Sc(k|p, q) and Sb(k|p, q) are respectively the cross helicity and magnetic helicity transfer rates frommodes p and q,
to mode k. They are defined as

Sc(k|p, q) = Sc(k|p|q) + Sc(k|q|p), (75)

Sb(k|p, q) = Sb(k|p|q) + Sb(k|q|p), (76)

where Sc(k|p|q) and Sb(k|p|q) are the transfer rates from mode p to mode k, with the mode q acting as a mediator. Hence

Sc(k|p|q) = ℑ {− [u(q) · k] [u(p) · b(k) + b(p) · u(k)] + [b(q) · k] [u(p) · u(k) + b(p) · b(k)]} , (77)

Sb(k|p|q) = 2ℜ {u(q) · [b(p) × b(k)]} . (78)

We note that Sc(k|p|q) = −Sc(p|k|q) and Sb(k|p|q) = −Sb(p|k|q), meaning that the transfers from p-to-k and k-to-p are
opposite, as expected from mode-to-mode transfers.

Defining the transfer rates from the shellm to the shell n, as

T c
nm =


k∈an,p∈am
q=−(k+p)

Sc(k|p|q), T b
nm =


k∈an,p∈am
q=−(k+p)

Sb(k|p|q), (79)

the helicities in shell n as

Hc
n =


k∈an

Hc(k), Hb
n =


k∈an

Hb(k), (80)

gives

∂tHc
n =


m

T c
nm − Dc

n + F b
n , (81)

∂tHb
n =


m

T b
nm − Db

n, (82)

with

Dc
n = (ν + η)


k∈an

k2Hc(k), Db
n = 2η


k∈an

k2Hb(k), F b
n =


k∈an

ℜ

f(k) · b∗(k)


. (83)

The inverse cascade of magnetic helicity has been studied numerically by Alexakis et al. (2006), on the basis of a similar
shell-to-shell formalism.

2.2.5. Helical decomposition
Following the approach presented byWaleffe (1992) forHD turbulence,we introduce, in Fourier space, a base of polarized

helical waves h± defined as the eigenvectors of the curl operator (Craya, 1958; Herring, 1974; Cambon and Jacquin, 1989),

ik × h±
= ±kh±. (84)

Note that the helical vectors h±(k) are defined up to an arbitrary rotation of axis k. Waleffe (1992) suggests taking

h±(k) = u2(k) ± iu1(k) (85)

with u1(k) = (zk × k)/|(zk × k)| and u2(k) = u1(k) × k/k, where zk is an arbitrary vector that, in general, may depend
on k, though it is not proportional to k. Lessinnes et al. (2009b) extended this approach to MHD with the following line of
argument.
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The Fourier modes of both fields, velocity and magnetic, are expanded on that helical base

u(k) = u+(k)h+
+ u−(k)h−, (86)

b(k) = b+(k)h+
+ b−(k)h−, (87)

leading to energies and cross helicity expressions

Eu(k) =
1
2


|u+(k)|2 + |u−(k)|2


, (88)

Eb(k) =
1
2


|b+(k)|2 + |b−(k)|2


, (89)

Hc(k) =
1
2


u+(k)b+∗

(k) + u−(k)b−∗
(k) + c.c.


. (90)

The vorticity ω and potential vector a (with an appropriate gauge) can also be expanded on the same base

ω(k) = k

u+(k)h+

− u−(k)h−

, (91)

a(k) = k−1 
b+(k)h+

− b−(k)h−

, (92)

leading to the kinetic and magnetic helicities

Hu(k) = k

|u+(k)|2 − |u−(k)|2


(93)

Hb(k) = k−1 
|b+(k)|2 − |b−(k)|2


, (94)

enstrophy and square potential

Ξ(k) =
1
2
k2


|u+(k)|2 + |u−(k)|2


(95)

A(k) =
1
2
k−2 

|b+(k)|2 + |b−(k)|2

. (96)

Replacing the expressions (86)–(87) for u and b in Eqs. (37)–(38), and projecting onto the helical base hsk(k) (sk = ±1) lead
to the following system

∂t + νk2

usk(k) =

1
2


p,q

k+p+q=0


sp,sq


spp − sqq


g


usp(p)usq(q) − bsp(p)bsq(q)

∗
+ f sk(k), (97)


∂t + ηk2


bsk(k) = −

1
2


p,q

k+p+q=0


sp,sq

sk k g

usp(p)bsq(q) − bsp(p)usq(q)

∗
, (98)

where g , a function of k, p, q, sk, sp and sq, is defined as

g(k, p, q, sk, sp, sq) ≡ −
1

hsk(k)∗ · hsk(k)
(hsk(k)∗ × hsp(p)∗) · hsq(q)∗. (99)

Considering a single triadic interaction k + p + q = 0, it is not necessary to introduce an arbitrary unit vector zk to define
the unit vectors u1 and u2. Indeed, there is a natural direction which is represented by the unit vector perpendicular to the
plane of the triad:

λ = (k × p)/|k × p| = (p × q)/|p × q| = (q × k)/|q × k|. (100)

A second unit vector µk = k × λ/k is introduced and the helical vectors are then defined as

hsk(k) = eiskϕk (λ + i sk µk) . (101)

The angle ϕk defines the rotation around k needed to transform the base (µk, λ) onto the base (u1(k),u2(k)). Since the
base (µk, λ) depends on the triad, the angle ϕk is also a function of (k, p, q). The coupling constant for this triad then simply
reduces to

g(k, p, q, sk, sp, sq) = −e−i(skϕk+spϕp+sqϕq) sk sp sq (sk sinαk + sp sinαp + sq sinαq), (102)

= −i e−iΦkpq(sk,sp,sq) (sk sinαk + sp sinαp + sq sinαq) (103)

where the phase Φkpq(sk, sp, sq) = sk(ϕk + π/2) + sp(ϕp + π/2) + sq(ϕq + π/2), and αk, αp and αq are the triad angles
(see Fig. 5).
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Fig. 5. Representation of the triad formed by the wave vectors k, p and q.

k

Fig. 6. Illustration of the shell n (in gray).

The sines are defined analytically as:

sinαk =
Q

2 p q
sinαp =

Q
2 k q

sinαq =
Q

2 k p
, (104)

where Q =

2 k2 p2 + 2 q2 p2 + 2 q2 k2 − k4 − q4 − p4. The expression (103) shows that g depends on the shape of the

triangle formed by the triad but not on its scale. In the ideal limit (ν = η = 0) and in the absence of external forcing, the
triadic dynamical system obtained by neglecting all the interactions with wave vectors different from k, p or q is given by

dtusk(k) = g(k, p, q, sk, sp, sq) (spp − sqq) (usp(p) usq(q) − bsp(p) bsq(q))∗,
dtusp(p) = g(k, p, q, sk, sp, sq) (sqq − skk) (usq(q) usk(k) − bsq(q) bsk(k))∗,
dtusq(q) = g(k, p, q, sk, sp, sq) (skk − spp) (usk(k) usp(p) − bsk(k) bsp(p))∗,
dtbsk(k) = g(k, p, q, sk, sp, sq) (−skk) (usp(p) bsq(q) − bsp(p) usq(q))∗,
dtbsp(p) = g(k, p, q, sk, sp, sq) (−spp) (usq(q) bsk(k) − usq(q) bsk(k))∗,
dtbsq(q) = g(k, p, q, sk, sp, sq) (−sqq) (usk(k) bsp(p) − usk(k) bsp(p))∗.

(105)

This dynamical system couples six complex variables. The geometric and scale independent g factor is the same in all
equations. The second prefactors in Eq. (105) only depend on the wave numbers of the triad or, more specifically, on the
eigenvalues of the curl operator. The nature of interactions in Eq. (105) is obviously affected by the values of the parameters
sk = ±1, sp = ±1 and sq = ±1 (eight possible choices). However, the structure of the system is unchanged if all
the signs of sk, sp and sq are reversed. Therefore, there are only four different types of interaction. In each triad (k, p, q),
Eq. (105) automatically conserve the total energy Eu(k) + Eb(k) + Eu(p) + Eb(p) + Eu(q) + Eb(q), the magnetic helicity
Hb(k) + Hb(p) + Hb(q), and cross helicity Hc(k) + Hc(p) + Hc(q). This is also true for kinetic energy and helicity in HD.

Such helical decomposition turns out to be useful in the derivation of shell models of turbulence, mainly because the
kinetic and magnetic helicities are then unambiguously defined.

3. Derivation of MHD shell models

3.1. Principles and generic equations

3.1.1. The HD GOY model as a first example
Shell models have been elaborated keeping in mind the spectral representation of the Navier–Stokes equations. The

Fourier space is divided into spherical shells, defined by

kn ≤ |k| < kn+1 (106)

for which an illustration is given in Fig. 6.
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The sequence of kn is chosen to be geometric with the common ratio λ. Therefore kn = k0λn and the kinetic energy in a
given shell n is given by

EU
n =

 kn+1

kn
Eu(k)dk. (107)

Next we introduce a complex quantity Un, such that |Un|
2/2 characterizes the kinetic energy EU

n in shell n. This quantity
Un depends on time only and is interpreted as a typical velocity fluctuation in shell n, a kind of collective variable for all
fluctuations u whose Fourier images belong to shell n. As turbulence is assumed to be homogeneous and isotropic, all
directions are equivalent and so all directional information is lost.

The simplest HD shell model consists of a system of ordinary differential equations of the form

dtUn = Qn − νk2nUn + Fn, n ∈ {1, . . . ,N} , (108)

which mimics, to a degree, the original Navier–Stokes equations. The term −νk2nUn corresponds to the viscous dissipation
of Un in shell n. The last (complex) term Fn corresponds to the forcing applied in shell n. In general, Fn is applied only in one
shell. However, nothing prevents from applying Fn in several shells in order to control, for example, helicity injection in
addition to energy injection (see Section 4.1.1).

Without the Qn term, Eq. (108) is a simple diffusive equation with each shell being independent of the others. The Qn
term mimics the non-linear interactions within triads. A variety of shell models can be derived depending on the choice
of Qn. As an introductory example we choose Qn to have the form of the so-called GOY model (Gledzer, 1973; Yamada and
Ohkitani, 1987)

Qn = ikn [aUn−2Un−1 + bUn−1Un+1 + cUn+1Un+2]∗ (109)

where a, b and c are real coefficients. The expression of Qn is inspired by the Fourier form of the non-linear terms in Eq. (37).
We keep only the transfers within the subset of triads defined by (kn−2, kn−1, kn), (kn−1, kn, kn+1) and (kn, kn+1, kn+2).

To obtain a model of 3D turbulence the coefficients a, b and c are derived writing that kinetic energy EU and helicity HU

are ideally conserved. In this model the latter quantities are defined as

EU
=

1
2


|Un|

2 , HU
=

1
2


(−1)nkn |Un|

2 . (110)

In the absence of forcing and for ν = 0, the equations dtEU
= 0 and dtHU

= 0 take the form
QnU∗

n + c.c. = 0,


(−1)nknQnU∗

n + c.c. = 0 (111)

where c.c. denotes the complex conjugate. This leads to

i


kn [a∆n−1 + b∆n + c∆n+1] + c.c. = 0 (112)

i


(−1)nk2n [a∆n−1 + b∆n + c∆n+1] + c.c. = 0 (113)

where ∆n = U∗

n−1U
∗
nU

∗

n+1. With appropriate subscript changes Eqs. (112)–(113) are satisfied if and only if

akn+1 + bkn + ckn−1 = 0 (114)

ak2n+1 − bk2n + ck2n−1 = 0. (115)

Replacing kn by k0λn leads to

a = −c/λ3, b = −c(λ − 1)/λ2. (116)

Time and viscosity can be renormalized respectively by c and c−1, leading to an c-independent problem. Taking λ = 2
Eq. (108) becomes

dtUn = ikn


Un+1Un+2 −

1
4
Un−1Un+1 −

1
8
Un−1Un−2

∗

− νk2nUn + Fn, n ∈ {1, . . . ,N} , (117)

which is the GOY model for 3D HD turbulence.
A GOY model can also be derived for 2D HD turbulence writing that enstrophy (defined in Eq. (130)) instead of helicity

is conserved. Taking λ = 2 Eq. (108) becomes

dtUn = ikn


Un+1Un+2 −

5
8
Un−1Un+1 +

1
16

Un−1Un−2

∗

− νk2nUn + Fn, n ∈ {1, . . . ,N} . (118)
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3.1.2. General formalism of MHD shell models
Any shell model can be recast within a general formalism such as the one introduced in Lessinnes et al. (2009a) and

Lessinnes (2010). This formalism has the advantage of enhancing the link to the original MHD equations and of clarifying
the differences between the variety of shell models elaborated so far. The equations are given by

dtU = Q(U) − Q(B) − νD(U) + F, (119)
dtB = W(U, B) − W(B,U) − ηD(B), (120)

where U and B are vectors in space CN , N being the total number of shells,

U = (U1,U2, . . . ,UN), B = (B1, B2, . . . , BN). (121)

The coordinates Un and Bn thus correspond to the velocity and magnetic fluctuations in shell n.
The linear operator D is defined as

D(X) = (k21X1, k22X2, . . . , k2NXN). (122)

The vector F stands for forcing and has non-zero coordinates only in shells which experience forcing. The operators Q and
W stand for the non-linear terms in Eqs. (37)–(38). The general expressions of the n-th coordinate of Q andW are assumed
to be of the form

Qn(X) = kn
N

i,j=1

aQnijXiXj + bQnijX
∗

i Xj + cQnijXiX∗

j + dQnijX
∗

i X
∗

j . (123)

Wn(X, Y) = kn
N

i,j=1

aWnijXiYj + bWnijX
∗

i Yj + cWnijXiY ∗

j + dWnijX
∗

i Y
∗

j . (124)

As an example, in the GOY model aQnij = bQnij = cQnij = 0, leading to the general form Qn(X) = kn


dQnijX
∗

i X
∗

j . This choice
is arbitrary.

To determine the remaining coefficients some additional criteria have to be applied. These are:

1. the number of variables per shell,
2. the number of shells interacting with a given shell n,
3. the locality of the interactions between the shell n and the other shells,
4. the conservation laws,
5. the symmetries coming from Eqs. (1)–(2).

In most MHD shell models, the variables in each shell n are Un and Bn. However, in helical models such as the one
presented in Section 3.4.2, the number of variables is doubled to U+

n , U−
n , B+

n and B−
n .

In shell model terminology we distinguish the first-neighbor models from two-first-neighbor models, and the local from
non-local models, depending on the interacting triads.

• In L1-models (local, two feet in the same shell, the third foot in a neighboring shell), the shell n is involved in triads
(n − 1, n, n) and (n, n + 1, n + 1), or (n − 1, n − 1, n) and (n, n, n + 1), or all the four.

• In L2-models (local, three feet in three neighboring shells), the shell n is involved in the triads (n − 2, n − 1, n),
(n − 1, n, n + 1) and (n, n + 1, n + 2). Clearly the GOY model introduced above is a L2-model.

• In N1-models (non-local, two feet in the same shell, the third foot in an inner shell), the shell n is involved in triads
(n − m, n, n) and (n, n + m, n + m).

• In N2-models (non-local, two feet in two neighbor shells, the third foot in an inner shell), the shell n is involved in triads
(n − m − 1, n − 1, n), (n − m, n, n + 1) and (n, n + m, n + m + 1).

This classification is illustrated in Fig. 7 where the interactions between three modes belonging to shells n, p and q are
reported in the map (p, q). The possible interacting triads are dictated by the geometry. As mentioned in Section 2.2.1, a
triad is defined by three wave vectors k, p, q such that k + p + q = 0 and therefore define a triangle as in Fig. 5. Here each
vector belongs to a shell. For a common ratio λ = 2, triads of the form (n, n, n + m) with m > 1 are therefore impossible,
as it would require a triangle with two identical sides and a third side larger than the sum of the two others. Of course
the possible interactions depend on λ. However, only the interactions corresponding to L1, L2, N1 and N2 are kept in shell
models. The gray squares represent the relative probability of interactions between three shells calculated forλ = λg , where
λg = (1 +

√
5)/2 is the golden number. In this case we see in Fig. 7 that using a shell model four possible interactions are

ignored (n, n, n), (n, n − 2, n − 2), (n, n, n + 2), (n, n + 2, n). However, compared to the case λ = 2 in which (n, n, n) is
also ignored and (n, n − 2, n − 2), (n, n, n + 2), (n, n + 2, n) do not exist, the results do not change significantly.

The kinetic and magnetic energies EU and EB, and the cross helicity HC are defined by

EU
=

1
2
U2, EB

=
1
2
B2, HC

= U · B, (125)
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q

n+1

n+1

n–1

n–1

n

n p

Fig. 7. Interactions between three modes belonging to shells n, p and q. The graph is given in the map (p, q). The labels are defined in the text and refer to
different types of shell models. The gray intensity is proportional to the probability of interaction for λ = λg , the darker the higher the probability. White
corresponds to zero probability.
Source: Adapted from Plunian and Stepanov (2007).

with the scalar product

X · Y =
1
2

N
i=1

(XiY ∗

i + YiX∗

i ). (126)

Note that EU is homogeneous to the square of a velocity. Therefore an energy spectrum EU
n =

1
2U

2
n obeying to a scaling

law EU
n ∝ kα

n would give an energy density scaling law Eu(k) ∝ kα−1. Typically the −5/3 Kolmogorov scaling law for Eu(k)
corresponds to EU

n ∝ k−2/3
n .

The conservation of total energy and cross helicity leads to

[Q(U) − Q(B)] · U + [W(U, B) − W(B,U)] · B = 0, (127)
[Q(U) − Q(B)] · B + [W(U, B) − W(B,U)] · U = 0. (128)

These equations must be satisfied for any vectors U and B. In particular they must be satisfied when U and B are exchanged.
This shows that both relations conservation of total energy and cross helicity are equivalent, in agreementwith Section 2.1.2.

Eqs. (127)–(128) must also be satisfied for B = 0 (or U = 0) implying that

Q(X) · X = 0, (129)

for any variable X.
Since a curl operator is included in the definition of the potential vector, the latter is not trivially defined in shell models.

Therefore such a general framework fails to provide a general equation for the conservation of magnetic helicity in MHD or
kinetic helicity in HD turbulence. Actually the definition of the latter quantities depends on the type of the shell model used,
helical or non helical. It is postponed to Sections 3.2–3.4. The enstrophy Ξ and squared magnetic potential A are more easy
to define as, contrary to helicity, they are always positive in any shell

Ξ =
1
2


n

k2n|Un|
2, A =

1
2


n

k−2
n |Bn|

2. (130)

We note that the necessity of having the same structure L1, L2, N1 or N2, forQ andW follows from the conservation laws.
At this stage we have all the information necessary to start elaborating a shell model. It is a matter of choosing between

the several possibilities mentioned earlier. However, we note that contrary to Q, the operator W is not uniquely defined.
IndeedW(X, Y) can be replaced by any operator of the form

W(X, Y) =
w

w − 1
W(X, Y) +

1
w − 1

W(Y,X) (131)

where w is a scalar quantity, without changing Eq. (120), or the conservation laws. Indeed it is easy to show thatW(X, Y) − W(Y,X) = W(X, Y) − W(Y,X). (132)

In other words W(X, Y) corresponds to a combination of (x · ∇)y and (y · ∇)x. Though this does not change the shell model
results in terms of U and B, it may change their analysis (post-processing) in terms of energy transfer and shell-to-shell
exchange.
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Following Lessinnes et al. (2009a) we arbitrary make W(X, Y) correspond to −(x · ∇)y. From Eq. (8) this implies that

W(X, Y) · Y = 0, (133)

and uniquely determines the value of w in Eq. (131).
So at this stage Eqs. (119)–(120) can be rewritten in the form

dtU = Q(U) − Q(B) − νD(U) + F, (134)

dtB = W(U, B) − W(B,U) − ηD(B), (135)

with

Q(X) · X = 0, (136)W(X, Y) · Y = 0, (137)

Q(X) · Y + W(X, Y) · X = 0. (138)

Now Eqs. (137)–(138) imply

W(X,X) = Q(X), (139)

which again is present in the original Navier–Stokes and induction equations. To show that Eq. (139) is satisfied, we start by
replacing Y by X + Y in Eq. (137). Assuming that W is a bilinear operator,

W(X,X) · X + W(X,X) · Y + W(X, Y) · X + W(X, Y) · Y = 0 (140)

which, from Eq. (137) again, simplifies to

W(X,X) · Y + W(X, Y) · X = 0. (141)

From Eq. (138), W(X, Y) · X can be replaced by −Q(X) · Y in Eq. (140), leading toW(X,X) − Q(X)

· Y = 0. (142)

As Eq. (142) must be satisfied for any Y, it implies Eq. (139).
Finally Eqs. (119)–(120) can be rewritten in the form

dtU = W(U,U) − W(B, B) − νD(U) + F, (143)

dtB = W(U, B) − W(B,U) − ηD(B), (144)

with W(X, Y) · Y = 0 (145)

being the only condition required to be satisfied so that both total energy and cross helicity are conserved along with the
symmetries of the non-linear operators in the original Navier–Stokes and induction equations. In particular Eqs. (136) and
(138) are automatically satisfied, using again the bilinear property of W to show Eq. (138).

Note that changing U to KU, B to KB and W to K−1W, where K is scalar quantity, does not change the system of
Eqs. (143)–(144).

Similar toW, W takes the general form

Wn(X, Y) =

N
i,j=1

aW
nijXiYj + bW

nijX
∗

i Yj + cW
nijXiY ∗

j + dW
nijX

∗

i Y
∗

j . (146)

As the velocity u and induction b are divergence-free, the Navier–Stokes and induction equations satisfy Liouville’s
theorem in the ideal limit ν = η = 0. For shell models Liouville’s theorem gives

n

∂

∂Un


dUn

dt


+

∂

∂Bn


dBn

dt


+

∂

∂U∗
n


dU∗

n

dt


+

∂

∂B∗
n


dB∗

n

dt


= 0. (147)

Finally, the magnetic helicity which has not been considered so far will give rise to an important additional constraint on
shell models designed for 3D MHD turbulence.
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Fig. 8. Illustrations of the energy rate flowing into the i-th shell of X, coming from either all shells of Y (left) or only one shell j of Y (right).

3.1.3. Energy flux
Starting from Eqs. (143)–(144) we obtain the kinetic and magnetic energy equations in any shell i

dtU2
i /2 = TUU

i + TUB
i − νk2i U

2
i + F · Ui, (148)

dtB2
i /2 = T BB

i + T BU
i − ηk2i B

2
i , (149)

where

TUU
i = W(U,U) · Ui, TUB

i = −W(B, B) · Ui, (150)

T BB
i = W(U, B) · Bi, T BU

i = −W(B,U) · Bi, (151)

and Xi = (0, . . . , 0, Xi, 0, . . . , 0). The quantities T XY
i are interpreted as the energy rate flowing from all shells of the Y-field

into the i-th shell of the X-field. They are illustrated in Fig. 8.
Eqs. (141) and (145) imply respectively

N
i=1 T

UB
i +

N
i=1 T

BU
i = 0 and

N
i=1 T

UU
i =

N
i=1 T

BB
i = 0.

Going one step further we introduce the quantity T XY
ij , the shell-to-shell energy exchange rate from shell j of the Y-field

into shell i of the X-field, defined as

TUU
ij = W(U,Uj) · Ui, TUB

ij = −W(B, Bj) · Ui, (152)

T BB
ij = W(U, Bj) · Bi, T BU

ij = −W(B,Uj) · Bi, (153)

implying that

T XY
i =

N
j=1

T XY
ij , (154)

that is illustrated in Fig. 8. Then the energy exchange rate from Yj to Xi must be opposite to that from Xi to Yj:

T XY
ij = −T YX

ji . (155)

This implies the conservation of total energy (127), the relation (129) for X = U, and Eq. (133). The notation T XY
ij is chosen

in agreement with T xy
nm given in Eq. (64).

In order to calculate energy fluxes we introduce the following vectors

X<
n = (X1, . . . , Xn, 0, . . . , 0), (156)

X>
n = (0, . . . , 0, Xn+1, . . . , XN), (157)

with X = X<
n + X>

n . The corresponding energies are defined in the same manner as in Eq. (125),

EX<

n =
1
2
(X<

n )2, EX>

n =
1
2
(X>

n )2. (158)

Then from Eqs. (148)–(149),

dtEU<

n =

n
i=1


TUU
i + TUB

i


− νD(U) · U<

n + F · U<
n , (159)

dtEB<

n =

n
i=1


T BB
i + T BU

i


− ηD(B) · B<

n , (160)

with D(X) · X<
n =

n
i=1 k

2
i X

2
i . The quantity

n
i=1 T

XY
i defines the flux from Y (in all shells) to X<

n . It is denoted by

ΠY
X< ≡

n
i=1

T XY
i . (161)
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Fig. 9. Illustration of some energy fluxes. The others can be found with the help of Eq. (164).

We also define

ΠY<

X< ≡

n
i=1

n
j=1

T XY
ij , ΠY>

X< ≡

n
i=1

N
j=n+1

T XY
ij ,

ΠY<

X> ≡

N
i=n+1

n
j=1

T XY
ij , ΠY>

X> ≡

N
i=n+1

N
j=n+1

T XY
ij , (162)

which is the shell model counterpart of Eqs. (69)–(72). In the flux notation given in Eqs. (161)–(162) the subscript n has been
dropped for convenience, e.g. ΠY<

X< must be understood as Π
Y<
n

X<
n
. We have

ΠY
X< = ΠY<

X< + ΠY>

X< , ΠY<

X = ΠY<

X< + ΠY<

X>

ΠY
X> = ΠY<

X> + ΠY>

X> , ΠY>

X = ΠY>

X< + ΠY>

X> . (163)

Using Eq. (155) we can show that

ΠX<

X< = ΠX>

X> = 0,

ΠX>

X< = −ΠX<

X> , ΠY<

X< = −ΠX<

Y< ,

ΠY>

X< = −ΠX<

Y> , ΠY>

X> = −ΠX>

Y> . (164)

These equations, illustrated in Fig. 9, imply the following expressions for the energy equations

dtEU<

n = ΠU>

U< + ΠB<

U< + ΠB>

U< − νD(U) · U<
n + F · U<

n , (165)

dtEB<

n = ΠB>

B< + ΠU<

B< + ΠU>

B< − ηD(B) · B<
n , (166)

where

ΠU>

U< = W(U,U>
n ) · U<

n , ΠB<

U< = −W(B, B<
n ) · U<

n ,

ΠB>

U< = −W(B, B>
n ) · U<

n , ΠB>

B< = W(U, B>
n ) · B<

n ,

ΠU<

B< = −W(B,U<
n ) · B<

n , ΠU>

B< = −W(B,U>
n ) · B<

n . (167)

The evolution of kinetic and magnetic energies in shell i has the form

dtU2
i /2 =

N
j,k=1

1
2
SUU(i|j, k) +

N
j,k=1

1
2
SUB(i|j, k) − νk2i U

2
i + F · Ui, (168)

dtB2
i /2 =

N
j,k=1

1
2
SBB(i|j, k) +

N
j,k=1

1
2
SBU(i|j, k) − ηk2i B

2
i , (169)

with

SUU(i|j, k) = W(Uk,Uj) · Ui + W(Uj,Uk) · Ui,

SUB(i|j, k) = −W(Bk, Bj) · Ui − W(Bj, Bk) · Ui,

SBB(i|j, k) = W(Uk, Bj) · Bi + W(Uj, Bk) · Bi,

SBU(i|j, k) = −W(Bk,Uj) · Bi − W(Bj,Uk) · Bi. (170)

Each SXY (i|j, k) term represents the transfer rate from the modes j and k of field Y into the mode i of field X.
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Fig. 10. Illustration of the mode-to-mode energy transfers. The gray triangles correspond to the interacting triads.

We also define the following quantities

SUU(i|j|k) = W(Uk,Uj) · Ui,

SUB(i|j|k) = −W(Bk, Bj) · Ui,

SBB(i|j|k) = W(Uk, Bj) · Bi,

SBU(i|j|k) = −W(Bk,Uj) · Bi, (171)

where SXY (i|j|k) is themode-to-mode energy transfer rate from themode j of field Y to themode i of fieldX, with themode k
acting as amediator. Within one triad (i, j, k) the related interactions are illustrated in Fig. 10. The following relation applies

T XY
ij =


k

SXY (i|j|k). (172)

MHD fluxes were introduced in Stepanov and Plunian (2006) and later corrected in Plunian and Stepanov (2007)
and Lessinnes et al. (2009a).

3.2. Local models

3.2.1. L1-models (local, first-neighbor)
In Appendix A, we give the form of all possible L1-models obeying to the general requirements given by Eqs. (145) and

(146). They were already introduced in the seminal paper by Gloaguen et al. (1985). Two L1-models have been studied in
detail, one by Gloaguen et al. (1985) and subsequent authors, the other by Biskamp (1994).

• The model investigated by Gloaguen et al. (1985) corresponds toWn(X, Y) = kn [C1(Xn−1Yn−1 − λXnYn+1) + C2(XnYn−1 − λXn+1Yn+1)] , (173)

where C1 and C2 are real parameters, and X and Y are real variables. The set of equations for U and B is as follows

dtUn = C1

knU2

n−1 − kn+1UnUn+1 − knB2
n−1 + kn+1BnBn+1


+ C2


knUn−1Un − kn+1U2

n+1 − knBn−1Bn + kn+1B2
n+1


− νk2nUn + Fn, (174)

dtBn = C1kn+1 (Un+1Bn − UnBn+1) + C2kn (UnBn−1 − Un−1Bn) − ηk2nBn. (175)

In addition to total energy and cross helicity, provided C1 + λqC2 = 0, this model has another conserved quantity,
kqnBn. However, as it is not quadratic it cannot be considered as an analog of magnetic helicity (which is conserved in

ideal 3D MHD) or as a squared magnetic potential (which is conserved in ideal 2D MHD). So it has no real meaning.
For B = 0, the Bell and Nelkin (1978) model is recovered, which in turn gives Obukhov (1971) model if C1 = 0,
and Desnianskii and Novikov (1974) model if C2 = 0.

In the dissipationless limit (ν = η = 0) and for an infinite number of shells, the system of Eqs. (174)–(175) has the
Kolmogorov stationary solution

Bn ∼ Un ∼ k−1/3
n (176)

for any value of the ratio c = C1/C2. However, Grappin et al. (1986) found three kinds of attractors depending on the
value of c . For c ≥ 2 the system tends to a supercorrelated state, for which the attractor is reduced to a fixed point
B = ±U, characterized by a total absence of spectral energy transfer and very steep energy spectra. For 0.5 ≤ c ≤ 1,
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Fig. 11. Scaling exponents ζp/ζ3 versus p obtained from the L1-model (173) (full line), and from Voyager 2 solar wind data analysis (Burlaga, 1991) (points
with error bars).
Source: Adapted from Carbone (1994b).

the attractor is a non-magnetic (B = 0) stable fixed point. Finally, for c < 0.3 the attractor has a high dimension, with
a chaotic solution characterized by an extended inertial range and equipartition between kinetic and magnetic energies.
Therefore only the latter range of c is of interest forMHD turbulence as it reproduces the expected chaotic behavior of real
turbulence. Finally, for c = 0.01, Grappin et al. (1986) found a Lyapunov dimension for the attractor which is consistent
with the standard Kolmogorov HD turbulence, rather than the Kraichnan MHD (Kraichnan, 1965), phenomenology. The
latter scenario is lost due the absence of non-local interactions in the model.

In its HD version, i.e. for a model reduced to Eq. (174) with B = 0, Dombre and Gilson (1998) found a solution for
U which again depends on c. A stable fixed point is found for c > 0.55 (including Desnianskii–Novikov’s model for
c → ∞), and chaotic solutions for c < 0.536 (including Obukhov’s model for c = 0). The transition between both
regimes corresponds to a succession of Hopf bifurcations.

MHD intermittency has been studied by Carbone (1994a,b) for c = 0.01 and N = 19. Solving the system of
Eqs. (174)–(175) expressed in terms of Elsässer variables Z±

n = Un ± Bn, he calculated the p-th-order structure functions
S±
n (p) = ⟨|Z±

n |
p
⟩. For scales belonging to the inertial range, he found a scaling exponent ζp such that S±

n (p) ∝ k−ζp
n .

For a range of scales much larger than the inertial range, he found that the structure functions satisfy the relation
S±
n (p) ∝ S±

n (3)ζp/ζ3 , thus confirming that the concept of extended self-similarity applies to MHD. Carbone (1994b)
also compared these scaling exponents to those obtained from solar wind measurements, by the Voyager 2 satellite
at 8.5 AU (Burlaga, 1991). As shown in Fig. 11, the shell model results lie inside the error bars of the observed data. For
completeness we note that Carbone (1995) showed that the solutions of Eqs. (174)–(175) are sign-singular, meaning that
their sign reverses continuously on arbitrary finer time scales, similarly to some signedmeasurements in turbulence and
fast dynamos (Ott et al., 1992).

• The model investigated by Biskamp (1994) corresponds toWn(X, Y) = kn

C1(X∗

n−1Y
∗

n−1 − λX∗

n Y
∗

n+1) + C2(X∗

n Y
∗

n−1 − λX∗

n+1Y
∗

n+1)

, (177)

and gives

dtUn = C1

knU∗ 2

n−1 − kn+1U∗

nU
∗

n+1 − knB∗ 2
n−1 + kn+1B∗

nB
∗

n+1


+ C2


knU∗

n−1U
∗

n − kn+1U∗ 2
n+1 − knB∗

n−1B
∗

n + kn+1B∗ 2
n+1


− νk2nUn + Fn, (178)

dtBn = C1kn+1

U∗

n+1B
∗

n − U∗

n B
∗

n+1


+ C2kn


U∗

n B
∗

n−1 − U∗

n−1B
∗

n


− ηk2nBn, (179)

where U and B are complex vectors. Again, depending on the ratio c = C1/C2, Biskamp (1994) studied the dynamics of
the solutions of Eqs. (178)–(179) for both HD and MHD turbulence.

For HD turbulence, chaotic Kolmogorov solutions were found only for |c| ≪ 1. This confirms the argument made
by Gloaguen et al. (1985) that |c| ≪ 1 is more representative of incompressible turbulence, since the C1-terms referring
only to flat triads make a negligible contribution to the non-linear interactions.

ForMHD turbulence Biskamp (1994) calculated the structure functions scaling exponents ofZ±,U andB for c = −1.33
and c = 10−2. He found the same scaling exponents for all variables (within the error bars), but the results depend on
c . For c = −1.33 he found stronger multifractal behavior (stronger deviation from the Kolmogorov scaling exponent
ζp = p/3) while for c = 10−2 he found scaling exponents that were more compatible with experimental observations
and DNS. Biskamp (1994) also studied the effect of an externally applied magnetic field.
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It is remarkable that the peak in popularity of L1-models reached at the beginning of the nineties was mainly due to
the Gloaguen et al. (1985) model which, in contrast to the HD models of Obukhov (1971) and Desnianskii and Novikov
(1974), demonstrated not only chaotic behavior but also intermittency. This led Brandenburg (1992) to generalize this
model to MHD Boussinesq convection by adding an equation for temperature fluctuation θ . For B = 0 he found (for a
range of parameter c) the scaling laws Eu(k) ∼ k−11/5 and Eθ (k) ∼ k−7/5 (Obukhov, 1959; Bolgiano, 1959). For B ≠ 0 he
found Kolmogorov spectra for the three fields Eθ (k) ∼ Eu(k) ∼ Eb(k) ∼ k−5/3. Geertsema and Achterberg (1992) introduced
a vectorial three-component version of the Gloaguen et al. (1985) model in order to evaluate the turbulent stress tensor in
a differentially rotating disk. This model will be discussed in Section 4.3.2.

A generic problem encountered with the previous models is that there is an insufficient number of quadratic invariants.
In the HD models introduced by Obukhov (1971) or Desnianskii and Novikov (1974) only the kinetic energy is conserved
bringing the number of quadratic invariants to one, instead of two in real HD turbulence. In the MHD models introduced
by Gloaguen et al. (1985) or Biskamp (1994) only the total energy and cross helicity are conserved, bringing the number of
quadratic invariants to two, instead of three in real MHD turbulence. Such a problem is due to a too simplistic expression
of Wn(X, Y). For example the Biskamp (1994) model corresponds to only the four first terms in Eq. (A.2) among the twenty
possible terms (assuming A10 = 0). However as shown in 3.4.1 one additional quadratic invariant can be obtained taking
more terms in Eq. (A.2). Such a model is called helical and will be detailed in Section 3.4.1. It is called helical for at least two
reasons. First it allows to have the kinetic helicity in HD or magnetic helicity in MHD as an additional quadratic invariant.
Second such a model can be interpreted in a framework of helical mode decomposition.

3.2.2. L2-models (local, two-first-neighbor)
Another way to introduce an additional quadratic invariant is to increase the number of interacting triads, with

interactions between two-first-neighbors instead of just first-neighbors. This led Gledzer (1973) to propose a ‘‘System of
hydrodynamic type admitting two quadratic integrals of motion’’ (his paper’s title). In our notation it is a L2-model. It is
remarkable that at about the same time Lorenz (1972) derived exactly the same model, starting from the Navier–Stokes
equations. Both authors imposed enstrophy conservation in addition to the kinetic energy, thus the model is relevant to
2D-turbulence only.

Following a different approach, Frik (1983) elaborated a non-local L2-model with again kinetic energy and enstrophy
conservation. Applying the samemethod Frik (1984) also derived the firstMHD shellmodel, using the square of themagnetic
potential as the third quadratic invariant. This model was thus relevant to 2DMHD turbulence. In our notation both models
are N2-models. For this reason they will be discussed in Section 3.3 when dealing with non-local models.

Finally, Brandenburg et al. (1996) introduced the first 3D MHD L2-model using magnetic helicity as the third quadratic
invariant (see also Basu et al. (1998) and Frick and Sokoloff (1998)).

The L2-model which has received most attention is undoubtedly the GOY model, named after Gledzer (1973), Yamada
and Ohkitani (1987).4 Among all possible L2-models given in Appendix B it corresponds toWn(X, Y) = ikn


C1(X∗

n−2Y
∗

n−1 − λX∗

n−1Y
∗

n+1) + C2(X∗

n−1Y
∗

n−2 − λ2X∗

n+1Y
∗

n+2) + C3(X∗

n+1Y
∗

n−1 − λX∗

n+2Y
∗

n+1)

. (180)

The HD version of this model became popular because of its relevance to real turbulence in terms of high-order structure
functions. In Section 3.3.2 we will also discuss another L2-model, called the Sabra model,5 introduced by L’vov et al. (1998)
as an ‘‘improved’’ version of the GOY model. It is an improvement in so far as some spurious correlations existing between
different shells in the GOYmodel, are suppressed with the Sabra model. Such spurious correlations do not exist in the MHD
version of the GOY model, both models giving the same results.

• To derive the GOY model for HD turbulence, we write Wn(X,X) in the form

Wn(X,X) = −iknλ(C3 + λC2)


X∗

n+1X
∗

n+2 −
ε

λ
X∗

n−1X
∗

n+1 −
1 − ε

λ2
X∗

n−1X
∗

n−2


, (181)

where ε = (C3 − λC1)/(C3 + λC2). With an appropriate renormalization of U and W in Eq. (143), the term −λ(C3 + λC2)
can be taken equal to unity, leading to (Biferale et al., 1995)

dtUn = ikn


U∗

n+1U
∗

n+2 −
ε

λ
U∗

n−1U
∗

n+1 −
1 − ε

λ2
U∗

n−1U
∗

n−2


− νk2nUn + Fn. (182)

Kadanoff et al. (1995) showed that, in addition to the kinetic energy, this system has the following quadratic invariant

H =


n

|Un|
2(ε − 1)−n. (183)

Depending on ε, different physical interpretations can be given to H (Frick et al., 1995):

4 Unfairly ignoring Lorenz’s contribution.
5 The name Sabra model was introduced by L’vov et al. (1998) in the context of shell models, presumably as an insider joke: Sabra denotes a Jewish

person born in Israel, while Goy denotes a non-Jewish person.
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– For ε = 1 − λ−1,
H =


(−1)nkn|Un|

2 (184)
which is analogous to kinetic helicity (Kadanoff et al., 1995). This corresponds to the GOYmodel for 3D HD turbulence
introduced in Section 3.1.1. It has been studied numerically (Jensen, 1991; Pisarenko et al., 1993) and analytically using
a closure model (Benzi et al., 1993a). Frick et al. (1995) showed that the GOY model displays the same intermittency
as 3D turbulence provided ε ≈ 1 − λ−1.

– For ε = 1, all cascades are impossible.
– For ε = 1 + λ−2,

H =


k2n|Un|

2 (185)

which is analogous to enstrophy (Lorenz, 1972; Gledzer, 1973). The two stable solutions are Un ∝ k−1/3
n and Un ∝ k−1

n ,
leading to spectral properties analogous to 2D turbulence. The energy spectrum density should be made of two power
laws depending on whether k is smaller or larger than kF , the forcing wave-number.
∗ For k ≤ kF , E(k) ∝ k−5/3 with an inverse energy cascade.
∗ For k ≥ kF , E(k) ∝ k−3 with a direct cascade of enstrophy.
However such a 2D HD shell model is not able to show a true inverse energy cascade (Aurell et al., 1994a; Ditlevsen,
2011) contrary to its 2D MHD analog (see below).

– For ε = 2 the only quadratic invariant is the kinetic energy, leading to a Kolmogorov fixed point.
– For ε = 1 + λ,

H =


k−1
n |Un|

2, (186)
which is the dimensional equivalent of the ‘‘action’’, a hidden integral of motion in 3D turbulence written in Clebsch
variables (Yakhot and Zakharov, 1993).
For 0 < ε < 1 and λ = 2, a numerical study of the transition to chaos was performed by Biferale et al. (1995). They

found a Kolmogorov stable fixed point solution for ε < 0.3843. For ε = 0.3843 the solution becomes unstable via a Hopf
bifurcation. For larger values of ε, the system evolves towards a chaotic state following a Ruelle–Takens scenario. For
ε > 0.3953 the dynamics are intermittent with a positive Lyapunov exponent. This regime is characterized by a strange
attractor remaining close to the Kolmogorov unstable fixed point.

• In MHD, taking Wn(X, Y) defined by Eq. (180), and provided

C1 =
−1 + (1 − ε) + (1 − ε)2

1 + (1 − ε) + (1 − ε)2
C2, C3 = λ

1 + (1 − ε) − (1 − ε)2

1 + (1 − ε) + (1 − ε)2
C2, (187)

we can show that Eq. (144) has an additional quadratic invariant

I =


n

(ε − 1)n|Bn|
2. (188)

Using the same renormalization applied to the HD case, and thus omitting the term −λ(C3 + λC2) in front of Wn(X, Y),
the latter becomes

Wn(X, Y) =
ikn
2


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∗
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. (189)

It leads to the system (Frick and Sokoloff, 1998; Antonov and Frick, 2000):

dtUn = ikn
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dtBn =
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−ηk2nBn. (191)

Similar to the quantity H in HD, different physical interpretations can be given to I depending on ε:
– For ε = 1 − λ−1,

I =


n

(−1)nk−1
n |Bn|

2, (192)
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Fig. 12. Kinetic (white) and magnetic (black) shell energies vs the shell number n for different values of the parameter ε. Left(up-down) ε = −5,
−2, −0.5, 0, 0.5, 0.99, 1.01. Right (up-down) ε = 1.1, 1.3, 1.5, 1.7, 1.99, 3, 5.
Source: From Antonov and Frick (2000).

which is analogous to magnetic helicity (Brandenburg et al., 1996) and, contrary to the choice of ε = 1 + λ−1 made
by Biskamp (1994), leads to an unsigned quantity as expected formagnetic helicity. This corresponds to the GOYmodel
for 3D MHD turbulence.

– For ε = 1 + λ−2,
I =


n

k−2
n |Bn|

2, (193)

which is analogous to the square of the potential vector. This corresponds to the GOY model for 2D MHD turbulence.
– For ε = 2,

I =


n

|Bn|
2, (194)

which is twice the magnetic energy. As total energy is conserved this corresponds to separate conservation of both
kinetic and magnetic energies, which has no obvious physical meaning.
Antonov and Frick (2000) solved Eqs. (190)–(191) for ε ∈ [−10, 10], λ = 2, ν = η = 10−9, and for a stationary

forcing applied at shell n = 0. They found that in contrast to the HD case there are no stable solutions and the behavior
is always stochastic over the whole range of ε. Kinetic and magnetic spectra are shown in Fig. 12 for different values of
ε. For ε ≤ 1.01 (left column) a small-scale dynamo action occurs with near equipartition between kinetic and magnetic
energies and approximately Kolmogorov spectral slopes. For ε ≥ 1.1, the magnetic energy at large scales is depleted
(right column). On increasing ε the peak of themagnetic spectrummoves to smaller scales until it reaches the dissipation
scale for ε ≈ 1.7. For ε ∈ [1.7, 2] the magnetic spectrum is much lower than the kinetic spectrum, but the dynamo still
occurs. For ε > 2 the small-scale dynamo is lost. However, the magnetic energy at the largest scales slowly grows. To
understand why it is so, we can write I in the form I =


kdn|Bn|

2. Then taking ε > 2 corresponds with having d > 0,
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Fig. 13. Free decaying 3D (left) and 2D (right) MHD turbulence: kinetic EU and magnetic EB energies versus time. Thick lines corresponds to kinematic
simulations imposing W(B, B) = 0.
Source: From Frick and Sokoloff (1998).

I becoming a magnetic analog of generalized enstrophy. Similar to 2D HD turbulence, energy can only be transferred
towards large scales (inverse cascade) while I is transferred towards small scales (direct cascade).

Frick and Sokoloff (1998) investigated themodel (190)–(191) in detail for ε = 1−λ−1 and ε = 1+λ−2, corresponding
respectively to 3D and 2DMHD turbulence,with I being respectively themagnetic helicity and the square of themagnetic
potential. In free decaying turbulence (without forcing), they found dynamo action in the 3D case, and magnetic decay
in the 2D case (as expected from antidynamo theorems). In 3D (Fig. 13-left) the magnetic energy reaches equipartition
after 20 turn-over times. In the kinematic approximation, W(B, B) = 0, the growth of magnetic energy is unbounded
as expected from kinematic dynamo action. In 2D (Fig. 13-right) the magnetic energy for both non-linear and kinematic
cases grows up to a level of about 1/100 of kinetic energy and slowly decays on a dissipation time scale.

In free decaying turbulence, Frick and Sokoloff (1998) also tested the analogy between magnetic energy in 2D MHD
turbulence and temperature gradients (Zeldovich, 1956). They considered a GOY model for temperature fluctuations θn,
with


θ2
n as an additional ideal invariant. For both 2D and 3D turbulence they found that the thermal energy decays

smoothly, while the temperature gradients exhibit temporal growth followed by decay similar to the magnetic energy
in 2D MHD turbulence.

Forced MHD turbulence has been tested against the concept of extended self-similarity (Basu et al., 1998), while
the scaling properties and long-time behavior of the solutions have been studied in detail (Frick and Sokoloff, 1998).
In particular, it was shown that the model given by Eqs. (190)–(191) is rather sensitive to the dynamics of the applied
forcing. For a constant forcing Giuliani and Carbone (1998) found that after some time a supercorrelation state B = ±U
appearswhich is spurious and has no real physical interpretation. Instead of applying a forcing Frick et al. (2000) imposed
themodulus of the complex velocity at shell n = 0 letting its phase evolving freely. They found different time stages with
both low or high correlations between U and B. Using forcing with a random complex phase suppresses the problem of
supercorrelation state (Stepanov and Plunian, 2006).

3.3. Non-local models

Some time after the emergence of shell models inMoscow,mainly in thewake of Obukhov (1971), another approach, the
so-called hierarchical approach, was developed in Perm (Russia) by Zimin (1981). The idea was to model HD turbulence as
a network of vortices with a double repartition in both physical and Fourier spaces. Under the assumptions of homogeneity
and isotropy, it is possible to calculate the Reynolds tensor for each interacting triad of vortices, and derive a system for the
intensity of each vortex still depending on space and scale. Averaging in space over all vortices having the same scale leads
to a non-local shell model. Frik (1983) found an original way of enabling such a model to conserve two ideal invariants.
Considering kinetic energy and enstrophy conservation, he elaborated a non-local shell model of 2D-turbulence. Applying
the samemethod to MHD, with conservation of total energy, cross helicity and the square of magnetic potential, Frik (1984)
developed a non-local shell model for 2D MHD turbulence. Both shell models are N2 models. Completing the work started
about 15 years earlier by Zimin (1981) and Zimin and Hussain (1995) derived an N1-model of 3D HD turbulence, which
satisfies both kinetic energy and helicity requirements (though helicity is not mentioned in their work). The hierarchical
approach followed by Frik (1983) is detailed in Section 3.3.1 along with the model derived by Zimin and Hussain (1995).

Another way to derive a non-local shell model is to begin directly from the shell model structure given by Eq. (146),
including all possible non-local interactions. The general shape of W forN1 andN2models is given respectively inAppendix C
and Appendix D. One example of an N2-model is presented in Section 3.3.2. Such direct derivation does not provide unique
definitions for the non-local coefficients. One free parameter, directly related to the strength of the non-local interactions,
remains. This free parameter can be estimated either from phenomenological argument or using the hierarchical approach.

3.3.1. N2-model derived using a hierarchical approach
Following Frik (1983), we consider a network of parallel 2D-vortices, depending on the horizontal coordinates only, with

velocities perpendicular to the third direction ez. Each vortex is denoted by two integers n andN . The first integer n indicates
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Fig. 14. Left: illustration of logarithmic shells in Fourier space, where the gray annulus corresponding to shell n. Right: functions unN (s) and ωnN (s) for
n = 0.

the shell to which the vortex wave number belongs. As with shell models we consider shells obeying a geometric sequence,
here with λ = 2 as their common ratio.

As two different vortices may belong to the same shell in Fourier space, a second integer N is necessary to differentiate
the vortices in real space.6 Then we can write the velocity field as

u(t, x, y) =


n,N

UnN(t) unN(r − rnN), (195)

where UnN(t) is the amplitude of the vortex nN , rnN is the position of the vortex center and unN is defined by its Fourier
coefficients

ûnN(k) = i
21−n

√
3π

k × ez
k2

e−ik·rnN , for kn ≤ |k| < kn+1, with kn = π2n, (196)

ûnN(k) = 0 outside the shell.

Taking the inverse Fourier transform of ûnN , and calculating the vorticity intensity ωnN = (∇ × unN) · ez , we find

unN(r − rnN) = (ez × s)(3π)−1/2 (J0(2s) − J0(s)) /s2, (197)

ωnN(r − rnN) = 2−n(π/3)1/2 (2J1(2s) − J1(s)) /s, (198)

where s = π2n(r−rnN), s = |s|, and J0(s) and J1(s) are the zero and first order Bessel functions. Fig. 14 shows both functions,
UnN (defined such that unN = (ez × s)UnN ) and ωnN , along with the corresponding shell n (in gray) in which ûnN(k) is non
zero. It can be shown that the density of vortices (number of vortices divided by the shell surface) increases with n as 22n.

All functions ûnN(k) and ûmM(k) are orthogonal provided n ≠ m (functions of different scale do not overlap in Fourier
space). This implies that unN and umM are also orthogonal. In contrast, unN and unM are not necessarily orthogonal, which
will have several consequences as discussed below.

By replacing the expression for u given by Eqs. (195) and (197) in the Navier–Stokes equations, we find that amplitude
UnN has the form

dtUnN =


p,P


q,Q

RnNpPqQUpPUqQ − νk2nUnN . (199)

where non-linear interactions are given by

RnNpPqQ =


unN ·


(upP · ∇)uqQ


dr. (200)

From Eq. (200) we obtain the exact relations

RqQpPnN = −RnNpPqQ , RpPqQnN = −RnNqQpP , RpPnNqQ = −RqQnNpP , (201)

which imply energy conservation, where energy is defined as


n,N U2
nN/2.We note that this definition of energy is not exact

due to the fact that the unN functions are not orthogonal with respect to N (Frik, 1983). Such a hierarchical model has been
used to study enstrophy intermittency in 2D turbulence (Aurell et al., 1994b).

Now the aim is to reduce Eq. (199) to a shell model of the form

dtUn =


p,q

TnpqUpUq − νk2nUn, (202)

where the coefficients Tnpq need to be defined.

6 For convenience, and in this section only, N denotes the second integer and not the maximum number of shells.
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Table 2
Numerical values of the T0pq coefficients (Frik, 1983).

q \ p −4 −3 −2 −1 0 1 2 3

4 0.155
3 0.242 0
2 0.431 0
1 −0.0088 −0.0257 −0.0796 −0.269 0 0
0 0 0 0 0 0
1 0.0032 0.0096 0.0269 0
2

We introduce the vectors Rnpq, which we assume, as in Eq. (201), satisfy

Rqpn = −Rnpq, Rpqn = −Rnqp, Rpnq = −Rqnp. (203)

Their moduli are defined to be the root-mean-square value of RnNpPqQ , calculated for all possible positions of any three
interacting vortices nN , pP and qQ ,

|Rnpq|
2

=

 
R2
nNpPqQ drpPdrqQ . (204)

Frik (1983) introduced the correlation between all triads of vortices belonging to shells n, p and q

cos θnpq =

 
RnNpPqQRnNqQpPdrpPdrqQ

|Rnpq|
2|Rnqp|

2
, (205)

and found that θnpq + θqnp + θpqn = 2π , and θnqp + θqpn + θpnq = 2π . Together with relation (203) this shows that the six
vectors Rnpq,Rnqp,Rpnq,Rpqn,Rqpn,Rqnp are coplanar. The angles θijk uniquely define the mutual positions of these vectors,
but not their absolute positions as the set of vectors can be rotated by any angle. This degree of freedom corresponds to
some arbitrary coefficient that will be set to unity after renormalization of the equations.

Now we define the coefficients Tnpq as

Tnpq = (e · Rnpq + e · Rnqp), (206)

where e is a unit vector. To determine the direction of e, Frik (1983) considered enstrophy conservation, relevant to 2D
turbulence. From the enstrophy equation he introduced the non-linear interactions

SnNpPqQ =


ωnN(upP∇)ωqQ dr, (207)

and the six vectors Snpq, Snqp, Spnq, Spqn, Sqpn, Sqnp. The S-vectors are found to be coplanar with the R-vectors and the Tnpq
coefficients are given by

Tnpq = (e · Snpq + e · Snqp). (208)

There is, however, only one possible choice for e such that both definitions (206) and (208) give the same value for Tnpq. For
this direction of e, both energy and enstrophy are ideally conserved.

The corresponding shell model has the form

dtUn + νk2nUn =


m>0

[Tn,n−m−1,n−1Un−m−1Un−1 + Tn,n−m,n+1Un−mUn+1 + Tn,n+m,n+m+1Un+mUn+m+1] + Fn. (209)

The T0pq coefficients were directly estimated by Frik (1983) for λ = 2, their numerical values are given in Table 2. The other
Tnpq coefficients can be determined by applying the formula

Tnpq = knT0,p−n,q−n. (210)

In our classification, the shell model (209) is an N2-model. The corresponding function W (X, Y) is given by Eq. (D.1) with
real variables and coefficientsWn(X, Y) = kn


m>0


C1(Xn−m−1Yn−1 − λXn−mYn+1) + C2(Xn−1Yn−m−1 − λm+1Xn+mYn+m+1)

+ C3(Xn+1Yn−m − λmXn+m+1Yn+m)

, (211)

where C1, C2 and C3 depend onm only. Taking λ = 2 and identifying the different terms in Eqs. (209) and (211) we find that
the Tnpq coefficients must satisfy the relation

Tn,n−m,n+1 + 2Tn,n−m−1,n−1 + 2−mTn,n+m,n+m+1 = 0 (212)
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which corresponds to energy conservation. The relation corresponding to enstrophy conservation is

Tn,n−m,n+1 + 2−1Tn,n−m−1,n−1 + 2mTn,n+m,n+m+1 = 0. (213)

Finally, from Eqs. (210), (212) and (213), we have

Tn,n−m,n+1 = knT0,−m,1 (214)

Tn,n−m−1,n−1 = (1 − 2−2m)(2−2m−1
− 2)−1knT0,−m,1 (215)

Tn,n+m,n+m+1 = 3(2−m
− 22+m)−1knT0,−m,1. (216)

Putting m = 1 in Eq. (209) gives an L2-model with local interactions only. Frik (1983) found that such local interactions
provide about 35% of the total energy transfer and 25% of the total enstrophy transfer, showing the relative importance of
non-local transfers.

The generalization of model (209) to MHD 2D turbulence, with conservation of total energy, cross helicity and square of
magnetic potential (Frik, 1984) is given by

dtUn + νk2nUn =


m>0

[Tn,n−m−1,n−1(Un−m−1Un−1 − Bn−m−1Bn−1) + Tn,n−m,n+1(Un−mUn+1 − Bn−mBn+1)

+ Tn,n+m,n+m+1(Un+mUn+m+1 − Bn+mBn+m+1)] + Fn, (217)

dtBn + ηk2nBn =


m>0

[Mn,n−m−1,n−1(Un−m−1Bn−1 − Bn−m−1Un−1) + Mn,n−m,n+1(Un−mBn+1 − Bn−mUn+1)

+Mn,n+m,n+m+1(Un+mBn+m+1 − Bn+mUn+m+1)], (218)

with

Mn,n−m−1,n−1 =
4

1 − 2−2m
Tn,n−m−1,n−1, Mn,n−m,n+1 =

1
4 − 2−2m

Tn,n−m,n+1,

Mn,n+m,n+m+1 =
1

22m(22 − 1)
Tn,n+m,n+m+1.

(219)

The solutions of Eqs. (217)–(218) reproduce the expected properties of 2D MHD turbulence: a direct kinetic energy
cascade and growth of enstrophy. In addition, the magnetic energy does not grow, meaning that a 2D dynamo is impossible.
However, there is an inverse cascade of the square of the potential vector. This implies that the magnetic energy spectrum
becomes steeper in time, with the energy concentrated at the largest scales. The role of non-local interactions was not
studied in this work.

The hierarchical approach above has been applied to various problems: passive scalar in 2D turbulence and 2D turbulent
convection (Frik, 1986), quasi-2D convective turbulence in a thin vertical layer (Barannikov et al., 1988), quasi-2D turbulent
convection in a layer (Aristov and Frik, 1990a,b) or in a rotating system (Aristov and Frik, 1989).

It is worth mentioning the study by Aristov and Frik (1988) in which the hierarchical approach was used to model quasi-
2D turbulent flow in a thin layer of an electrically conducting fluid heated from below. The layer was rotated, between
two solid horizontal boundaries in a vertical applied magnetic field. For strong rotation and a weak magnetic field, the
dimensionless quasi-2D equations for the 2D-fluctuations of the velocity u, magnetic field b and temperature θ are given by

∂tu + (u · ∇)u − (b · ∇)b + (τ · ∇)τ = −∇p + ν∇
2u − µu, (220)

∂tb + (u · ∇)b − (b · ∇)u = η∇
2b, (221)

∂tθ + (u · ∇)θ = κ∇
2θ, (222)

∇ · u = 0, ∇ · b = 0, (223)

where τ =

∂xθ, ∂yθ


is the temperature gradient, µ characterizes the viscous friction at the horizontal boundaries, and

ν, η and κ the viscosity, magnetic and thermal diffusivities. The set of ideal quadratic invariants is then

I1 = ⟨u2
⟩ + ⟨b2

⟩ − ⟨τ2
⟩, I2 = ⟨u · b⟩ − ⟨u · τ⟩, I3 = ⟨a2⟩, I4 = ⟨θ2

⟩, (224)

where a is the magnetic potential. In the limit θ → 0 this set of invariants reduces to total energy, cross helicity and the
square of magnetic potential as expected in 2D MHD turbulence. However, because in its general form Eq. (224) includes
two subtractions in I1 and I2, a variety of scenarios are possible. For example, both ⟨b2

⟩ and ⟨τ2
⟩ may grow simultaneously

without changing I1.
The shell model corresponding to Eqs. (220)–(222) is described by

dtUn =


p,q

Tnpq[UpUq − BpBq + θpθq] − νk2nUn − µUn, (225)
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Fig. 15. Time evolution of kinetic energy (thick-red), magnetic energy (thin-green) and square of temperature gradients (dashed-blue) obtained from the
shell model Eqs. (225)–(227), corresponding to quasi-2D turbulence in a thin rotating layer of conducting fluids, for four different initial conditions and
ideal or non-ideal cases.
Source: Adapted from Aristov and Frik (1988).

dtBn =


p,q

Mnpq[UpBq − BpUq] − ηk2nBn, (226)

dtθn =


p,q

Mnpq[Upθq − θpUq] − κk2nθn. (227)

Some solutions are shown in Fig. 15 for different initial conditions. Only the bottom-right figure corresponds to a non-
ideal case. The three others correspond to ν = η = κ = 0. If at t = 0 the temperature gradient is weak, top-left, the
sum of kinetic and magnetic energies is constant, as it should be in ideal MHD. If at t = 0 both the magnetic energy and
temperature gradients are weak, top-right, they can grow without limit. If at t = 0 the magnetic field is weak, bottom-left,
the kinetic energy and temperature gradients grow simultaneously. On bottom-right, it is shown that even with non-zero
dissipations, growth of the three quantities is still possible. In this case the 2D anti-dynamo theorem does not apply. Because
the temperature gradient cannot reach an infinite value, growth will eventually saturate.

Originally Zimin (1981) introduced the hierarchical model for 3D HD turbulence, with

u(t, x, y, z) =


nNν

UnNν(t)unNν(r − rnN), (228)

where the third index ν defines the orientation in space of the vortex, and can be equal to 1, 2 or 3, denoting one of the three
perpendicular directions of the 3D space. The shells are now defined in 3D Fourier space, and the base of function in the 3D
space is

unNν(r − rnN) = C(s × eν) (sin 2s − 2s cos 2s − sin s + s cos s) /s3. (229)

The density of vortices now increases with n as 23n.
From this base of function a new shell model for 3D turbulence can be constructed following the approach of Frik

(1983) but with helicity as a second ideal invariant. To our knowledge this remains to be done. An attempt has been made
by Shaidurova (1987) but enstrophy was still used as the second ideal invariant.

Also using the base of function given by Eq. (229), Zimin and Hussain (1995) obtained an N1-model given by

dtUn + νk2nUn = kn

m≥−1

Λm[λ−5m/2Un−mUn − λ−3m/2U2
n+m] (230)

where Λ−1 = 0.387, Λm≥1 = 2.19 and Λ0 = 0. Only kinetic energy is conserved in this model. However, one remarkable
feature is that the infra-red scaling laws are well reproduced. A generalization of this model to MHD is proposed in
Section 3.4.

3.3.2. Non-local version of the Sabra model
The non-local version of the Sabra model for 3D MHD turbulence has been introduced by Plunian and Stepanov (2007).

It corresponds to

Wn(X, Y) =
ikn
2


m≥1

Λm

λm(1 + λ)(X∗

n+mYn+m+1 + Xn+m+1Y ∗

n+m) + (−1)m+1(X∗

n+mYn+m+1 − Xn+m+1Y ∗

n+m)



32 F. Plunian et al. / Physics Reports 523 (2013) 1–60

− λ(1 − (−λ)−m−1)(X∗

n−mYn+1 + Xn+1Y ∗

n−m) + (X∗

n−mYn+1 − Xn+1Y ∗

n−m)

+ λ−1(1 − (−λ)−m)(Xn−1Yn−m−1 + Xn−m−1Yn−1) + (Xn−1Yn−m−1 − Xn−m−1Yn−1)

, (231)

leading to the system

dtUn = i

m≥1

Λm

(kn+m + kn+m+1)(U∗

n+mUn+m+1 − B∗

n+mBn+m+1) − (kn+1 + (−1)mkn−m)(U∗

n−mUn+1 − B∗

n−mBn+1)

+ (kn−1 + (−1)m+1kn−m−1)(Un−1Un−m−1 − Bn−1Bn−m−1)

− νk2nUn + Fn, (232)

dtBn = ikn

m≥1

Λm

(−1)m+1(U∗

n+mBn+m+1 − B∗

n+mUn+m+1)

+U∗

n−mBn+1 − B∗

n−mUn+1 + Un−1Bn−m−1 − Bn−1Un−m−1

− ηk2nBn, (233)

whereΛm is now some arbitrary parameter depending onm. This model conserves total energy, cross helicity andmagnetic
helicity, the latter being defined by Eq. (192). The choice of interacting triads is not arbitrary and corresponds to all possible
triads (Section 3.1.2).

The Sabra model for 3D MHD turbulence corresponds tom = 1 and Λ1 = (λ + λ2)−1,

dtUn = ikn


U∗

n+1Un+2 − B∗

n+1Bn+2 −
λ − 1
λ2

(U∗

n−1Un+1 − B∗

n−1Bn+1)

+
1
λ3

(Un−1Un−2 − Bn−1Bn−2)


− νk2nUn + Fn, (234)

dtBn =
ikn

λ + λ2


U∗

n+1Bn+2 − B∗

n+1Un+2 + U∗

n−1Bn+1 − B∗

n−1Un+1 + Un−1Bn−2 − Bn−1Un−2

− ηk2nBn. (235)

For B = 0, the HD model introduced by L’vov et al. (1998) is refound. It conserves kinetic energy and helicity, the latter
being defined by Eq. (184).

In contrast with its local version, the system of Eqs. (232)–(233) is not uniquely defined as it depends on the parameter
Λm. Plunian and Stepanov (2007) suggested that Λm = λγ (m−1)/λ(λ + 1) with γ < 0. The Sabra model corresponds to
γ → −∞.

Assuming isotropy, Plunian and Stepanov (2007) estimated γ that accounts for the number of all possible triads between
three shells. They found γ = −7/2 for N2-models and γ = −5/2 for N1-models, the latter being consistent with the helical
model derived by Zimin and Hussain (1995).

For free decaying turbulence, Plunian and Stepanov (2007) found that γ does not significantly change the slopes of the
kinetic andmagnetic energy spectra in the inertial range, both comparewell with Kolmogorov scaling |Un|

2
∝ |Bn|

2
∝ k−2/3

n
(corresponding to a k−5/3 energy density spectrum). On the other hand, γ has a strong effect on the slopes of the infra-red
spectrum, as shown in Fig. 16. It corresponds to the following dependency

U2
n ∝ k−2γ

n , B2
n ∝ k−2γ+2

n . (236)

Different values of γ may account for the presence of different infrared mechanisms in real 3D HD and MHD turbulence.
We note that γ = −5/2 is in agreement with the arguments of Batchelor and Townsend (1948) for HD, and Pouquet
et al. (1976) for MHD. However, other values of γ could also be satisfactory (Saffman, 1967; Lesieur, 1997; Fournier et al.,
1982). We note that the Sabra model given by Eqs. (234)–(235), cannot give a realistic slope for the infra-red spectrum,
emphasizing the importance of including non-local interactions. Finally, for forced MHD turbulence (dynamo action) there
are strong phenomenological arguments for taking γ = −1 as explained in Section 4.1.1.

3.4. Helical models

The kinetic and magnetic helicities given by Eqs. (184) and (192), have the particularity of being strongly correlated to,
respectively, the kinetic andmagnetic energies. In particular, as noted by Biferale and Kerr (1995) for the HD case, the kinetic
helicity ‘‘presents an asymmetry between odd and even shells that does not have any counterpart in physical flows’’. The
same remark applies to magnetic helicity. In order to circumvent this problem, Biferale and Kerr (1995) introduced another
type of shell model based on the decomposition into helical modes in the manner described byWaleffe (1992). At about the
same time, Zimin and Hussain (1995) also introduced a helical, non-local shell model. The generalization of these helical
shell models to MHD is given below.

In order to account for the helical decomposition of the velocity and themagnetic field given in Eqs. (86)–(87), we double
the number of variables per shell, U+

n ,U−
n , B+

n and B−
n . The kinetic and magnetic energies, the cross helicity, and the kinetic
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Fig. 16. Free decaying MHD turbulence for ν = 10−6 and Pm = 1, with (top-left) local model, (top-right) γ = −2.5, (bottom-left) γ = −1.5 and
(bottom-right) γ = −1. Gray corresponds to the kinetic energy, red to the magnetic energy. Increasing time is indicated with spots of lighter intensities.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Plunian and Stepanov (2007).

and magnetic helicities are now

EU
=

1
2


n


|U+

n |
2
+ |U−

n |
2 (237)

EB
=

1
2


n


|B+

n |
2
+ |B−

n |
2 (238)

HC
=

1
2


n


U+

n B+

n
∗
+ U−

n B−

n
∗
+ c.c.


(239)

HU
=


n

kn

|U+

n |
2
− |U−

n |
2 (240)

HB
=


n

k−1
n


|B+

n |
2
− |B−

n |
2 . (241)

The enstrophy and square potential become

Ξ =
1
2


n

k2n

|U+

n |
2
+ |U−

n |
2 (242)

A =
1
2


n

k−2
n


|B+

n |
2
+ |B−

n |
2 . (243)

The general formalism derived in Section 3.1.2 and given by Eqs. (143)–(144) still applies, defining any vector X as

X = (X+

1 , X+

2 , . . . , X+

N , X−

1 , X−

2 , . . . , X−

N ). (244)

Applying this definition to U, B and W, we can rewrite Eqs. (143)–(144) in the form

dtU±

n = W±

n (U,U) − W±

n (B, B) − νk2nU
±

n + F±

n , (245)

dtB±

n = W±

n (U, B) − W±

n (B,U) − ηk2nB
±

n , (246)

and Eq. (145) as
n

W+

n (X, Y)Y+

n
∗
+ W−

n (X, Y)Y−

n
∗
+ c.c. = 0. (247)
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In principle shell-to-shell andmode-to-mode energy transfer and flux can also be obtained using the definition ofX given
in Eq. (244). Transfer involves not only the velocity and the magnetic field but also both helical modes. Instead of just four,
they are now sixteen possible transfers, U±-to-U±, U±-to-B±, B±-to-U± and B±-to-B±.

We note that in each shell n, only the helical modes U±
n and B±

n are defined, from which the energies and helicities are
calculated. However if U±

n and B±
n are taken to be real, then new complex variables Un and Bn can be defined

Un =

U+

n eiπ/4
+ U−

n e−iπ/4 Bn =

B+

n e
iπ/4

+ B−

n e
−iπ/4 , (248)

with energies and helicities

EU
=

1
2


n

|Un|
2 (249)

EB
=

1
2


n

|Bn|
2 (250)

HC
=

1
2


n


UnBn

∗
+ c.c.


(251)

HU
=

i
2


n

kn

U∗

n
2
− U2

n


(252)

HB
=

i
2


n

k−1
n


B∗

n
2
− B2

n


, (253)

enstrophy and square potential

Ξ =
1
2


n

k2n|Un|
2 (254)

A =
1
2


n

k−2
n |Bn|

2. (255)

The equivalence between Eqs. (237)–(241) and Eqs. (242)–(243) is straightforward.
We call the H1-model a first-neighbor model for which magnetic helicity as defined in Eq. (241) or (253) is conserved.

Similarlywe call the H2-model a two-first neighbormodelwith the same quadratic invariant. In Section 3.4.1we present the
general expression of H1-models derived in terms of complex variables Un and Bn (real U±

n and B±
n ). In Section 3.4.2 several

H2-models in terms of complex variables U±
n and B±

n are presented.

3.4.1. H1-models (helical, two feet in the same shell)
A helical version of the HD model elaborated by Zimin and Hussain (1995) was first used to study 3D HD turbulence

by Melander (1997) (see also Melander and Fabijonas (2002, 2003, 2006)). The model is based on real variables U+
n and U−

n
and is both helical and non-local. Equations were given for variables Sn = (U+

n + U−
n ) and Dn = (U+

n − U−
n ) and after

appropriate renormalization we obtain

dtSn = kn

m≥−1
m≠0

Λm

SnSn−m − λ−mDnDn−m − λmS2n+m + λmD2

n+m


− νk2nSn + F S

n ,

dtDn = kn

m≥−1
m≠0

Λm

λ−mSnDn−m − DnSn−m


− νk2nDn + FD

n (256)

whereΛm is again an arbitrary parameter depending onm as inmodel (231). Using a hierarchical approach, Zimin found that
Λm = λ−5|m+1/2|/2. However, any other function of m does not change the conservation of kinetic energy and helicity. This
modelwas solvedmainly for free decaying turbulence (F S

n = FD
n = 0).Melander (1997) found that any solution starting from

apoint close to the Kolmogorov stablemanifold in phase space,misses equilibriumand enters a chaotic regime characterized
by an exponential growth in helicity as the solution diverges from the equilibrium. Erratic fluctuations of helicity and their
dissipation imply intermittent energy decay. Early enstrophy divergencewas studied byMelander and Fabijonas (2002) and
the transient laws were investigated by Melander and Fabijonas (2003).

With

Un = iSn ± Dn, (257)
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Stepanov et al. (2009) rewrote the local version of model (256) in a complex form. After appropriate renormalization

dtUn + νk2nUn = ikn[U2
n−1 + U∗

n−1
2
+ λU∗

n (Un+1 − U∗

n+1) − λ2Un(Un+1 + U∗

n+1)]

− cikn[Un(Un−1 + U∗

n−1) + λU∗

n (U∗

n−1 − Un−1) − λ2(U2
n+1 + U∗

n+1
2
)] + Fn, (258)

where c is a free parameter. The kinetic energy and helicity defined by Eqs. (249) and (252) are ideally conserved whatever
the value of c. Stepanov et al. (2009) chose c = λ−5/2 in order that model (258) becomes equivalent to the local part of
the Zimin and Hussain (1995) model. In terms of Sn and Dn, the kinetic energy and helicity are given by

EU
=

1
2


n

(S2n + D2
n) (259)

HU
= ±2


n

knSnDn. (260)

The version of model (258) corresponding to 3D MHD turbulence is given by (Mizeva et al., 2009)

Wn(X, Y) = ikn


(Xn−1Yn−1 + X∗

n−1Y
∗

n−1) − λX∗

n Y
∗

n+1 −
λ2

2
(XnYn+1 + Xn+1Yn)

−
λ

2
(X∗

n−1Yn−1 − Xn−1Y ∗

n−1) + λX∗

n Yn+1 −
λ2

2
(XnY ∗

n+1 + X∗

n+1Yn)


− ickn


1
2
(Xn−1Yn + XnYn−1) + λX∗

n Y
∗

n−1 − λ2(Xn+1Yn+1 + X∗

n+1Y
∗

n+1)

+
1
2
(XnY ∗

n−1 + X∗

n−1Yn) − λX∗

n Yn−1 +
λ

2
(X∗

n+1Yn+1 − Xn+1Y ∗

n+1)


, (261)

forwhich themagnetic helicity (253) is conserved in addition to total energy and cross helicity. Thismodelwas used to study
MHD helical turbulence (Mizeva et al., 2009; Frick and Stepanov, 2010), including global rotation and an external magnetic
field (Plunian and Stepanov, 2010). The results will be detailed in Section 4.4.1.

3.4.2. H2-models (helical, two feet in two neighboring shells, third foot in a smaller shell)
Expanding the velocity Fourier modes onto a base of polarized helical waves as described in Section 2.2.5, Biferale and

Kerr (1995) introduced four independent helical shell models for 3D HD turbulence. Following Lessinnes et al. (2011) these
can be written in a compact form

dtU±

n + νk2nU
±

n = ikn

(s1λ − s2λ2)U±s1

n+1U
±s2
n+2 + (s2λ − λ−1)U±s1

n−1U
±s1s2
n+1 + (λ−2

− s1λ−1)U±s2
n−2U

±s1s2
n−1

∗

+ F±

n (262)

whereU±
n are complex variables. The four independentmodels correspond to (s1, s2) ∈ {(1, 1), (−1, 1), (1, −1), (−1, −1)}.

The kinetic energy and helicity defined by Eqs. (237) and (240) are ideally conserved.

• For (s1, s2) = (−1, 1) Eq. (262) consists of two independent sets of equations for U = (U+

1 ,U−

2 ,U+

3 , . . . ,U+

2n−1,U
−

2n)

and U = (U−

1 ,U+

2 ,U−

3 , . . . ,U−

2n−1,U
+

2n), each of which corresponds to the GOY model given by Eq. (182) with ε =

1 − λ−1 (Biferale and Kerr, 1995).
• For (s1, s2) = (1, 1) Eq. (262) consists of two independent sets of equations for U = (U+

1 ,U+

2 , . . . ,U+

2n−1,U
+

2n) and
U = (U−

1 ,U−

2 , . . . ,U−

2n−1,U
−

2n) each of which conserving separately a positive-definite quantity. This led Benzi et al.
(1996a) to conclude that such a model ‘‘is equivalent to two uncorrelated GOY models for 2D turbulence’’.

• For (s1, s2) = (−1, −1) after Benzi et al. (1996a) the model ‘‘may present a significant backward energy transfer, which
leads to possibly strong deviations from the Kolmogorov scaling’’.

• For (s1, s2) = (1, −1) the model shows intermittent statistics in excellent agreement with the Navier–Stokes equations
(Benzi et al., 1996a). It is given by

dtU±

n + νk2nU
±

n = i

kn+1(1 + λ)U±

n+1U
∓

n+2 − kn(λ + λ−1)U±

n−1U
∓

n+1 + kn−1(λ
−1

− 1)U∓

n−2U
∓

n−1

∗
+ F±

n . (263)

Another version of this model has also been formulated by Chen et al. (2003), in the spirit of the Sabra model

dtU±

n + νk2nU
±

n = i

kn+1(1 + λ)(U±

n+1)
∗U∓

n+2 − kn(λ + λ−1)(U±

n−1)
∗U∓

n+1 − kn−1(λ
−1

− 1)U∓

n−2U
∓

n−1


+ F±

n . (264)

The interest of helical rather than non-helical models has been clearly demonstrated by the study of the helicity flux in 3D
HD turbulence. Using the GOY model, Ditlevsen and Giuliani (2001a,b) found a range of scales, within the inertial range, for
which the helicity spectral flux is exponentially divergent in k due to dissipation (see also Ditlevsen (2011)). This implies
that even if the flow is helical at large scales, there is a subdomain of the inertial range for which the flow is non-helical.
This picture contrasts strongly with that arising due to the energy cascade occurring all along the inertial range for which
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dissipation takes place only at scales smaller than the Kolmogorov scale. The physical reason why helicity and energy do
not dissipate on the same scale was not clear until helical models came into being.

First, using both a H1 (Stepanov et al., 2009) and H2 (Chen et al., 2003) models, the helicity spectral flux has been found
to be constant all along the inertial range without the divergence in k previously found with the GOY model. Apparently
both types of model, non-helical and helical, were giving contradictory results.

Then using an H2-model corresponding to (s1, s2) = (1, −1), Lessinnes et al. (2011) calculated the helicity spectral flux
for both + and − helical modes and found a subdomain of the inertial range in which both helicity flux spectra diverge in
k due to dissipation in agreement with the GOY model. However, as both fluxes have opposite signs they also found that
their sum, which is the flux of total helicity, has a constant spectrum all along the inertial range. In the GOY model two
helical modes cannot be present in the same shell (see the case (s1, s2) = (−1, 1) above) and therefore they cannot be
summed. This clearly shows the superiority of helical shell models in dealing with kinetic helicity in 3D HD turbulence, and
presumably with magnetic helicity in 3D MHD turbulence.

The helical shell model of MHD turbulence elaborated by Lessinnes et al. (2009b) is a linear combination of the four
previous submodels (s1, s2) = (±1, ±1), and includes an estimate of the weighting to be given to each submodel. In fact
it is not clear whether such a combination is appropriate, as only the model for (s1, s2) = (1, −1) gives a relevant helicity
spectral flux for 3D HD turbulence. Instead it might be more appropriate to consider the MHD version of models (263) or
(264). Their respective expressions in terms of W±(X, Y) are

W±

n (X, Y) =
i
2


kn+1(1 + λ)(X±

n+1Y
∓

n+2 + Y±

n+1X
∓

n+2) − λ−1kn+1(X±

n+1Y
∓

n+2 − Y±

n+1X
∓

n+2)

− kn(λ−1
+ λ)(X±

n−1Y
∓

n+1 + Y±

n−1X
∓

n+1) + kn(X±

n−1Y
∓

n+1 − Y±

n−1X
∓

n+1)

+ kn−1(λ
−1

− 1)(X∓

n−2Y
∓

n−1 + Y∓

n−2X
∓

n−1) + λkn−1(X∓

n−2Y
∓

n−1 − Y∓

n−2X
∓

n−1)
∗

, (265)

and W±

n (X, Y) =
i
2


kn+1(1 + λ)(X±∗

n+1Y
∓

n+2 + Y±∗

n+1X
∓

n+2) − λ−1kn+1(X±∗

n+1Y
∓
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∓
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n+1) + kn(X±∗

n−1Y
∓
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n−1X
∓

n+1)

− kn−1(λ
−1

− 1)(X∓

n−2Y
∓

n−1 + Y∓

n−2X
∓

n−1) − λkn−1(X∓

n−2Y
∓

n−1 − Y∓

n−2X
∓

n−1)

. (266)

In both models total energy, cross helicity and magnetic helicity are ideally conserved.

4. Applications of MHD shell models

With the exception of models (265) and (266) which are introduced here for the first time, the other shell models
introduced in Section 3 have been used to investigate the statistical properties of forced and free-decaying MHD turbulence
(Sections 4.1 and 4.2). They have also been the starting point for more complex models, like multi-scale dynamo models,
Alfén-wave models or Hall-effect models (Sections 4.3–4.5).

4.1. Forced MHD turbulence

4.1.1. Forcing
In forced MHD turbulence, choosing an appropriate forcing F is of course essential. It is generally applied at the largest

scales of the system. The two main features of a forcing are its time dependency and the range of scales over which it is
applied.

With a stationary complex forcing F applied on one scale, the injection rate of two real quantities, e.g. energy ϵ and
cross helicity χ , can be controlled. However, with such a stationary forcing the solutions of Eqs. (119)–(120) may reach an
unphysical supercorrelated state Un = ±Bn, with no fluxes and no inertial ranges (Giuliani and Carbone, 1998; Frick et al.,
2000). Instead using a forcing Fn = fneiφn(t), where φn(t) is a random phase and fn is real, leads to long lasting dynamics
of U and B. However, using such random phase, the injection rate of only one quantity instead of two is then controlled.
For example, taking φn(t) constant during time interval tc , but changing randomly from one time interval to the next, the
injection rate of energy becomes ϵ ≈ f 2n tc (Plunian and Stepanov, 2007, 2010) and the cross helicity injection is not controlled
anymore. In order to control the injection rate of two quantities again, the forcing must be split between two neighboring
scales (Mizeva et al., 2009). In that case the forcing satisfies the following set of equations

1
2

nF+1
n=nF

U∗

n Fn + UnF∗

n = ϵ, (267)

1
2

nF+1
n=nF

B∗

nFn + BnF∗

n = χ. (268)
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Fig. 17. Left panel: total energy of stationary forced MHD turbulence versus the relative cross helicity injection rate χ/ϵ. The time evolution of energy is
shown in the inset, for χ = 0 (thick line), χ = 0.3 (gray line), and χ = 0.6 (thin line). Right panel: total energy spectrum normalized by k−2/3 for three
different injection rates of cross helicity. The straight line corresponds to E(k) ∝ k−1.9 .
Source: Adapted from Mizeva et al. (2009).
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Fig. 18. Energy, cross helicity, magnetic helicity spectra (left panel) and fluxes (right panel) of forced MHD turbulence with constant injected helicities
(ϵ = 1, χ = 0.3, ξ = 0.4).

Mizeva et al. (2009) used their helical shell model given in Eq. (261) with Pm = 1 to study the influence of cross helicity
on MHD turbulence. They found that the total energy of the system increases with the ratio χ/ϵ, following the scaling
law E ∝ (1 − χ/ϵ)−4/3, as indicated by the full curve in Fig. 17 (left panel). This corresponds to an increase in the non-
linear transfer time tNL by a factor χ . In other words, the energy transfer in the inertial range is depleted, implying energy
accumulation in the large scales, and a steeper spectrum as shown in Fig. 17 (right panel). In the limit χ/ϵ → 1 the velocity
andmagnetic fields are correlated, the non-linear terms in theMHD equations are canceled, and the energy cascade transfer
is blocked.

One may also want to control the injection rate of kinetic helicity. Depending on the model used this might require an
additional forcing shell (Stepanov and Plunian, 2006) or forcing on two different helical modes (Lessinnes et al., 2009b).

One could also envisage applying some forcing G in the time evolution equation for B. Suchmagnetic forcing is naturally
implemented in multi-scale dynamo models to account for the back-reaction of the large-scale fields onto small-scale
turbulence (Frick et al., 2006; Nigro and Veltri, 2011), andwill be detailed in Section 4.3. Note thatmagnetic forcing can occur
without injecting magnetic energy. Let us take the example of constant injection rates for kinetic energy ϵ, cross helicity χ
and magnetic-helicity ξ , in the absence of magnetic energy injection. Consequently we can take F and G to be constant in
time (no random phase) within shell nF . With the magnetic helicity defined by Eq. (253), FnF and GnF must satisfy

1
2


U∗

nF FnF + UnF F
∗

nF


= ϵ, (269)

B∗

nFGnF + BnFG
∗

nF = 0, (270)

1
2


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nF FnF + BnF F
∗

nF + U∗

nFGnF + UnFG
∗

nF


= χ, (271)

ik−1
nF


B∗

nFG
∗

nF − BnFGnF


= ξ . (272)

The results obtained using such forcing applied at knF = 1 are given in Fig. 18. An inverse magnetic helicity cascade is found
corresponding to a negative flux of magnetic helicity for k < knF (right panel).
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Fig. 19. Comparison of the dynamo threshold Rmc versus Re, obtained from the N2-model given by Eqs. (232)–(233) with different degrees of non-locality
(the three curves) and from a DNS shown by the diamonds (Iskakov et al., 2007).
Source: From Buchlin (2011).

4.1.2. Small-scale dynamo action
We speak of dynamo action when the magnetic energy is sustained by the motion of an electroconducting fluid. For the

dynamo to work the magnetic Reynolds number, e.g. at the forcing scale of the system, must be higher than some threshold
value Rmc . Experiments and simulations show that Rmc depends on the presence of amean flow and its characteristics, such
as geometry and time dependency (Peyrot et al., 2007, 2008; Ponty and Plunian, 2011), the electromagnetic boundaries,
such as conductivity and permeability (Frick et al., 2002; Dobler et al., 2003; Avalos-Zuniga et al., 2003; Avalos-Zuniga and
Plunian, 2005), the presence of an external magnetic field, and global rotation.

The dynamo threshold Rmc can also be calculated assuming that dynamo action is produced only by the turbulence. Then
dynamo is reached only if a sufficient amount of power ϵc is injected into the fluid, corresponding to Rmc = ϵ

1/3
c l4/3F /η. In

Fig. 19 the dynamo threshold Rmc is plotted versus Re (Buchlin, 2011). The curves were obtained using the N2-model given
by Eqs. (232)–(233) and three degrees of non-locality: local γ = −∞ (solid line), weakly non-local γ = −5/2 (dashed line)
and strongly non-local γ = −1 (dotted line), where the parameter γ is defined in Section 3.3.2. The results are similar to
the ones obtained by Stepanov et al. (2006) using a 3D MHD GOY model, suggesting that the results are sensitive neither to
the model (GOY or Sabra) nor to non-locality. The diamonds correspond to Rmc obtained from DNS (Iskakov et al., 2007).
The overall picture is that the dynamo threshold first increases with Re, as found from DNS by Schekochihin et al. (2004),
and then decreases to reach a plateau for Re ≥ 104. Similar results were obtained by Ponty et al. (2005) using Large Eddy
Simulation techniques.

Using a helical shell model derived from a combination of the four H2-models given by Eq. (262), Lessinnes et al. (2009b)
compared the effect of maximum helical and non-helical forcing. They found that the dynamo threshold is lowered by at
least a factor 1.5 when using a maximum helical forcing.

Starting with a statistically stationary turbulent flow, the time evolution of the magnetic energy for Rm > Rmc can be
split in two regimes, the kinematic regime duringwhich themagnetic energy grows exponentially, and the saturated regime
starting when the magnetic energy reaches some statistical stationary level. Other dynamics like on-off intermittency or
chaotic reversals, which involve large-scale fields, are not capturedwith shell models unless large-scale equations are added
(see Section 4.3). In Fig. 20, two examples are shown for Pm ≪ 1 (left-panel) and Pm ≫ 1 (right-panel), and Rm ≫ Rmc
in both cases. The magnetic energy spectrum (in red) grows with time. The end of the kinematic regime corresponds to the
point at which the flow becomes sensitive to the magnetic field via the Lorentz forces. For Pm ≪ 1 (left-panel), a depletion
of the kinetic energy spectrum occurs due to the equipartition between magnetic and kinetic energies. A significant part
of the injected power ϵ is then lost through magnetic dissipation, explaining why the viscous scale lν becomes larger (kν

becomes smaller). For Pm ≫ 1 (right-panel) refilling of the kinetic energy spectrum occurs in a range of scales between
lη and lν , due to direct energy transfer from magnetic to kinetic. The results of Fig. 20 have been obtained with, again, the
N2-model given by Eqs. (232)–(233), with γ = −5/2 for Pm = 10−3, and γ = −1 for Pm = 104.

For Pm ≪ 1 the results are consistent with dynamo action occurring on a scale k−1
kin of the same order of magnitude as

the magnetic dissipation scale k−1
η , and a kinematic growth rate Γkin such that

Γkin ∝ ϵ1/2η−1/2, kkin ≈ kη ∝ ϵ1/4η−3/4. (273)

This corresponds to the dynamo action being produced by local energy transfers, the main physical mechanism being the
action of flow shear against magnetic dissipation. This is also consistent with fast and small-scale kinematic dynamo ac-
tion (Childress and Gilbert, 1995). Taking other values of γ ∈ [−∞, −0.5] does not significantly change the results (Plunian
and Stepanov, 2007).

For Pm ≫ 1 the parameter γ is taken to be equal to −1 in order to have dynamo action occurring at the viscous scale
kkin ≈ kν , where the flow shear ismaximum (Schekochihin et al., 2002, 2004). The kinematic regime is then characterized by

Γkin = kνu(kν) ∝ ϵ1/2ν−1/2, kkin ≈ kν ∝ ϵ1/4ν−3/4. (274)

The model is non-local and the kinematic dynamo is again fast and small-scale.
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Fig. 20. Kinetic (black) and magnetic (red) energy spectra at different times for Pm = 10−3 (left-panel) and Pm = 104 (right-panel). The time interval
between two samples is constant. Along time, the curve evolution is given by the arrows. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
Source: Adapted from Stepanov and Plunian (2008).
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Fig. 21. Top panel: time series for the kinetic energy (solid line) and the magnetic energy (dashed line) showing the dynamo evolving to a saturated
state (ν = η = 10−6). Bottom panel: time series for the kinetic energy (solid line), the magnetic energy (dashed line) and the energy of the passive field
(dot-dashed line).
Source: Adapted from Cattaneo and Tobias (2009).

The transient regime leading towards saturation has also been studied in detail for Pm ≪ 1 and Pm ≫ 1. An inverse
cascade ofmagnetic energy occurs towards large scales. In the saturated state the energy ratio ofmagnetic to kinetic is found
to be larger than unity (about 1.5). Such super-equipartition is spread over the whole inertial range.

In such a saturated state, characterized by a statistical stationarity for both kinetic and magnetic energies, the time-
average of the growth rate of the magnetic energy is thus equal to zero. Does it imply that the saturated flow is unable
to produce dynamo action anymore and can just compensating for dissipation? To investigate this question Cattaneo and
Tobias (2009) introduced a passive vector c, satisfying a third equation identical to the induction equation:

∂t − η∇
2 c = −(u · ∇)c + (c · ∇)u, ∇ · c = 0. (275)

Here the vector c is passive in the sense that it does not back react onto the flow. In other words, the system of Eqs. (1)–(2)
remains unchanged. Cattaneo and Tobias (2009) solved the problem for Pm = 1 using two approaches, a DNS and the
MHD GOY model given by Eqs. (190)–(191). Both calculations lead to the same conclusion summarized in Fig. 21 for the
GOY results. After a saturated regime has been reached (top figure) the additional Eq. (275) is switched on. The passive
vector energy is found to grow exponentially (bottom), showing that the saturated flow keeps its small-scale dynamo
characteristics, presumably due to its chaotic dynamics.

Using again theMHDGOYmodel Lessinnes et al. (2009a) calculated a few of the fluxes introduced in Section 3.1.3 for the
saturated regime. These are shown in Fig. 22 for ν = 10−9 and Pm = 10−3, together with the kinetic, magnetic and total
energy spectra. Rewriting Eqs. (165)–(166) for n > nF , in the form

dtEU<

n + ΠU<

all = −ν

n
i=1

k2i U
2
i + ϵ, (276)

dtEB<

n + ΠB<

all = −η

n
i=1

k2i B
2
i , (277)
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Fig. 22. Left panel: kinetic, magnetic and total energy spectra. Right panel: energy fluxes versus k.
Source: Adapted from Lessinnes et al. (2009a).

we define

ΠU<

all = ΠU<

U> + ΠU<

B< + ΠU<

B> , (278)

ΠB<

all = ΠB<

U< + ΠB<

U> + ΠB<

B> , (279)

Π<
> = ΠU<

all + ΠB<

all , (280)

ΠU<

B = ΠU<

B< + ΠU<

B> . (281)
We stress again that fluxes are always n-dependent though not explicitly appearing in the above notation (see Section 3.1.3).
The blue dot-dashed curve representing ΠU<

all in the right panel of Fig. 22 is constant in the range k ∈ [kF , kν ] with
log10 kF = 1 and log10 kν ≈ 6 where ΠU<

all = ϵ ≈ 0.98. Such a constant value necessarily leads to a Kolmogorov spectral
slope, as shown in the left panel of Fig. 22.7 For scales smaller than the viscous scale (k > kν), ΠU<

all drops by a value
equal to the viscous dissipation ϵν ≈ 0.34, leading to ΠU<

all = ϵ − ϵν = ϵη ≈ 0.64. Note that the curves given by
the blue-dashed and blue-dotted lines are symmetric about a horizontal line for k ∈ [kF , kν ], implying that the relation
ΠU<

all = ΠU<

U> + ΠU<

B is indeed satisfied in this range of scales. The blue-solid curve is above the blue-dot-dashed curve for
k ∈ [kF , kη], with log10 kη ≈ 3.5. This indicates that ΠB<

all > 0 for this range of scales. Finally, the growth in the green-solid
curve for k ∈ [kF , kη] with ΠU<

B< > 0 shows that dynamo action occurs at all scales in this range.
As depicted in Fig. 22 the power ϵ injected into the flow at the forcing scale is dissipated at smaller scales by Joule and

viscous dissipation, according to
ϵ = ϵη + ϵν . (282)

On the other hand, there is no theoretical argument predicting how ϵ is distributed between ϵη and ϵν . Plunian and Stepanov
(2010) studied this problem for different values of Pm, using the helical shell model given by Eq. (261). In Fig. 23 the ratio
r = ϵη/ϵν versus Pm is plotted for different values of ν and η. For a given value of ν, in the limit Pm → 0, η → +∞ and
dynamo action becomes impossible implying r → 0. For Pm = 1 both kinetic and magnetic spectra are identical, implying
ϵν = ϵη = ϵ/2, and consequently r = 1. For a given ν, there is always an intermediate value of Pm for which r reaches a
maximum. This is related to a super-equipartition state in which the magnetic energy is higher than the kinetic energy at
large scales. For typical values of MHD turbulence, ν < 10−8 and Pm ≈ 10−5, r ≥ 10.

4.2. Free-decaying MHD turbulence

The decay properties of MHD turbulence have important applications in astrophysics. For example, the comparison of
lifetime of a magnetic astrophysical object with the decay time of its magnetic energy can help us decide whether the
magnetic field is of primordial origin, or produced e.g. by dynamo action. In problems of this nature the magnetic helicity is
known to play a crucial role. The energy decay law satisfies E(t) ∝ t−1 or E(t) ∝ t−1/2, depending on whether the magnetic
helicity is respectively zero or maximal (Biskamp andMüller, 1999; Campanelli, 2004; Christensson et al., 2005). By solving
theMHDGOYmodel given by Eqs. (190)–(191), Antonov et al. (2001) and Antonov et al. (2001) found that cross helicity also
plays a crucial role.

Using the helical shell model given by Eq. (261), Frick and Stepanov (2010) explored the combined roles of cross helicity
and magnetic helicity. Taking ν = η = 10−5, they considered a set of 128 different initial conditions, with both kinetic and
magnetic energies concentrated in the first shell n = 0, corresponding to k0 = 1 (EU

0 = EB
0 ≈ 1 and Un>0 = Bn>0 = 0).

A very small amount of magnetic and cross helicities (|HB
0 | < 10−4 and |HC

0 | < 10−4) was injected. In Fig. 24 (left panel)

7 A −2/3 energy spectral slope corresponding to a −5/3 energy density spectral slope.
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Fig. 23. Dissipation ratio versus Pm. The solid lines from right to left correspond to ν = 10−5 , 10−6 , 10−7 , 10−8 . The dashed curves from bottom to top
correspond to η = 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256.
Source: From Plunian and Stepanov (2010).

Fig. 24. Free decay of total energy E (left panel) and normalized cross helicity HC/E (right panel) for Pm = 1. The 128 realizations differ by their initial
conditions.
Source: From Frick and Stepanov (2010).

the total energy versus time is plotted for the 128 initial conditions. At an early stage (t < 30) we see that E(t) ∝ ta,
with a ∈ [−1, −1/2] (dashed lines), in good agreement with the DNS results and theoretical predictions. At a later time
(t > 100) many of the curves decrease with an exponential decay, in accord with pure dissipation. In the right panel of
Fig. 24 the ratio HC/E versus time is plotted. The curves on the left with an exponential decay correspond to the curves on
the right with HC/E → ±1. An HC/E ≈ ±1 corresponds to Un ≈ ±Bn, implying again (see Section 4.1.1) a depletion of
energy transfer in the inertial range and the accumulation of energy in the largest scaleswhere the exponential decay occurs.
Note that such a final state is reached at rather long times (t > 102 to 103), which may explain why this is not observed in
DNS. As shown in Frick and Stepanov (2010), cross helicity is generated at the dissipation scale, and then slowly cascades
backwards towards the large scales. This explains how a maximal cross helicity final state can be generated from aminimal
cross helicity initial state (|HC

0 /E0| < 10−4). Finally, in the left panel of Fig. 24, a few curves correspond to E(t) ∝ t−2 for
t > 100, with a limit HC/E ≠ ±1. The latter was observed previously by Brandenburg et al. (1996) and is presumably
related to the concentration of magnetic helicity, rather than cross helicity, in the largest scales (Frick and Stepanov, 2010).

To complete the study of free-decaying MHD turbulence we have calculated, using the same helical shell model given
by Eq. (261), the kinetic energy, magnetic energy, magnetic helicity and cross helicity spectra obtained at time t = 1000,
with four different combinations of initial conditions: maximal or zero for both cross and magnetic helicities. The results
are presented in Fig. 25 with

(a) (HC/E)t=0 = (HB/E)t=0 = 0, the energy decays and helicities change their sign with k.
(b) (HC/E)t=0 = 0 and (HB/E)t=0 = 1, the magnetic energy cascade is accompanied by a simultaneous inverse cascade of

magnetic helicity towards the largest scales. This leads to the accumulation of energy at the largest scale (the energy
spectra are extended to the left).

(c) (HC/E)t=0 = 1 and (HB/E)t=0 = 0, the cross helicity blocks the energy cascade, leading to steeper spectra.
(d) (HC/E)t=0 = (HB/E)t=0 = 1, both effects are combined with essentially weak non-linear energy transfers.

4.3. Multi-scale dynamos

ManyMHD applications are primarily concernedwith the properties of large-scale quantities, e.g. the chaotic reversals of
the Earth’s dipolar magnetic field, the dynamics of sunspots presumably due to underlying large-scale magnetic structures
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a b

c d

Fig. 25. Spectra of the kinetic energy (blue squares), the magnetic energy (magenta circles), cross helicity (brown triangles), magnetic helicity (green
diamonds) obtained at time t = 1000, from free-decaying MHD turbulence (ν = η = 10−5) and normalized by k−2/3 . Each panel corresponds to different
initial conditions with (a) HC

t=0 = HB
t=0 = 0, (b) HC

t=0 = 0,HB
t=0 = 1, (c) HC

t=0 = 1,HB
t=0 = 0 (d) HC

t=0 = HB
t=0 = 1. Filled (empty) symbols correspond to

positive (negative) values of helicities.

in the convection zone of the Sun and the zonal winds in Jupiter. Because of obvious numerical limitations it is not possible
to solve the equations over all scales, ranging from the smallest dissipation scale to the size of the object itself. This is why
we need amodel for small scales (e.g. a shell model), so that only the large-scale equations remain to be solved (e.g. by DNS).
Such splitting, between large and small scales, makes it crucial to understand to what extent they are linked, namely how
do small-scale effects influence large-scale structures and vice-versa. Beyond numerical issues, this problem is at the heart
of the physical understanding of HD and MHD turbulence.

4.3.1. Reynolds equations for MHD
Both velocity and magnetic fields are split into large-scale and small-scale components

u = u + u′, b = b + b′, (283)

e.g. after applying a large-scale filter. On similarly splitting Eqs. (1)–(2), we find that their large-scale component is descri-
bed by

∂t − ν∇
2u = −(u · ∇)u + (b · ∇)b − (u′ · ∇)u′ + (b′ · ∇)b′ − ∇p + f, (284)

∂t − η∇
2 b = ∇ ×


u × b


+ ∇ ×


u′ × b′


, (285)

with, in addition, ∇ · u = ∇ · b = ∇ · u′
= ∇ · b′

= 0. The effect of MHD turbulence on u is contained in the
terms −(u′ · ∇)u′ + (b′ · ∇)b′, corresponding to the Reynolds–Maxwell stress-tensor Rij = −u′

iu
′

j − b′

ib
′

j . The effect of MHD
turbulence on b is contained in the term ∇ ×


u′ × b′


, where u′ × b′ is the so-called mean electromotive force (Steenbeck

et al., 1966).

4.3.2. Reynolds–Maxwell stress-tensor
The first attempt to estimate the Reynolds–Maxwell stress-tensor using a shell model was made by Geertsema and

Achterberg (1992), in the context of a thin, differentially rotating, accretion disk. A vectorial (instead of scalar) shell model
was introduced. Using a local system of cartesian coordinates (x, y, z) in the radial, azimuthal and vertical (normal to the
disk plane) directions, they introduced three variables per shell for each field, Un = (Ux

n,U
y
n ,U z

n) and Bn = (Bx
n, B

y
n, Bz

n). The
corresponding shell equations become

U̇n = Wn(a,U,U) − Wn(a, B, B) − νk2nUn + Pn


3
2
�Ux

ne
y
− 2� × Un


, (286)
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Fig. 26. Second order structure function versus shell number, from DNS (filled circles) and shell model (empty squares). The straight line indicates a
Kolmogorov slope of −2/3. The two common shells correspond to the filled squares.
Source: From Frick et al. (2002).

Ḃn = Wn(a,U, B) − Wn(a, B,U) − ηk2nBn −
3
2
�Bx

ne
y, (287)

whereWn(a,X, Y) = knC1 [(an · Xn−1)Yn−1 − λ(an+1 · Xn)Yn+1] + knC2 [(an−1 · Xn)Yn−1 − λ(an · Xn+1)Yn+1] (288)

is a vectorial generalization of model (173), and an is a set of arbitrary unit vectors. In Eq. (286), Pn is an analog of the
projection tensor of Eqs. (37)–(38) though here it applies to linear terms only (Geertsema and Achterberg, 1992). The Coriolis
forces −2� × Un are also included. The terms 3

2�Ux
ne

y and −
3
2�Bx

ne
y are the contributions from Keplerian differential

rotation. Numerical solutions show that the turbulent shear-stress


n


Bx
nB

y
n − Ux

nU
y
n

can supply the strong effective

dissipation needed to explain the dynamics of accretion disks as originally suggested by Shakura and Sunyaev (1973).

4.3.3. A subgrid shell model
A subgrid shell model was introduced by Frick et al. (2002) for HD convection in a rotating spherical layer heated from

below, with application to the Earth’s core in mind. The large-scale flow u and temperature θ satisfy

∂tu + (u · ∇)u = −∇p + (ν + νt)∇
2u + f, (289)

∂tθ + u · ∇(θ + θ0) = (κ + κt)∇
2θ, (290)

where f includes the Coriolis and Archimedean forces, and θ0 is the temperature profile prescribed throughout the layer. In
addition, appropriate boundary conditions are applied. The system of Eqs. (289)–(290) is solved by DNS with the resolution
given by the grid size. The effect of subgrid turbulence on the scales larger than the grid sizewill bemodeled by the turbulent
transport coefficients νt and κt . For scales smaller than the grid size the GOY model given by Eq. (182) for ε = 1 − λ−1 (3D
turbulence) is solved. In order to provide the correct linkage between the DNS and the shell model, the DNS kinetic energy
is calculated in different Fourier shells as introduced in Section 2.2.4, except that here the sequence of shells is geometric.
This provides the velocity Un in the two first shells of the shell model, in which no other forcing is applied. The dissipation
rate ϵ in the shell model is the total energy dissipated per unit of time. It leads to numerical values for νt and κt , estimated
as νt ≈ κt ≈ 0.1(l4cϵ)

1/3, where lc is themean scale corresponding to the two common shells between the DNS and the shell
model. In Fig. 26 the kinetic energy is plotted versus the shell number. The two common shells are n = 4 and n = 5 indicated
by black squares. Such an example demonstrates the feasibility of using a shell model as a sub-grid model. Combined with
the previous example (Geertsema and Achterberg, 1992) it could be used for the creation of a vectorial subgrid MHD shell
model.

4.3.4. The mean electromotive force
The theory of astrophysical dynamoshas beendevelopedmainly using the framework of themean-field approach (Krause

and Rädler, 1980; Rädler, 2007a,b). The latter yields various models for large-scale magnetic fields of celestial bodies, such
as galaxies, stars and planets, reproducing to some extent the available observations (Ruzmaikin et al., 1988; Beck et al.,
1996; Brandenburg and Subramanian, 2005). This approach has recently been challenged (Vishniac et al., 2003; Cattaneo
and Hughes, 2009) and its compatibility with small-scale dynamo action questioned (Cattaneo and Hughes, 2001). At the
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heart of the controversy is (i) how the mean electromotive force u′ × b′ (the mean e.m.f.), is estimated (Courvoisier et al.,
2010) and (ii) if it is at all relevant to the existence of large-scale magnetic fields.

Herewe assume that the large-scalemagnetic field is generated only by themean e.m.f. (u = 0). The large-scalemagnetic
field b is decomposed into its poloidal and toroidal parts, respectively related to the scalar quantities b̄P and b̄T (Moffatt,
1978). The latter satisfies

dt + ηk2L

b̄P =


∇ ×


u′ × b′


P , (291)

dt + ηk2L

b̄T =


∇ ×


u′ × b′


T , (292)

where kL is the wave number of the large-scale magnetic field, and the terms on the right hand side (r.h.s.) are the scalar
quantities related to the poloidal and toroidal parts of the mean e.m.f. The idea of estimating the r.h.s. terms using a shell
model startedwith Sokoloff and Frick (2003). The r.h.s. terms have been deduced either using some parametrization derived
from the mean-field approach (Sokoloff and Frick, 2003; Frick et al., 2006), or directly from the shell model itself (Nigro and
Veltri, 2011). As for the subgrid shell model, the essential point is to provide the correct linkage between the large-scale
equations and the shell model.

In themean-field approach, the terms on the r.h.s. of Eqs. (291)–(292) are parametrizedwith the so-calledα andβ effects,
such that

∇ ×

u′ × b′


P ≈ ikLαb̄T − βk2L b̄P ,


∇ ×


u′ × b′


T ≈ −ikLαb̄P − βk2L b̄T , (293)

where, using approximations, the α and β parameters are estimated to be

α = αu
+ αb, αu

= −
τ

3


u′

· ∇ × u′

, αb

≈
τ

3


b′

· ∇ × b′

, β ≈

τ

3


u′2


, (294)

τ being some characteristic time of turbulence. The term αu, is the usual kinematic α-effect and acts in favor of dynamo
action. The term αb is related to the feedback effect through the Lorentz forces (Frisch et al., 1987) and acts against the
dynamo. The term β is the so-called turbulent magnetic diffusivity. With a shell model of L2-type (GOY or Sabra), and
identifying τ with the turn-over time, these terms can be written in the form (Frick et al., 2006)

αu
= −

1
3


n

(−1)n|Un|, αb
=

1
3


n

(−1)n|Bn|, β =
1
3


n

k−1
n |Un|. (295)

Sokoloff and Frick (2003) took αb
= 0, but included other feedback effects related to Alfvén waves. In Nigro and Veltri

(2011), the terms on the r.h.s. of Eqs. (291)–(292) are estimated as ikL


n


U∗
n Bn − UnB∗

n


, where Un and Bn are obtained

from a shell model.
Whatever the expression of the mean e.m.f. in terms of Un and Bn, when considering the full model composed of

Eqs. (291)–(292) plus the shell model equations, at least the total energy should be conserved in the absence of viscosity
and diffusivity (ν = η = 0). This leads necessarily to additional terms in the shell model equations. For details we refer the
interested reader to the previously mentioned papers.

In their shell model Frick et al. (2006) used a random forcing on two scales to control both the injection of energy
and kinetic helicity. The rate of energy injection was constant ϵ = 1 and the rate of kinetic helicity injection was varied
ζ = 0; 0.04; 0.16. In Fig. 27 the kinetic and magnetic energies EU and EB are plotted versus time, together with the large-
scale magnetic energy E b̄

=
1
2 (b̄

2
P + b̄2T ). For ν = η = 10−6 the results are given from top to bottom for increasing values of

ζ , and from left to right for decreasing values of kL.
The first observation is that the time span corresponding to the kinematic growth is always roughly the same for small-

scale magnetic energy (green curve), whereas for the large-scale magnetic energy (black curve) it decreases with kL and ζ .
This is directly related to the growth rate of the large-scalemagnetic energywhich can be estimated asΓkin ≈ αkL−(β+η)k2L .
In the kinematic range, α ≈ αu

∝ ζ . Then for small kL, Γkin ≈ ζkL, implying that Γkin increases with ζ and kL. The second
observation is that the level of saturation of the large-scale magnetic energy (black curve) increases with both ζ and k−1

L .
This is related to (i) the definition of αu given by Eq. (294), which increases with ζ and (ii) to the magnetic dissipation which
is proportional to k2L .

Taking αb
= 0, Frick et al. (2006) calculated the cross-correlation between αu and the large-scale magnetic energy E b̄ in

the saturated state. They found a systematic delay between αu-quenching due to the growth of E b̄, and the growth of E b̄ due
to αu. Such dynamics excludes any simple algebraic relation between αu and E b̄, in contrast to what is usually assumed in
the mean-field approach.

In Fig. 28 the mean values of the three energies EU , EB and E b̄ versus Pm are plotted for a given value of the viscosity
ν = 10−6. For Pm ≤ 10−4, the small-scale dynamo works poorly and even stops for Pm ≤ 10−7 because the magnetic
Reynolds number becomes too low. Thus for Pm ≪ 10−4, |αb

| ≪ 1, implying that the large-scalemagnetic field is generated
by the αu-effect alone. Note that the level of large-scalemagnetic energy is even greater than that of the kinetic energy. Now
as ν is fixed, increasing Pm corresponds to raising Rm thus favoring the small-scale dynamo. If so then |αb

| also increases,
implying quenching of the large-scale dynamo as depicted by the negative slope of E b̄ versus Pm in Fig. 28. Similar results
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Fig. 27. Time series for E b̄ (thick black curve), EB (green curve) and EU (red curve). From top to bottom, the injection rate of kinetic helicity is increased,
ζ = 0; 0.04; 0.16. From left to right, the scale separation is increased, kL = 1/2; 1/8; 1/32.
Source: From Frick et al. (2006).

Fig. 28. EU (white squares), EB (black diamonds) and E b̄ (crosses) versus Pm, for ν = 10−6 , ζ = 0.08 and kL = 1/16.
Source: From Frick et al. (2006).

were obtained by DNS (Ponty and Plunian, 2011). The former results for Pm < 10−4 would presumably drastically change if
Pm rather than ν was kept fixed. Indeed the reason why the small-scale dynamo shrinks for Pm ≤ 10−4 is that Rm becomes
low. Increasing Rm, while keeping Pm fixed at a low value, might lead to a stronger small-scale dynamo and to quenching
of the large-scale dynamo due to an increase of |αb

|.
For a given viscosity ν = 10−5, Nigro and Veltri (2011) studied the dynamics of their multi-scale dynamo introduced

above. In particular, they found a hysteresis cycle represented in Fig. 29 for both ratios E b̄/EU and EB/EU versus Rm. On
increasing Rm, the dynamo starts for Rm ≈ 65. On decreasing Rm, the dynamo remains for Rm < 60. Such subcritical
dynamos are also observed in DNS, e.g. for rotating convective dynamos (Morin and Dormy, 2009).

Stepanov et al. (2006), with galactic disks in mind, elaborated a multi-scale dynamo model in which the toroidal part of
the large-scale magnetic field is generated by differential rotation rather than by means of mean e.m.f. In the mean-field
terminology the dynamo is denoted as an αω-dynamo, in contrast to the previous models denoted as α2-dynamos. The
large-scale magnetic field equations are

∂t b̄P = αkLb̄T + βk2L∂
2
z b̄P , (296)
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Fig. 29. Ratio E b̄/EU (top) and EB/EU (bottom) versus Rm for ν = 10−5 .
Source: Adapted from Nigro and Veltri (2011).

Fig. 30. Isolines of poloidal (top) and toroidal (bottom) components of the large-scale magnetic field versus z (vertical axis) and time (horizontal axis).
Source: From Stepanov et al. (2008).

∂t b̄T = −G∂z b̄P + βk2L∂
2
z b̄T (297)

where b̄P and b̄T not only depend on time but also on the coordinate z perpendicular to the plane of the galactic disk, with
−1 ≤ z ≤ 1. Appropriate boundary conditions in z are applied to b̄P and b̄T and their first z-derivatives. The parameter
G is related to the intensity of the differential rotation. The parameter α also depends on z as α = (αu

+ αb) sin(πz). The
linkage between the shell model and the large-scale model is similar to that in Frick et al. (2006). In contrast to the previous
models this model has to be integrated in z. In Fig. 30 the z-profile of the poloidal and toroidal magnetic field components
are plotted versus time. The poloidal component exhibits amuch stronger dependence on z (smaller scales) and varies faster
than the toroidal component. The toroidal component exhibits one reversal.

4.3.5. Reversals of large-scale magnetic field
The system of Eqs. (1)–(2) is invariant on changing b to −b, allowing for opposite magnetic field polarities with the

same velocity field u. Magnetic reversals are indeed observed, e.g. the Earth geomagnetic dipole fluctuates and reverses
chaotically (Merrill and McElhinny, 1983), while the solar magnetic field reverses with a rather stable periodicity (Weiss
and Thompson, 2009). The experimental results of Ravelet et al. (2008) showing chaotic magnetic reversals have recently
emphasized the importance of small-scale turbulence in triggering the reversals of the large-scale magnetic field (Pétrélis
and Fauve, 2008; Pétrélis et al., 2009). It is then rather natural to expect chaotic reversals in multi-scale shell models. This
is visible in Fig. 27 where each time the black curve, corresponding to E b̄, crosses the horizontal axis, b̄ is changed to −b̄.
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Fig. 31. Large-scale magnetic field versus time. From top to bottom the viscosity is decreased.
Source: Adapted from Nigro and Carbone (2010).

Ryan and Sarson (2007, 2011) considered a large-scale αω-dynamo model in which α is calculated from the 3D HD GOY
model (no small-scale magnetic field, no back-reaction from the large-scale magnetic field onto the turbulence). They find
that the reversals fit a log-normal distribution as do the paleomagnetic data, stressing the importance ofmultiplicative noise
in the underlying geodynamo.

Considering the MHD Sabra model given by Eqs. (234)–(235), Benzi and Pinton (2010) and Nigro and Carbone (2010)
added a term to the magnetic field equation for one of the largest shells, say n = 1, such that the new equation for B1
becomes

dtB1 = W̃1(U, B) − W̃1(B,U) − M(B1). (298)

They chose M(B1) ∝ B1 or M(B1) ∝ B3
1 (Benzi and Pinton, 2010), or a combination of both (Nigro and Carbone, 2010). Of

course energy conservation is thus violated, but this was the simplest way of breaking the symmetry of the system and
have reversals for B1 with periods of constant sign. They found that the mean period between reversals increases with the
magnetic diffusivity (Benzi and Pinton, 2010) and the viscosity (Nigro and Carbone, 2010). In Fig. 31 an example is given for
different values of viscosity. From top to bottom the viscosity is decreased by a factor 10, while the mean period between
two reversals clearly becomes shorter.

4.4. Alfvén waves and rotation

Assuming that MHD turbulence is embedded in a homogeneous magnetic field b0, and in a rotating frame with angular
velocity �, Eqs. (1)–(2) are changed into

∂t − ν∇
2u = −(u · ∇)u + (b · ∇)b + (b0 · ∇)b − 2� × u − ∇p + f, ∇ · u = 0, (299)

∂t − η∇
2 b = −(u · ∇)b + (b · ∇)u + (b0 · ∇)u, ∇ · b = 0, (300)

As explained in Section 2.1.1, Alfvén waves may propagate along b0 in both directions provided that dissipation is not
too strong. This latter statement is actually what makes experimental evidence difficult to obtain, especially in a liquid
metal (Alboussière et al., 2011). For a sufficiently strong b0 or � the MHD turbulence becomes anisotropic, making the use
of isotropic 3D shell models questionable. In order to account for such anisotropy, other shell models have been elaborated
as presented below. Mainly three lines of research have been followed so far.

• Two shell models of Alfénic turbulence have been elaborated by Carbone and Veltri (1989, 1990) within an isotropic
and an anisotropic framework. In the latter case they introduced an angular dependence with respect to the direction
of anisotropy (the direction of b0). The model coefficients were estimated using a standard statistical approach (Direct
interaction approximation, Markovian approximation and random phase hypothesis). The interested reader should refer
to the above mentioned papers.
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• Another line of development (Section 4.4.1) consists in keeping an isotropic MHD shell model and simply adding a
term corresponding to b0 (Biskamp, 1994; Hattori and Ishizawa, 2001), or � for HD turbulence (Hattori et al., 2004;
Chakraborty et al., 2010), or both (Plunian and Stepanov, 2010). Such a model is, of course, well suited to isotropic
phenomenology like IK for Alfén waves.

• The usual way of dealing in the presence of an applied magnetic field b0 is to write the MHD equations in the plane
perpendicular to the direction of b0, leading to the so-called reducedMHDequations (RMHD). The first RMHD shell model
was developed in the context of intermittent heating in solar coronal loops (Nigro et al., 2004). Its statistical properties
compare successfully with observation (Nigro et al., 2005; Buchlin et al., 2005; Buchlin and Velli, 2007; Buchlin, 2007). In
the context of the Alfvénic solar wind the RMHD shell model gives a good description of the transition betweenweak and
strong MHD turbulence (Verdini and Grappin, 2012). It also provides a mechanism for the presence of the low frequency
magnetic spectrum observed inside the sub-Alfvénic solar wind (Verdini et al., 2009, 2012a). Themodel and a few results
are summarized in Section 4.4.2.

4.4.1. Isotropic shell models
A shell model with an externally applied magnetic field and global rotation of intensities b0 and Ω , can be written in the

form

dtUn = Wn(U,U) − Wn(B, B) + iknb0Bn + iΩUn − νk2nUn + Fn, (301)

dtBn = Wn(U, B) − Wn(B,U) + iknb0Un − ηk2nBn. (302)
Obviously, taking b0 ≠ 0 and Ω ≠ 0 implies the failure of magnetic and cross helicity conservation respectively, in
agreement with the original equations. In addition to the eddy turn-over time tNL = l/ul, the introduction of b0 and Ω

leads to two other time-scales, tA = l/b0 and tΩ = Ω−1, over which energy transfers may occur. Depending on which
is smallest, tNL, tA or tΩ , one expects different types of turbulence characterized by different slopes for the energy density
spectrum within the inertial range, respectively E(k) ∝ k−5/3 (type K), E(k) ∝ k−3/2 (type A) or E(k) ∝ k−2 (type R). As tNL
and tA depend on scale l, an inertial range with several slopes generally occurs.

In the top-left panel of Fig. 32, we summarize the range of values of parameters b0 and Ω for which the four following
regimes are possible, provided Pm = 1, Rotation (R), Rotation–Kolmogorov (RK), Rotation–Kolmogorov–Alfvén (RKA) and
Rotation–Alfvén (RA). Each regime is characterized by different inertial ranges with, going from small to large k, slope k−2

for (R), slopes k−2 and k−5/3 for (RK), slopes k−2, k−5/3 and k−3/2 for (RKA), and slopes k−2 and k−3/2 for (RA). In addition,
two other regimes are also possible for Ω = 0, Kolmogorov (K) and Kolmogorov–Alfvén (KA) depending on whether b0 is
weaker than (ηϵ)1/4 or not. In the other panels of Fig. 32 sets of results are shown for the cases (RA), (RK) and (KA) with
ν = 10−7 and Pm = 1, using the helical L1 shell model given by Eq. (261). We find excellent agreement between the results
obtained with the shell model and isotropic phenomenological predictions.

For Pm ≪ 1, the characterization of the different regimes is more complex, but still tractable analytically. However, the
results obtained with the shell model clearly show that the distinction between the different regimes is in most cases no
longer possible. This is because the magnetic dissipation scale for Pm < 1 is larger than the Kolmogorov scale implying that
the spectral slopes are not clear enough.

Finally, note that in Plunian and Stepanov (2010) it was necessary to introduce correlation times for b0 and Ω in order
to avoid spurious supercorrelation between Un and Bn, as previously explained (Section 4.1.1). This is presumably related to
the number of degrees of freedom in the helical L1-model (261). For HD turbulence with a constant Ω we verified that such
a problem disappears using the helical L2-model given by Eq. (266).

4.4.2. RMHD shell models
The ReducedMHD equations accounting for anisotropy due to a strong externally appliedmagnetic field b0, are obtained

by restricting the initial MHD Eq. (4) to field-perpendicular equations (Strauss, 1976)

∂tz±

⊥
∓ b0∂xz±

⊥
+ (z∓

⊥
· ∇⊥)z±

⊥
+ ∇⊥p = r+

∇
2
⊥
z±

+ r−
∇

2
⊥
z∓, ∇⊥ · z±

⊥
= 0, (303)

where x is the coordinate along the direction of b0, z±

⊥
is the projection of the Elsässer variables onto the plane perpendicular

to b0, and r±
=

1
2 (ν ± η).

Nigro et al. (2004) introduced a RMHD shell model for Eq. (303) keeping the x-dependency along the direction of b0
(with appropriate boundary conditions) while using a 2D shell model in the perpendicular direction to account for 2DMHD
turbulence. The spectral space is thus divided into cylindrical shells, each shell n being characterized by kn ≤ |k⊥| < kn+1,
where k⊥ is the component of the wave number perpendicular to b0. The shell variables Un and Bn depend on both time and
x. Such a hybrid shell model written in Elsässer variables Z±

n = Un ± Bn, is given by

(∂t ∓ b0∂x) Z±

n = Wn(Z∓

n , Z±

n ) − k2n

r+Z±

n + r−Z∓

n


, (304)

Nigro et al. (2004) used the MHD GOY model (189) with λ = 2 and ε = 5/4 to obtainWn(Z∓

n , Z±

n )

= ikn


13
24

Z±

n+2Z
∓

n+1 +
11
24

Z∓
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48
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n+1Z
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n−1 −
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48

Z∓

n+1Z
±

n−1 +
19
96

Z±

n−1Z
∓

n−2 −
13
96

Z∓

n−1Z
±

n−2

∗

. (305)
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Fig. 32. Top-left panel: all possible non-linear regimes in the map (b0, Ω). Other panels: normalized energy density spectrum versus normalized wave
number. They correspond to regimes RA (top-right), RK (bottom-left) and KA (bottom-right). The different curves correspond to different values of b0 , Ω
or both.
Source: Adapted from Plunian and Stepanov (2010).

a

b

c

Fig. 33. Left panel: coronal loop in the direction of b0 . The 2D shell models in planes perpendicular to b0 are piled up along b0 . Right panel: time evolution
of (a) energy, (b) energy flux, and (c) dissipated power.
Source: Left panel: adapted from Buchlin (2007).
Right panel: adapted from Nigro et al. (2004).

To model a coronal loop, such as the one represented in the left-panel of Fig. 33, kinetic energy is injected at one foot x = 0
of the coronal loop, with no motion in the other foot x = 1. At x = 0 the motion is non-zero only in the first three shells
(n = 0, 1, 2) andhas aGaussian timedistribution.With appropriate values for the different dimensional parameters (motion
at x = 0, length and radius of the coronal loop, Alfvénwave velocity), and for ν = η = 10−7, Nigro et al. (2004) estimated the
time evolution of the total energy, net incoming energy flux and dissipated power (right panel in Fig. 33). This study strongly
supports the idea that coronal nanoflares are due to intermittent events produced by Alfvén wave turbulence. About 60% of
the energy entering the system is in fact dissipated. The dissipation compares well with the energy involved in nanoflares
and, from Fig. 33, clearly displays intermittency with statistics comparable to those of nanoflare emissions. Introducing a
more complex model with several layers in x, Verdini et al. (2012b) studied the combined effects of turbulence and energy
leakage on the coronal heating.

The same RMHD shell model given by Eqs. (304)–(305) was also used by Verdini and Grappin (2012) to investigate the
transition fromweak to strong turbulence, dependingwhether tA ≪ tNL, or tA ≈ tNL, where tA ∝ (k∥b0)−1 is the characteristic
time responsible for Alfvénwaves propagation, and tNL ∝ (k⊥b(k⊥))−1 is the eddy turn-over time (see Section 2.2.2). In order
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Source: Adapted from Verdini and Grappin (2012) and Verdini et al. (2012a).

to prescribe the ratio tA/tNL, they added a forcing term f ±
n (x, t) in Eq. (304) leading to an estimation of tA and tNL at the forcing

scale. Typical perpendicular spectra are shown in the left-panel of Fig. 34 for tA/tNL ≈ 1 and ≈ 1/32. They found that (a)
only one slope k−5/3 is obtained for strong turbulence, whereas (b) two slopes k−2 and k−5/3 are found for weak turbulence.
In the notation introduced in Section 4.4.1, the weak regime is of (AK) type, in striking opposition with the (KA) isotropic
case.

In the context of solar wind MHD turbulence, Verdini et al. (2009) introduced a modified RMHD shell model in the form
∂Z±

n

∂t
+ (U ± b0)

∂Z±
n

∂x
−

1
4
(U ∓ b0)


1
ρ

dρ
dx


Z±

n +
1
4
(U ∓ b0)


1
ρ

dρ
dx

+ 2
1
R
dR
dx


Z∓

n

= Wn(Z∓

n , Z±

n ) − k2n

r+Z±

n + r−Z∓

n


, (306)

whereU , ρ and R stand for the background solarwind, the fluid density and the radius of themagnetic flux tube respectively.
The profile of the latter quantities as a function of xwas assigned along with b0. Themodulus and correlation time of Z+

n was
prescribed at x = 0 and only in the three first shells. This corresponds to the injection of high frequency Alfvén waves at the
base of the chromosphere. By solving Eq. (306) Verdini et al. (2012a) found a double power law for the magnetic frequency
spectrum that is reproduced in the right panel of Fig. 34. At low frequency it compares well with the 1/f magnetic spectrum
of the sub-Alfvénic solar wind represented in Fig. 3. For higher frequencies Verdini et al. (2012a) argue that the −2 slope
that they find in their model is masked in the solar wind by the more energetic perpendicular spectrum which has a −5/3
slope.

4.5. Hall-effect

In strongly magnetized conducting media, e.g. in weakly ionized accretion disks, white dwarfs and neutron stars, the
Hall drift of the magnetic field can operate on a much shorter time-scale than the other transport processes. Though non-
dissipative, theHall current redistributes themagnetic energy from large to small scales and thence enhances the dissipation
rate of the magnetic field (Urpin and Shalybkov, 1999). The rate of magnetic field decay is important to understanding the
history of such astrophysical objects. The Hall effect is probably most pronounced in young neutron stars, called magnetars
because of their strong magnetic field of up to 1015 G.

In the absence of motion and ambipolar diffusion, the evolution of themagnetic field due to the Hall effect can bewritten
in its dimensionless form as (Goldreich and Reisenegger, 1992)

∂b
∂t

= R−1
H ∇

2b − ∇ × [(∇ × b) × b] , (307)

where RH = (eb0te)/(m∗
e c), b0 the characteristic magnetic field strength at the largest scale, e the elementary charge, c the

speed of light,m∗
e the effective mass of an electron and te the electron relaxation time.

The last term of Eq. (307) describes the advection of themagnetic field by the Hall drift and is expected to produce a non-
linear cascade from large to small magnetic scales. Using the assumption of strong turbulence, Vainshtein (1973) derived
a k−7/3 scaling law for the magnetic energy density spectrum. However, considering weakly interacting waves Goldreich
and Reisenegger (1992) found an alternative k−2 scaling law. In both cases the spectra are steeper than for Kolmogorov
turbulence.

The possibility of a cascade is of course appealing for shell models. In addition, for RH → ∞ Eq. (307) gives rise to two
quadratic invariants, the energy Eb and the magnetic helicity Hb, which are sufficient for the derivation of a shell model
including the Hall effect. The difference with MHD shell models is that the non-linear term is now of the form knQn(X).

Frick et al. (2003) introduced a Hall shell model in the form

(dt + R−1
H k2n)Bn = k2n


Bn+2Bn+1 −

ε

λ2
Bn+1Bn−1 −

1 − ε

λ4
Bn−1Bn−2


+ Fn, (308)
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with the two quadratic invariants

EB
=

1
2


n

B2
n, H =


n

(ε − 1)−nB2
n. (309)

In Eq. (308) Fn is an externally applied electromotive force and Bn is real. Indeed the real and imaginary parts of complex
variables Bn would not couple, as can be seen from Eq. (307) written in Fourier space. We take ε = 1− λ in order to impose
the conservation of magnetic helicity

HB
=


n

(−1)nk−1
n B2

n. (310)

Solutions of Eq. (308) for Fn = 0 (free-decaying Hall-turbulence) show that the initial magnetic energy concentrated in the
large scales triggers the cascade process. This results in a magnetic inertial range of the form EB(kn) ∼ k−4/3

n , corresponding
to the Vainshtein (1973) energy density Eb(k) ∼ k−7/3. However, the energy spectrum steepens rapidly in time, unless
stochastic forcing is applied (Frick et al., 2007).

On representing themagnetic field as the sum of poloidal bP and toroidal bT components, Eq. (307) takes the form (Urpin
and Shalybkov, 1999)

∂bP

∂t
= R−1

H ∇
2bP − ∇ × [(∇ × bT) × bP] , (311)

∂bT

∂t
= R−1

H ∇
2bT − ∇ × [(∇ × bT) × bT + (∇ × bP) × bP] . (312)

From Eqs. (311)–(312), we clearly see that the two components bP and bT are coupled. However, coupling is not symmetric.
An initial poloidal configuration can generate a toroidal component with the term −∇ × [(∇ × bP) × bP]. On the other
hand, a poloidal component cannot be generated if the initialmagnetic configuration is purely toroidal unless some transient
dynamo type instability occurs for bP. Note that, in the presence of a background magnetic field, such a mechanism is at the
heart of the so-called Hall drift instability (Rheinhardt and Geppert, 2002). In the context of neutron stars, this instability
leads to non-local energy transfer to small scales and then to enhanced crustal field dissipation.

Frick et al. (2003) derived the following shell model for both poloidal P and toroidal T components of the magnetic field

dtPn + R−1
H k2nPn = k2n


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, (313)

dtTn + R−1
H k2nTn = k2n
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, (314)

with magnetic energy and magnetic helicity defined by

EB
=


n

(P2
n + T 2

n ), HB
=


n

k−1
n PnTn. (315)

As in helical models a remarkable advantage of definition (315) is that, contrary to (309), magnetic helicity and magnetic
energy are not shell-by-shell correlated. Another advantage is that it is possible to describe the energy exchange between
both poloidal and toroidal components of the magnetic field. In particular, it was shown that a transient poloidal field
component can develop from an initial purely toroidal configuration (Frick et al., 2003). With again stochastic forcing
incorporated into Eqs. (313)–(314), Frick et al. (2007) found a stable inertial range characterized by the Vainshtein (1973)
energy spectrum slope Eb(k) ∼ k−7/3, and Hb(k) ∼ k−1 Eb(k).

With the application to the solar wind in mind, Hori et al. (2005) and Galtier and Buchlin (2007) included the Hall effect
in the incompressible MHD Eqs. (1)–(2)

∂t − ν∇
2u = −(u · ∇)u + (b · ∇)b − ∇p, ∇ · u = 0, (316)

∂t − η∇
2 b = −(u · ∇)b + (b · ∇)u − RH∇ × [(∇ × b) × b] , ∇ · b = 0. (317)

In the limit (ν, η) → (0, 0), the system of Eqs. (316)–(317) contains three quadratic invariants, the total energy E and
magnetic helicity Hb defined in Eqs. (5)–(6), and a third (new) quantity

H i
=


V
(a + RHu) · (b + RH∇ × u)dV , (318)
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called the ion helicity. Note that H i
= Hb

+ 2RHHc
+ R2

HH
u. In the limit RH → 0, H i reduces to magnetic helicity, while

(H i
− Hb)/2RH, also a conserved quantity, reduces to cross helicity Hc .
In the spirit of the complex GOY shell model, the Hall MHD shell model for λ = 2, takes the form (Hori et al., 2005; Galtier

and Buchlin, 2007)

(dt + νk2n)Un = ikn
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4
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+Fn. (319)

(dt + ηk2n)Bn =
ikn
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. (320)

In the limit (ν, η) → (0, 0) the following quantities are conserved
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2
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with

HC
=

1
2


n

UnB∗
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n

(−1)nkn|Un|
2. (322)

Note that in Eq. (320) the term accounting for the Hall drift differs from Eq. (308) because here the variables are complex.
Galtier and Buchlin (2007) and Hori andMiura (2008) found that the large-scale magnetic energy density follows a k−5/3

spectrum that steepens to k−7/3 at scales smaller than RH if the magnetic energy overtakes the kinetic energy or to k−11/3 in
the inverse case. This might explain why the magnetic spectrum of the solar wind steepens at high frequencies (f > 1 Hz).

5. Summary and outlook

Table 3 summarizes the MHD shell models that have been discussed in the present review. The L2 GOY model given by
Eqs. (189)–(191) is without doubt the most often used, in its 2D and 3D forms. It gives excellent results in terms of spectra,
intermittency, and energy transfer and flux. However,we saw that such amodel can bemisleadingwhendealingwith kinetic
helicity in 3D HD turbulence. This is also true for its cousins the L2 and N2 models given respectively by Eqs. (234)–(235)
and Eqs. (231)–(233). On the other hand helical models do not suffer from this drawback. So far only the H1 local model
given by Eq. (261) has been used for MHD turbulence. The other helical models given by Eq. (265) or Eq. (266) are given here
for completeness, but have not been tested yet.

As shown in Appendix, the models depicted in Table 3 represent only a subset of all possible models that satisfy total
energy and cross helicity conservation. In addition any combination of models will again satisfy both conservation laws. In
Table 3 the models which depend on one free parameter are the result of the combination of two other models. Regarding
the non-local parameter in Table 3, it controls the degree of non-locality in non-local models. We saw that this parameter
can be estimated with the help of a hierarchical approach or from phenomenological arguments (Section 3.3).

In addition to automatically satisfying the conservation of total energy and cross helicity, the general formulation given
in Eqs. (143)–(145) has the advantage of offering a mathematical framework for the definition of energy transfer and flux.
This general formulation has also been used to define transfer and flux of kinetic helicity in HD turbulence. No doubt it can
also be applied to transfer and flux of cross and magnetic helicities in 3D MHD turbulence.

The dimension of MHD turbulence, 2D or 3D, can be changed imposing either the square of magnetic potential or the
magnetic helicity as the third quadratic invariant. Though this is possible to achieve for any models, except L1 for which
magnetic helicity cannot be defined, in Table 3 we denote by 2D, 3D or both the corresponding version that has been
developed so far.

Finally modern shell models always use complex instead of real variables mainly because it increases the degree of
freedom of the system, leading to more realistic dynamics.

The applications presented in Section 4 correspond to a large panel of situations requiring high values for the kinetic and
magnetic Reynolds numbers: small-scale andmulti-scale dynamos, free-decayingMHD turbulence, Alfvénwave turbulence
and Hall-effect turbulence. In order to deal with anisotropy hybrid models have been developed by mixing 2D MHD
turbulence in a plane perpendicular to the direction of anisotropy with direct integration in the parallel direction. A few
attempts have been made to develop subgrid shell models, which are indeed an interesting and promising application of
shell models.

Shell model simulations require the same time-stepping as direct numerical simulations. However, there is a significant
gain in using shell models, essentially because the number of grid points is much lower than in DNS, and partial derivatives
are absent. Shell models are user-friendly tools that guide our intuition in realistic parameter regimes still inaccessible to
DNS.
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Table 3
Summary of main MHD shell models.

Model Equations Variables Conservative quantities Comments Reference

L1 (173)–(175) real E =
1
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
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Appendix A. L1-models

The complex L1-models have the form

Wn(X, Y) = kn
+1

i,j=−1,|i−j|≤1

aW
ij Xn+iYn+j + bW

ij X
∗

n+iYn+j + cW
ij Xn+iY ∗

n+j + dW
ij X

∗

n+iY
∗

n+j, (A.1)

involving 28 complex coefficients. The number of complex coefficients reduces to 11 on applying the property (145). Then
the general shape of complex L1-models becomesWn(X, Y) = kn
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(A.2)

where the Ai are complex parameters. After our definition of L1-models given in Section 3.1.2 shell n cannot interact
with itself only, implying A10 = 0. A similar general shape for complex L1-models has been introduced in the seminal
paper by Gloaguen et al. (1985) but using Elsässer variables Z±. Liouville’s theorem yields additional constraints on the
possible choice for the Ai. The model given by Eq. (177) investigated by Biskamp (1994) corresponds with taking Ai = 0 for
i = 3, . . . , 11.
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Appendix B. L2-models

Any complex L2-model has the form

Wn(X, Y) = kn
+2

i,j=−2,
|i+j|=3 or i=−j=±1

aW
ij Xn+iYn+j + bW

ij X
∗

n+iYn+j + cW
ij Xn+iY ∗

n+j + dW
ij X

∗

n+iY
∗

n+j. (B.1)

A total of 24 complex coefficients are involved. On applying the property (145) the number of complex coefficients is reduced
to 12 and the general shape of complex L2-models becomesWn(X, Y) = kn


C1(X∗

n−2Y
∗

n−1 − λX∗

n−1Y
∗
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∗
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∗
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n+2Y
∗

n+1)

+ C4(Xn−2Y ∗
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n+1) + C5X∗
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10X
∗
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11X
∗

n+1Yn+2 + C12(Xn+1Y ∗

n−1 − λXn+2Y ∗

n+1)

,

(B.2)

where the Ci are again complex parameters. Liouville’s theorem is automatically satisfied as Wn(X, Y) does not depend on
Xn, X∗

n , Yn nor Y ∗
n . The GOY model is obtained by setting all Ci coefficients to zero, except C1, C2 and C3. The Sabra model is

obtained by setting all Ci coefficients to zero, except C11, C12 and C13.

Appendix C. N1-models

The N1-models are obtained from the L1-model (A.2), including the non-local interactions. Their general shape isWn(X, Y) = kn

m≥1


A1
1(X

∗

n−mY
∗

n−1 − λX∗

n−m+1Y
∗

n+1) + A2
1(X

∗

n−1Y
∗

n−m − λmX∗

n+m−1Y
∗

n+m)

+ A2(X∗

n Y
∗

n−m − λmX∗

n+mY
∗

n+m) + A1
3(Xn−mY ∗

n−1 − λXn−m+1Y ∗

n+1) + A2
3(Xn−1Y ∗

n−m − λmXn+m−1Y ∗

n+m)

+ A4(XnY ∗

n−m − λmXn+mY ∗

n+m) + A1
5X

∗

n−mYn−1 − λA1
5
∗
Xn−m+1Yn+1 + A2

5X
∗

n−1Yn−m − λmA2
5
∗
Xn+m−1Yn+m

+ A6X∗

n Yn−m − λmA∗

6Xn+mYn+m + A1
7Xn−mYn−1 − λA1

7
∗
X∗

n−m+1Yn+1 + A2
7Xn−1Yn−m − λmA2

7
∗
X∗

n+m−1Yn+m

+ A8XnYn−m − λmA∗

8X
∗

n+mYn+m +(A9Xn−m+2 − A∗

9X
∗

n−m+2)Yn

. (C.1)

where the Ai and Aj
i are complex parameters depending on m. The non-local version of the model (173) by Gloaguen et al.

(1985) becomesWn(X, Y) = kn

C1
1 (Xn−mYn−1 − λXn−m+1Yn+1) + C2

1 (Xn−1Yn−m − λmXn+m−1Yn+m)

+ C2(XnYn−m − λmXn+mYn+m)

, (C.2)

where C1
1 , C

2
1 and C2 are real parameters, and X and Y are real variables.

Appendix D. N2-models

The N2-models are obtained from the L2-model (B.2), including the non-local interactions. Their general shape isWn(X, Y) = kn

m≥1
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
, (D.1)

where the Ci are again complex parameters depending onm. Liouville’s theorem is again automatically satisfied as Wn(X, Y)
does not depend on Xn, X∗

n , Yn nor Y ∗
n . Non-local version of GOY and Sabra models is obtained by setting all Ci coefficients to

zero, except C1, C2 and C3 for GOY, and C11, C12 and C13 for Sabra.
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Appendix E. Numerical aspects

Computational gain using a shell model

The computational gain using a shell model rather than a DNS can be estimated. The cost of a simulation is proportional
to MN, where M is the number of time steps and N the number of grid points. First we consider HD turbulence.

In each direction the number of grid points can be estimated as the ratio between the scale at which energy is injected
and the scale at which energy is dissipated. Defining the Reynolds number at the forcing scale by Re = lFulF /ν, with, from
Eqs. (20) and (22), ulF ∝ (ϵlF )1/3 and lν ∝ ϵ−1/4ν3/4, we find

lF/lν ≈ Re3/4. (E.1)

For a DNS in 3D this leads to

NDNS
HD ≈ (lF/lν)3 ≈ Re9/4. (E.2)

For an isotropic shell model not only is there just one direction, but the sequence of wave numbers is simply geometric.
Replacing kν = λnν and kF = λnF in Eq. (E.1) gives

NShell
HD = nν − nF ≈ ln Re. (E.3)

Therefore the number of grid points in a shell model is about Re9/4 less than in a 3D DNS. Note also that the number of
arithmetic operations per variable is about 10 times smaller for a shell model than for a DNS where finite differences are
calculated in three directions.

An estimate of the number of time steps MHD is given by the ratio tF/tν where tF and tν are the turn-over times l/ul
at the forcing and dissipation scales. Assuming Kolmogorov turbulence ul ∝ ϵ1/3l1/3, we find tF/tν ≈ (lF/lν)2/3. Applying
Eq. (E.1) we find

MHD = tF/tν ≈ Re1/2, (E.4)

which is the same for DNS and shell models.
In MHD, for Pm ≤ 1 the previous estimates hold. However, for Pm > 1 the number of grid points in each direction

increases by a factor lν/lη ≈ Pm1/2, leading to

lF/lη ≈ Re3/4Pm1/2, (E.5)

and then to

NDNS
MHD ≈ (lF/lη)3 ≈ Re9/4Pm3/2. (E.6)

For an isotropic MHD shell model, replacing kη by λnη and kF by λnF in Eq. (E.5) leads to

NShell
MHD = nν − nF ≈

3
4
ln Re +

1
2
ln Pm. (E.7)

So for Pm > 1, the number of grid points in a shell model is about Re9/4Pm1/2 less than in a 3D DNS.
An estimate of the number of time stepsMMHD is now given by the ratio tF/tη where tη is the magnetic dissipation time.

By definition the latter is given by tη = l2η/η. With tν = l2ν/ν and again lν/lη ≈ Pm1/2 then tη = tν . From Eq. (E.4) we find

MMHD = tF/tη ≈ Re1/2, (E.8)

which again is the same for a DNS and a shell model. Note that the number of time steps is approximately the same in HD
and MHD, and does not depend on Pm.

Numerical integration

A system of ODEs can be integrated with standard numerical methods like Runge–Kutta. However, special care must be
taken because the shell model system of equations is stiff. Indeed as shown before the characteristic times vary considerably
between large and small scales by a factor Re1/2 if Pm ≤ 1, or Re1/2Pm1/3 if Pm ≥ 1.

One could think of using a constant time-step equal to the smallest characteristic time of the problem, corresponding
here to the dissipation time. However, because the dissipation rate fluctuates strongly, this can lead to a numerical effect of
negative viscosity. This is why it is much better to use an adaptive time step, and in addition keeping the latter at least one
order of magnitude smaller than the dissipation time.

Another possibility is to split the time-step into two parts, each part solving different physics. During the first part only
the non-linear terms are integrated, leading to a value for Un (in HD). During the second part the exact solution for the
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dissipative term is calculated, replacing Un by Un exp(−νk2n△t). This helps to avoid the negative viscosity effect previously
mentioned, but it reduces accuracy to a first order approximation O(△).

Stepanov (2002) found another way to increase the accuracy of the method. To explain the method, we write the ODEs
system for a HD shell model in the following form

U̇n(t) = Fn(Um(t),Uq(t), t) − pnUn(t), n = 1,N, (E.9)

where pn = νk2n, and Fn(Um(t),Uq(t), t) is the quadratic function describing the interactions between shells m and q with
shell n. Introducing

Vn(t) = Un(t) exp(pnt). (E.10)

the system (E.9) becomes

V̇n(t) = Fn(Vm(t) exp(−pmt), Vq(t) exp(−pqt), t) exp(pnt). (E.11)

Starting with Un at t = t0 we want to calculate Un at t = t0 + △. Setting Vn(t0) = Un(t0), we calculate Vn(t0 + △) using
Eq. (E.11). Then using Eq. (E.10)we findUn(t0+△t) = Vn(t0+△) exp(−pn△). Nowwhen calculating Vn(t0+△), the product
of coefficients exp(−pmt) and exp(−pqt)with exp(pnt) in Eq. (E.11) can lead to a significant residual error especially at small
scales where pi△ aremuch larger than unity. Therefore the numerical integration of Eq. (E.11) needs to be elaborated a little.
Starting with a 4th order Runge–Kutta method, we calculate the explicit quadratic form for Fn in order to avoid exp(pn△) in
the numerical integration of Eq. (E.11). This leads to the following numerical scheme

K 1
n = △Fn(Um(t0),Uq(t0), t0),

K 2
n = △Fn(Um(t0) exp(−pm△/2) + exp(−pm△/2)K 1

m/2,Uq(t0) exp(−pq△/2)
+ exp(−pq△/2)K 1

q /2, t0 + △/2),

K 3
n = △Fn(Um(t0) exp(−pm△/2) + K 2

m/2,Uq(t0) exp(−pq△/2) + K 2
q /2, t0 + △/2), (E.12)

K 4
n = △Fn(Um(t0) exp(−pm△) + exp(−pm△/2)K 3

m,Uq(t0) exp(−pq△) + exp(−pq△/2)K 3
q , t0 + △),

Un(t0 + △) = Un(t0) exp(−pn△) + (K 1
n exp(−pn△) + 2K 2

n exp(−pn△/2)
+ 2K 3

n exp(−pn△/2) + K 4
n )/6 + O(△5). (E.13)

The factors exp(−pi△) and exp(−pi△/2) with i ∈ [1,N] can be precalculated only once. The negative viscosity effect is
eliminated and the accuracy is up to a fifth order approximation O(△5).

More complex methods can be used to deal with stiffness. The VODE time-stepping scheme (Brown et al., 1998) can be
used for shell model simulations. The integrationmethod is a variable-coefficient form of Backward Differentiation Formula
methods. It requires computing the Jacobian of ODEs. For a local shell model the Jacobian is a sparse matrix. However, for
non-local models the Jacobian is a full matrix and the method loses efficiency.

Statistics

In turbulence, the accuracy of e.g. spectral laws and scaling exponents is directly related to the statistics. High accuracy
requires to record data over a sufficiently long time, thus again increasing the cost of simulation. Compared to DNS, another
advantage of shell models is the possibility to reach accurate statistics.

This was well demonstrated in the study of helicity cascade by Lessinnes et al. (2011). The challenge was to calculate the
helicity spectrum H(k) resulting from the sum of two quantities H±(k) = ±Ak−2/3

+ Bk−5/3, that is zero at leading order
and non-zero at next order. The ratio |H(k)|/|H±(k)| ∝ k−1 was as small as 10−5. A relative error of 10−6 has been taken in
the VODE time scheme. In addition the time fluctuations of |H±(k)| were larger than those of energy by a factor k, requiring
again more data.

In Fig. E.35 the results are illustrated for different amounts of data ζ = QT , where Q is the number of independent runs,
each run being performed during time T . For a helical forcing (Fig. E.35, left panel) we clearly see that H(k) does converge to
a well-defined spectrumwith increasing ζ , while H±(k) spectra do not change. In the right panel of Fig. E.35, H(k) is getting
smaller with increasing ζ as expected for a non-helical forcing.

The degree of convergence follows the power law ζ−1/2 in agreement with the following formula

σ⟨a⟩ =
σa
√
N

, (E.14)

derived for a Gaussian process a, where σ⟨a⟩ is the standard deviation due to finite sampling of the mean value of a, σa the
standard deviation of a and N the number of independent values of awithin the sampling.
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Fig. E.35. Spectra of |H+
|, |H−

| and |H|, for different amounts of data measured by the parameter ζ , and for two different forcings, helical (left) and
non-helical (right).
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