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We propose a new description of the two-disc dynamo, considering azimuthal cur-
rents in the rotating discs, as proposed by H. K. Moffatt for the one-disc dynamo,
in addition to symmetric mechanical friction applied to the discs, whose neglect
constitutes a fundamental error, as shown by R. Hide. The linear stability of the
steady state is analysed and it is shown that the system presents chaotic reversals,
depending on the parameters of the problem.
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1. Introduction

The one-disc (Bullard 1955) and two-disc (Rikitake 1958) dynamo systems have been
widely investigated. The Bullard model, known mainly for its educational interest,
presents the typical features of a fluid dynamo (Moreau 1990). The Rikitake model
presents unstable solutions with chaotic reversals. Its analogy with the geodynamo
has been studied, even though this simple model cannot describe the more complex
MHD processes of the geodynamo, the geomagnetic data and the paleomagnetic
inversion. Its interest is more historical, and also demonstrative in explaining non-
linear coupling, stability and chaos (see Cook & Roberts 1970; Cook 1972; Ito 1980;
Ershov et al . 1989). Some new related simple idealized models for the geodynamo
have been proposed recently (Chui & Moffatt 1993; Hide et al . 1996).

The conventional description of the one-disc dynamo has been shown to be mis-
leading from the fundamental point of view. Indeed, Moffatt (1979) observed that if
the electric current in the disc flows in a purely radial manner, then the magnetic
flux through the disc has exponential growth, even within the limit of perfect disc
conductivity. In this case, this violates the fundamental result of electromagnetic
theory demanding that the flux through any closed curve moving with the conductor
must be conserved. To remove this contradiction, Moffatt considered an azimuthal
current distribution in the disc itself. For easier modelling, he segmented the disc by
insulating foils, in such a way that the current is forced to flow radially, except in the
neighbourhood of the disc’s rim, where it is azimuthal. Moffatt studied this system
neglecting the mechanical friction on the disc in comparison with ohmic losses.

Recently, Hide (1995) showed that this latter assumption (neglecting the mechan-
ical friction) is in fact unwarranted for the two-disc dynamo. Furthermore, accord-
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Figure 1. Description of the two-disc dynamo model.

ing to Hide, symmetric mechanical friction ‘can render the Rikitake dynamo struc-
turally unstable and consequently incapable of producing chaotic oscillations’. The
main objective of this paper is to see whether this statement remains valid when
azimuthal currents in the discs are considered in addition to symmetric mechanical
friction. Moreover, the one-disc dynamo studied by Moffatt will also be discussed,
but this time with mechanical friction, in order to see if unstable solutions are still
possible.

In § 2, a mathematical model of a non-symmetric two-disc dynamo, including
mechanical friction and azimuthal currents, is presented. It is followed, in § 3, by
a linear stability analysis of the steady state for two identical discs. In § 4, the for-
mulation and analysis of the one-disc dynamo case are derived.

2. Formulation of the two-disc dynamo

(a) Characteristics of the system

The system is composed of two coupled disc dynamos (figure 1). For easier nota-
tion, equations are written, whenever possible, for the disc dynamo i (i = 1, 2). The
other disc dynamo is denoted j. Each disc dynamo i is made up of an axis of rotation,
a disc and a wire, each made from the same conductive materials. These three ele-
ments constitute a closed electrical circuit, Ci, the wire being in sliding contact with
the disc’s rim at one end and with the axis at the other end. Electromagnetic coupling
between the two disc dynamos is made with the loop of each wire around the axis of
the other disc dynamo. Both disc dynamos are considered to be far enough apart to
disregard any other interaction. The circuit made up by each (i) disc’s dynamo rim
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neighbourhood, in which the azimuthal current is concentrated, is called Di. The set
of parameters and unknowns is listed below.

The system depends on 16 parameters. For each disc dynamo (i), a given mechan-
ical torque Gi/2π is applied from the outside onto the axis. The moment of inertia
of each disc (i) is Ji/(2π)2, and its friction coefficient is denoted by ki/(2π)2. The
circuit Di has an electrical resistance RDi and a self-inductance LDi. The circuit Ci
has an electrical resistance RCi and a self-inductance LCi. The mutual inductance
between Ci and Dj is Mji.

There are 10 system unknowns: currents ICi in Ci and IDi in Di, magnetic flux ΦDi
through Di and ΦCi through Ci, angular velocity 2πΩi of each disc (i). In order to
have a complete mathematical formulation of the problem, 10 independent equations
describing relations between the unknowns are needed.

(b) Governing equations

The electric field created by the magnetic field Bi., assumed to be vertical and
axisymmetric on the surface of the disc (i), is written as

E(M) = 2πΩ1Bir, (2.1)

at any point M(r) of the disc, where r denotes the radial cylindrical coordinate.
This leads to a potential difference between the axis and the rim of the disc:

∆V = ΩiΦDi, (2.2)

with

ΦDi = 2π
∫ R

0
Bir dr.

Therefore, the electrical equation for the circuit (i) is given by

ΩiΦDi = RCiICi + ΦCi, (2.3)

and the electrical equation for Di is reduced to

RDiIDi = −Φ̇Di. (2.4)

The magnetic flux through Ci is due on the one hand to its self-inductance and, on
the other, to the addition of the induction from (Dj). It follows that (i 6= j)

ΦCi = LCiICi +MjiIDj , (2.5)

and in a similar manner,

ΦDi = LDiIDi +MijICj . (2.6)

The mechanical equation of the disc (i) is written

Ji
(2π)2

d(2πΩi)
dt

=
∑

moments applied to the disc (i). (2.7)

The moments applied to the disc (i) are composed of the torqueGi/2π, the moment of
the mechanical friction −Ωiki/2π and the moment of the Lorentz force. The Lorentz
force is given by

d2FLor = dICidl×Bi. (2.8)
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Thus, the moment of the Lorentz force is given by

M t
Lor = −ICiΦDi

2π
. (2.9)

Therefore, (2.7) is written

JiΩ̇i = Gi − ΦDiICi − kiΩi. (2.10)

Consequently, equations (2.3)–(2.6) and (2.10) describe completely the system with
10 equations and 10 unknowns.

(c) Dimensionless modelling

The analysis of § 3 will be restricted to interactions between two identical discs. The
discussion is then reduced to four non-dimensional parameters. Electrical currents
are expressed in terms of magnetic flux, reducing the model to six unknowns and six
independent equations. They are expressed in dimensionless form.

From (2.5) and (2.6), ICi and IDj can be expressed in terms of φCi and φDj , and
replaced in (2.4), (2.3) and (2.10). By defining the following dimensionless variables:

τ =
RC

LC
t, Xi =

ΦDi√
GM

, Yi =
ΦCi

LC
√
G/M

, Zi =
M

RC
Ωi, (2.11)

the equations describing the behaviour of the two-disc dynamo are deduced from
(2.4), (2.3) and (2.10) in the following form:

Ẋi = r(Yj −Xi),

Ẏi = XiZi +mXj − (1 +m)Yi,

Żi = g{1− (1 +m)XiYi +mXiXj} − fZi,

 (2.12)

where

m =
M2

LCLD −M2 , g =
G

J

MLC

R2
C
, r =

RD

RC

L2
C

LCLD −M2 , f =
kLC

JRC
. (2.13)

Since M2 < LCLD, note that the magnetic interaction parameter m is always
positive.

3. Analysis of the two-disc dynamo

(a) The steady-state

The steady-state solutions of the system (2.12) are given by

X1 = Y2, X2 = Y1,

X1Z1 = Y1, X2Z2 = Y2, (3.1)
g{1−X1Y1} = fZ1, g{1−X2Y2} = fZ2.

For a coefficient f different from zero, (3.1) implies

Z1 = Z2, X1(Z2
1 − 1) = X2(Z2

2 − 1) = 0. (3.2)

Then two sets of steady-state solutions are obtained:

X1 = X2 = Y1 = Y2 = 0, Z1 = Z2 = g/f, (3.3 a)
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and

X1 = X2 = Y1 = Y2 = ±
√

1− (f/g), Z1 = Z2 = 1, (3.3 b)

(3.3 b) making sense when f 6 g.
The solution of (3.2), Zi = −1, leads to g(1 + X2

i ) + f = 0 and, consequently, is
not acceptable in the non-trivial case.

The steady-state solutions Xi and Yi are denoted by Xst and the Zi are denoted
by Zst. A linear stability analysis of each set of steady-state solutions (3.3 a) and
(3.3 b) is proposed in the next section.

(b) The linear stability analysis

The stability of each steady-state solution set is investigated by adding to them
small perturbations (xi, yi, zi). Neglecting the quadratic terms, these perturbations
verify the following system:

ẋi = r(yj − xi),
ẏi = Zstxi +Xstzi +mxj − (1 +m)yi,
żi = gXst(−xi − (1 +m)yi +mxj)− fzi.

 (3.4)

Looking for non-trivial solutions of (3.4) proportional to exp(pt) where p is complex,
leads to a polynomial function ∆(p) of sixth degree. The stability of the steady state
is then given by the sign of the real part of the roots of ∆(p).

For Xst = 0 and Zst = g/f , the polynomial function is given by

∆(p) = (f + p)2[p2 + (m+ r + 1)p+ r(1 + (g/f))]

× [p2 + (m+ r + 1)p+ r(1− (g/f))]. (3.5)

The roots of ∆ always have a negative real part, unless r(1− (g/f)) < 0. Therefore
the steady state (3.3 a) is stable if and only if g/f < 1.

For Xst = ±(1− (f/g))1/2 and Zst = 1, the polynomial function is given by

∆(p) = [p3 + (m+ r + f + 1)p2 + (g(m+ 1) + rf)p+ 2r(g − f)]

× [p3 + (m+ r + f + 1)p2 + (g(m+ 1) + r(f + 2))p+ 2rf ]. (3.6)

The second factor of (3.6) has only negative real part roots (unless rf = 0). Indeed,
it would lead to instability if and only if

2rf
r + f +m+ 1

> g(m+ 1) + r(f + 2)⇔ −2r(r +m+ 1)
r + f +m+ 1

> g(m+ 1) + rf,

which is not possible in a non-trivial case.
Therefore, the condition equivalent to linear instability of the solutions of (3.3) is

2r(g − f)
r + f +m+ 1

> g(m+ 1) + rf, (3.7)

or equivalently,

r >
(m+ 1)(m+ f + 1)

1−m (3.8 a)
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Figure 2. Bifurcation diagram of the two-disc dynamo model. Assuming that condition (3.8 a)
is verified, then a stable steady-state solution (Xst;Zst) exists unless g/f is sufficiently large to
verify (3.8 b).
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Figure 3. Illustration of the linear stability analysis of the steady-state Xst = ±(1− f/g)1/2

and Zst = 1. (a) Always stable. (b) Stable unless (3.8 b) is verified.

and

g

f
>

2r + r(r + f +m+ 1)
2r − (m+ 1)(r +m+ f + 1)

. (3.8 b)

In figure 2, the stable steady-state solutions of the system (2.12) are plotted in terms
of g/f . It is interesting to note that condition (3.8 a) only concerns the parameters r,
m and f . In figure 3, the region of the (r,m)-plane corresponding to linear instability
(3.8 a) is indicated.
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Figure 4. A numerical computation of Y1 versus time, with (m; g; r; f) = (0.5; 50; 8; 0, 5),
(X1;X2;Y1;Y2;Z1;Z2)initial = (−1.4;−1;−1;−1.4; 2.2;−1.5).

One notes that, unless on bifurcation points or on the boundary between stability
and instability, the roots of ∆(p) do not have zero real part. So, from the Lyapunov
theorems, stability of the nonlinear initial system (2.12) can be deduced from the
results of the linear stability analysis.

In figure 4, a numerical computation of Y1 versus time is presented for parameters
verifying (3.7). The behaviour of the solution is chaotic and presents typical reversals.

4. Formulation and analysis of the one-disc dynamo

The dimensionless model for the one-disc dynamo with azimuthal current and mechan-
ical friction can be deduced from (2.12), by setting Xi = Xj = X, Yi = Yj = Y and
Zi = Zj = Z:

Ẋ = r(Y −X),

Ẏ = XZ +mX − (1 +m)Y,

Ż = g{1− (1 +m)XY +mX2} − fZ.

 (4.1)

The steady-state solutions of (4.1) are identical to (3.3 a) and (3.3 b). The linear
stability analysis of (4.1) also leads to the same condition of instability (3.7) and
bifurcation diagram (figure 2) as for the two-disc dynamo. Therefore, the conclusions
concerning the two-disc dynamo are also valid for the one-disc dynamo.

5. Conclusion

The two-disc dynamo has been studied taking into account the existence of azimuthal
currents in the discs and non-zero mechanical friction. The linear stability of the
steady solutions of the symmetric system (identical discs) has been analysed and
has shown that both stable and unstable cases are expected, depending on four
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parameters derived from the dimensionless equations. In particular, unstable steady
solutions are possible when these parameters verify two specific conditions (3.8 a)
and (3.8 b). If (3.8 a) is verified, then (3.8 b) shows that there is always a mechanical
torque G applied to the discs, sufficiently large to lead to instabilities. The existence
of these instabilities is probably due to the existence of azimuthal currents. Indeed,
they have the possibility of amplifying the magnetic field induced by the electrical
loop, overbalancing the damping induced by mechanical friction.

In the case where azimuthal currents are neglected (1/r = 0), then (3.8 b) is not
verified. This confirms that the two-disc dynamo system as formulated by Rikitake
but including symmetric mechanical friction, is in fact always stable, as empha-
sized by Hide (1995). In the case where friction coefficients are neglected (f = 0),
then the system is structurally unstable and so not physically realistic. Therefore,
this analysis proves that it is not possible to neglect either the azimuthal currents or
mechanical friction without any loss of generality. Indeed, such a false analysis would
either lead to over stability or to structural instability. Moreover, taking into account
these two important features (azimuthal currents and mechanical frictions), chaotic
solutions have been found, depending on the parameters of the problem. Therefore,
the two-disc dynamo as modelled by Rikitake but incorporating symmetric mechan-
ical friction and azimuthal currents, stays, to our knowledge, the simplest system
presenting magnetic field reversals.

The authors thank Professor R. Moreau, from the Institut National Polytechnique de Grenoble,
for having suggested this study and also Professor R. Hide for having recommended the inclusion
of mechanical friction. Since this paper was accepted for publication, one referee has drawn our
attention to a study describing the segmented one-disc dynamo in the presence of mechanical
friction (Knobloch 1981), with which our findings in § 4 are in perfect agreement.
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