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Most of the studies concerning the dynamo effect are motivated by astrophysical and
geophysical applications. The dynamo effect is also the subject of some experimental
studies in fast breeder reactors (FBR) for they contain liquid sodium in motion with
magnetic Reynolds numbers larger than unity. In this paper, we are concerned with
the flow of sodium inside the core of an FBR, characterized by a strong helicity. The
sodium in the core flows through a network of vertical cylinders. In each cylinder
assembly, the flow can be approximated by a smooth upwards helical motion with
no-slip conditions at the boundary. As the core contains a large number of assemblies,
the global flow is considered to be two-dimensionally periodic. We investigate the
self-excitation of a two-dimensionally periodic magnetic field using an instability
analysis of the induction equation which leads to an eigenvalue problem. Advantage
is taken of the flow symmetries to reduce the size of the problem. The growth
rate of the magnetic field is found as a function of the flow pitch, the magnetic
Reynolds number (Rm) and the vertical magnetic wavenumber (k). An α-effect is
shown to operate for moderate values of Rm , supporting a mean magnetic field.
The large-Rm limit is investigated numerically. It is found that α = O(Rm−2/3),
which can be explained through appropriate dynamo mechanisms. Either a smooth
Ponomarenko or a Roberts type of dynamo is operating in each periodic cell,
depending on k. The standard power regime of an industrial FBR is found to
be subcritical.

1. Introduction
1.1. MHD studies in the FBR

The fast breeder reactors (FBR) are cooled with liquid sodium which has a high
electrical conductivity (4 × 106 Ω−1 m−1 at 500 ◦C). Owing to the large size and
velocity of an FBR, the magnetic Reynolds numbers (Rm) calculated for different
parts of the reactor are found to be much larger than unity. For instance, the typ-
ical dimensions of length and velocity relevant to the sodium flow in the core, are
1 m and 5 m s−1 leading to Rm = 25 at 500 ◦C. Then, at first sight, some MHD
phenomena of dynamo type could take place in an FBR, with a transfer of me-
chanical energy (from the pumps) into magnetic energy. This effect has been pointed
out by Bevir (1973) and was also the subject of a note by M. Steenbeck (1973)
to the Soviet Academy of Sciences (private communication from K.-H. Rädler).
This effect might be undesirable for the smooth running of the reactors (e.g. in-
creased charge losses and disturbances of the sodium motion resulting from the
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back reaction of the magnetic field through the Lorentz forces, and electromag-
netic strains on the structures). Experimental measurements have been done in the
FBR BN600 (Kirko et al. 1982), in the FBR Phenix (Werkoff & Garnier 1988)
and more recently in the FBR Superphenix (Alemany et al. 1998). Until now, no
dynamo effect has been experimentally observed. Nevertheless, the core of an FBR
has never been the subject of electromagnetic measurements, essentially because the
high temperatures (500 ◦C) and the neutronic flux make it hostile to the usual elec-
tromagnetic probes. The motivation of this paper is to evaluate theoretically the
possibility of dynamo action in the core of an FBR for the ideal case of a homoge-
neous electromagnetic medium. The data used in this paper correspond to the FBR
Phenix.

1.2. Dynamo effect

In a homogeneous medium, the Maxwell equations in the MHD approximation yield
the induction equation

∂tB = ∇× (u× B) + Rm−1∇2B, with ∇ · B = 0, (1.1a , b)

written in its dimensionless form, where B and u are the magnetic and velocity fields.
The dimensionless parameter Rm is the magnetic Reynolds number, defined by

Rm = σµUL, (1.2)

where σ denotes the electrical conductivity, µ the magnetic permeability, U and L
characteristic scales of speed and length relevant respectively to the flow and the
magnetic field. We speak of a kinematic dynamo provided that the B-field solution of
(1.1) is growing exponentially in time. For a given geometry of the velocity field, the
growth of the magnetic field is generally obtained above a threshold of Rm called
the critical magnetic Reynolds number. Therefore, to know whether a dynamo effect
is possible inside the core of an FBR, knowledge of the geometry, electromagnetic
properties and intensity of the sodium flow is of primary interest. (For reviews on
dynamo theory, see e.g. Moffatt 1978; Krause & Rädler 1980; Childress & Gilbert
1995.)

1.3. Description of the core flow

The core of an FBR (figure 1a) is composed of more than one hundred vertical
cylinders of hexagonal cross-section. In each cylinder assembly (figure 1b), the liquid
sodium flows between vertical rods (figure 1c) which contain the nuclear fuel. On
its way up, the sodium flow receives the heat resulting from the nuclear reactions,
and this energy is released after the sodium has left the core through specific heat
exchangers. Each assembly contains more than two hundred rods. In order to ensure
sufficient space between the rods and enable the sodium to flow between them and
be heated, a helical space wire is wound around each rod.

A study of the flow pattern has been done by Lafay, Meunant & Barroil (1975) in
the simple case of one 19-rod assembly. They obtained numerical and experimental
results summarized in figure 2. A map of the ratio of the horizontal to the vertical
velocity field components (UH/UZ ) is given in a horizontal cross-section, for a given
flow rate. The maximum horizontal velocity (63% of UZ ) is significantly larger than
the value predicted assuming that the flow follows the wire wrap angle (16% of UZ ).

In the case of a 217-rod assembly, it would be a hard task to determine the motion
in detail, either experimentally or numerically. This is why we shall consider, in this
paper, an idealized velocity field, keeping the main geometrical features of the core
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Figure 1. (a) The core containing 121 assemblies arranged in a honeycomb structure (horizontal
section). (b) One assembly (only one sixth of) containing 217 rods (horizontal section). (c) One rod
(vertical section). A helical space wire (3) is wrapped around each rod (2). The sodium is constrained
to flow within the boundaries (1) of each assembly.

Wire rotation

Experimental

Calculated

Figure 2. One assembly containing only 19 rods for the experimental investigation of Lafay et al.
(1975). The numbers represent the ratios of the horizontal to the vertical velocity field components
UH/UZ , in %.

flow which are known to play an important role in dynamo action. The first feature
is a non-zero mean helicity which is known to enhance dynamo action. It exists at
the length scale of one assembly and also at the smaller length scale of one rod,
due to the helical space wire. The second feature is the two-dimensionally periodic
arrangement of the assemblies and rods.

1.4. Outline

The analytical expression for an ideal incompressible flow satisfying the two previous
features (helicity and two-dimensionally periodicity) is introduced in §2.1. It is made
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up from a two-dimensionally periodic network of smooth helical motions. Two related
types of dynamo mechanisms are investigated in the light of classic results of dynamo
theory (§2.2). The mathematical model leading to an eigenvalue problem is developed
(§3.1), and advantage is taken of the symmetries of the flow to reduce the size of the
problem (§3.2). In the case where a mean magnetic field exists, an α-effect is derived
(§3.3). On the basis of asymptotic analysis results, it is shown that in the limit of large
Rm , α = O(Rm−2/3). Some numerical results are presented (§4) for a wide range of
Rm up to 212, enforcing the theoretical predictions of §2.2 and §3.3.

The numerical results concerning the parameters of an FBR core flow are finally
presented (§5). In that case, the ideal flow of §2.1 represents the mean flow in the core,
at the length scale of either one assembly or one rod.

2. The velocity field
2.1. Analytical expression

We consider a solenoidal velocity field of the form

u = ∇ψ(x, y)× ẑ + w(ψ)ẑ, (2.1)

where x and y (and, below, z) are the dimensionless Cartesian coordinates, ẑ the unit
vector in the z-direction and ψ the stream function of the flow. This class of steady
flows, two-dimensionally periodic and with the vertical z-velocity being constant on
stream surfaces, has been the subject of intensive study, starting with the pioneering
work of Roberts (1970, 1972). He found that, for w = ψ = cos x − cos y (referred
to as the Roberts flow), dynamo action occurs. A corresponding α-effect has also
been derived. Childress (1979) generalized this result to any non-negative function
ψ vanishing on the boundary, with natural periodic boundary conditions for the
magnetic field, and Rm � 1. With an appropriate boundary layer analysis, he found
that α = O(Rm−1/2) in the limit of large Rm , provided that ∇2ψ(x, y) < 0. The
possibility of fast dynamo action has been investigated by Soward (1987), modifying
the Roberts flow by adding vorticity field singularities placed at the X-type stagnation
points of the flow (see also Soward 1989). The α-effect for a family of cat’s-eye flows
defined by ψ = sin x sin y+ δ cos x cos y has been investigated by Childress & Soward
(1989). Recently, Tilgner & Busse (1995) studied the dynamo action of the Roberts
flow at moderate Rm (up to 40) for some specific subharmonic magnetic modes.
Their work was motivated by a laboratory dynamo experiment (Busse et al. 1996;
Rädler, Apstein & Schüler 1997).

For our purpose, we consider a family of spiralling vortices with a non-negative
velocity in the z-direction, defined by (2.1) and

w(x, y) = Kψ, ψ(x, y) = a(1 + cos x)(1 + cos y), (2.2)

where K and a are positive coefficients. This field differs from the Roberts flow for
which the screw-sense of each cell is identical but the direction of flow alternates
between one cell and its immediate neighbour.

2.2. Dynamo mechanisms

2.2.1. Dynamo of Roberts type

The flow (2.2) is equal to zero at the cell boundaries. This defines a set of stagnation
points corresponding to ψ = 0, located at x = (2n + 1)π and y = (2m + 1)π, with
n and m integers. The cell corners are high-order stagnation points, the character of
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which is quantified as follows. The Lagrangian variables x(x0, y0, t), y(x0, y0, t) of the
flow (2.2) satisfy

∂t(x, y) = 4ac
(
− sin

y

2
cos

x

2
, sin

x

2
cos

y

2

)
, (2.3)

where c is a coefficient defined by the initial condition at time t = t0

cos
x(t)

2
cos

y(t)

2
= cos
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2
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y(t0)

2
= c. (2.4)

For symmetry reasons, it is sufficient to consider one quarter of the primary cell, e.g.
(x, y) ∈ [0, π]2. Then, (2.3) and (2.4) imply that

∂tx = −4ac
(

cos2 x

2
− c2

)1/2

, ∂ty = 4ac
(

cos2 y

2
− c2

)1/2

. (2.5a , b)

Now, provided that 2|c| 6 |x− π| � 1, and for (x, y) = (π− 2c, 0) at t = t0, we have

x = π− 2c cosh[2ac(t− t0)]. (2.6)

The x-component of a particle frozen in the fluid at the vicinity of the corner
(π, π) is then stretched exponentially as t→ ∞, while the y-component is contracted.
Therefore, we would expect generation of magnetic field in sheets connecting the
corners and aligned with the cell boundaries. Let δ be the flux sheet width and
assume δ � 1. Then the horizontal velocity in the sheet is O(δ), yielding an effective
magnetic Reynolds number δRm . The sheet width is then δ = O(δRm)−1/2, which
implies

δ = O(Rm−1/3). (2.7)

From (2.2), we have also

ψ ∼ δ2 = O(Rm−2/3). (2.8)

Now we can estimate the time a particle takes to turn through π/4 rad. This
corresponds to x = y implying from (2.4) that x = π− 2c1/2. When replaced in (2.6)
this gives the time τC for a fluid particle to complete a circuit of the cell:

τC ∼ 2

ac
ln(1/c), (2.9)

which, when applying the relation ψ = 4ac2 and (2.8), leads to

τC ∼ 2

(aψ)1/2
ln

4a

ψ
= O(Rm1/3 ln Rm). (2.10)

This convection time scale may be compared to the diffusion time scale τD ∼ δ2Rm =
O(Rm1/3), which stresses the slow dynamo tendency. This is in agreement with
Theorem 6.1 in Childress & Gilbert (1995) which excludes from the class of fast
dynamos any steady smooth two-dimensional flow.

2.2.2. Dynamo of Ponomarenko type

The straight lines (x, y) = (2nπ, 2mπ) determine the axes around which the spiralling
motions are developed. In the vicinity of such an axis, the flow consists of solid-body
helical motion. This can be seen e.g. in the vicinity of the axis x = y = 0, considering
the expression for the velocity field (2.2) with respect to dimensionless cylindrical
coordinates (r, θ, z). At first order in r, we have (ur, uθ, uz) = (0, 2ar, 4Ka). It is a
solid-body helical motion with pitch χ = uz/(uθ)r=1 = 2K .
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The single screw motion u = (0, rω(r),W (r)) has been the object of much investi-
gation in dynamo theory, starting with Ponomarenko (1973). The solid-body motion
has been shown to be a fast dynamo (Gilbert 1988) whereas the smooth motion
belongs to a wide class of slow dynamos (Soward 1990). Both have been investigated
as the basis of the realization of an experimental dynamo (Gailitis et al. 1987; Gailitis
1993). In the limit of large Rm , the behaviour of the magnetic field has been ana-
lysed asymptotically both in the kinematic frame (Gilbert 1988; Ruzmaikin, Sokoloff
& Shukurov 1988) and in the dynamical frame (Bassom & Gilbert 1997). We now
summarize a few of the results, obtained with the kinematic asymptotic approach for
the smooth Ponomarenko flow, that will be useful in this paper. In the limit of large
Rm , the maximum growth rate of the magnetic field and the corresponding azimuthal
and vertical modes satisfy

pmax = O(Rm−1/3), mmax, kmax = O(Rm1/3). (2.11)

The magnetic field is localized in a layer of thickness δ = O(Rm−1/3), determined by
mω′(r) + kW ′(r) = 0. Dynamo action is then developed in the neighbourhood of this
resonant surface, through an αω-generating mechanism (for a review, see e.g. Soward
1994; Childress & Gilbert 1995).

3. Formulation of the eigenvalue problem
3.1. Fourier-analysed equations

We consider solutions of the induction equation (1.1a) of the form

B(x, y, z, t) = Re [b(x, y) exp(pt+ ikz)], (3.1)

where the real part of p, denoted below by pr , is the growth rate of the magnetic
field and k the vertical magnetic wavenumber. The horizontal (x, y)-components of
the induction equation (1.1a) yield the following equation:

[(uH · ∇H ) + p+ Rm−1k2 + ikKψ]bH = (bH · ∇H )uH + Rm−1∇2
HbH, (3.2)

where the subscript H (Z) denotes the horizontal (vertical) components or derivatives.
According to (1.1b), the vertical component of the magnetic field is given by

∇H · bH = −ikbZ . (3.3)

Now, decomposing bH in a Fourier series with respect to both x and y gives

bH =

+∞∑
m=−∞

+∞∑
n=−∞

(fm,n, gm,n) exp[i(mx+ ny)], (3.4)

where fm,n and gm,n are complex coefficients, and substituting (3.4) into (3.2), the
following relations are derived:

a−1pfm,n =
(−a−1Rm−1(k2 + m2 + n2)− ikK

)
fm,n

+ 1
4

(− ikK + (m− n− 1)
)
fm−1,n−1 + 1

2
(−ikK − n)fm−1,n

+ 1
4

(− ikK + (−m− n+ 1)
)
fm−1,n+1 + 1

2
(−ikK + m)fm,n−1

+ 1
4

(− ikK + (m+ n+ 1)
)
fm+1,n−1 + 1

2
(−ikK − m)fm,n+1

+ 1
4

(− ikK + (−m+ n− 1)
)
fm+1,n+1 + 1

2
(−ikK + n)fm+1,n

− 1
4

(
gm−1,n−1 + gm−1,n+1 + 2gm,n−1 + 2gm,n+1 + gm+1,n−1 + gm+1,n+1

)
(3.5a)
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and

a−1pgm,n =
(−a−1Rm−1(k2 + m2 + n2)− ikK

)
gm,n

+ 1
4

(− ikK + (m− n+ 1)
)
gm−1,n−1 + 1

2
(−ikK − n)gm−1,n

+ 1
4

(− ikK + (−m− n− 1)
)
gm−1,n+1 + 1

2
(−ikK + m)gm,n−1

+ 1
4

(− ikK + (m+ n− 1)
)
gm+1,n−1 + 1

2
(−ikK − m)gm,n+1

+ 1
4

(− ikK + (−m+ n+ 1)
)
gm+1,n+1 + 1

2
(−ikK + n)gm+1,n

+ 1
4

(
fm−1,n−1 + 2fm−1,n + fm−1,n+1 + fm+1,n−1 + 2fm+1,n + fm+1,n+1

)
. (3.5b)

A truncation of the system (3.5b) is done imposing an integer N such that

fm,n = gm,n = 0 if max
(|m|, |n|) > N. (3.6)

According to Roberts (1972), since all generalized eigenfunctions of (3.5a, b) satisfy
homogeneous linear elliptic differential equations with infinitely differentiable co-
efficients and periodic boundary conditions, the eigenvalues found numerically are
expected to converge as N → ∞. In practice, for each computation, the truncation
error is evaluated by

ρ =

(
1− |VN−1|2

|VN |2
)1/2

, (3.7)

where VN is the eigenvector truncated at rank N and VN−1 is equal to VN but for
which the components arising from the mode N are replaced by zero. In fact, the
whole system (3.5a, b) becomes numerically expensive when a high level of accuracy
is required. In particular, the higher the magnetic Reynolds number is, the more
important the small field scales are, and the higher modes must be computed. This is
why we prefer to solve smaller sub-systems, derived from the geometrical symmetries
of the flow (2.2).

3.2. Symmetry arguments

Let us define the operator corresponding to a rotation of −π/2 in the (x, y)-plane

T (X ) 7−→ T D(X ) = D−1T (DX ) (3.8)

with

D =

 0 1 0
−1 0 0

0 0 1

 and X =

 x
y
z

 ,

then the following relations are always satisfied for any vector field T 1 and T 2:

(∇× T 1)
D = ∇× (T D

1 ), (∇2T 1)
D = ∇2(T D

1 ), (T 1 × T 2)
D = T D

1 × T D
2 . (3.9)

It follows that if (u,B) satisfies the induction equation (1.1a), then so does (uD ,BD).
Consequently, if (uH, bH ) satisfies (3.2), then so does (uDH, b

D
H ). In addition, the flow

(2.2) satisfies uD = u. It follows that both bH and bDH must satisfy the same eigenvalue
problem (3.2). Therefore, for a given eigenvalue p, as bH and bDH are both eigenvectors
they must be constant multiples of each other. This can be written as

bH (x, y) = −C[ẑ × bH ](y,−x), (3.10)

where C is a complex coefficient, and in terms of the Fourier coefficients

fm,n = Cgn,−m and gm,n = −Cfn,−m. (3.11)
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From (3.11), it follows that fm,n = C4fm,n, implying that

C ∈ {1,−1, i,−i}. (3.12)

The four possible values of C , that we shall denote by C1, C−1, C+i and C−i, define
four families of eigensolutions. Each family can be investigated independently from
each other. Inserting (3.11) in (3.5a, b), we can write for each value of C a sub-system
of resolution. For given large N, the size of each sub-system is about sixteen times
smaller than the size of the full original system (3.5a, b). As a result, an accurate
evaluation of the growth rates for values of Rm up to 212 has been possible, requiring
a number of modes up to N = 29. Some tests have been done in order to check
that the union of eigensolutions of the four sub-systems is identical to the set of
eigensolutions of the system (3.5a, b). Differences lower than 10−4 for the eigenvectors
and 10−6 for the eigenvalues have been found, the residual error probably coming
from the method of derivation of the eigenparameters†. In addition, we can show
that the eigensolutions of the four sub-systems also satisfy the following relations:

p+i(k) = pc.c.−i (−k), p+1(k) = pc.c.
+1(−k), p−1(k) = pc.c.−1(−k), (3.13a)

V+i(k) = V c.c.
−i (−k), V+1(k) = V c.c.

+1(−k), V−1(k) = V c.c.
−1(−k), (3.13b)

where c.c. denotes complex conjugate. Therefore, it is sufficient to focus on the positive
values of k.

Roberts (1972) used similar arguments for his first motion. As he was interested
in eigensolutions with a non-zero mean value, he concentrated only on the cases
C = ±i (C being denoted ω in Roberts (1972)). In this paper, we shall compute
the eigensolutions for the four values of C , in order to see whether the mean field
solution is dominant or not. The geometrical meaning of the four independent families
of eigensolutions will be detailed in §4.2.2.

3.3. α-effect

The expression for the kinematic helicity of the flow (2.2)

u · ∇× u = −w∆ψ + ∇ψ · ∇w = Ka2(1 + cos x)(1 + cos y)(2 + cos x+ cos y) (3.14)

has a constant sign everywhere (positive as K). It follows that an α-effect is expected
which should enable a mean-field dynamo to operate (see e.g. Krause & Rädler 1980).
In order to characterize this physical process, the velocity and the magnetic fields
are expressed as the sum of a mean part on a periodic cell, denoted by 〈 〉, plus a
fluctuating part, denoted by ˜ ,

u = 〈u〉+ ũ, b = 〈b〉+ b̃, (3.15)

the mean being defined by

〈· · ·〉 =

∫ +π

−π

∫ +π

−π
· · · dx dy. (3.16)

The mean part of the induction equation (1.1a) on a periodic cell is(
p+ Rm−1k2 + ikK〈ψ〉)〈b〉 = ikẑ × 〈ũ× b̃〉. (3.17)

† We used the subroutine CGEEV of the standard LA PACK driver routine (version 1.0).
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Clearly, ẑ × (ũ × b̃) = (ẑ · b̃Z )ũH − (ẑ · ũZ )b̃H . In terms of the Fourier coefficients, we
find that

〈(ẑ · ũZ )b̃H〉 =
Ka

4

(
2(f−1,0 + f0,−1 + f0,1 + f1,0) + f−1,−1 + f−1,1 + f1,−1 + f1,1,

+2(g−1,0 + g0,−1 + g0,1 + g1,0) + g−1,−1 + g−1,1 + g1,−1 + g1,1, 0
)
, (3.18)

〈(ẑ · b̃Z )ũH〉 =
ia

4k

(
1∑

m,n=−1

mnfm,n + g−1,−1 + g−1,1 + 2g0,−1 + 2g0,1 + g1,−1 + g1,1,

−
1∑

m,n=−1

mngm,n − f−1,−1 − f−1,1 − 2f−1,0 − 2f1,0 − f1,−1 − f1,1, 0

)
. (3.19)

From (3.11), we have (f0,0, g0,0) = −C2(f0,0, g0,0), implying that only C = ±i can
lead to a non-zero mean magnetic field. Furthermore, g0,0 = −Cf0,0, implying that
〈bH〉 = f0,0(1,−C, 0). Then, for C = ±i, (3.18) and (3.19) simplify in such a way that
we can derive two coefficients αS and αT satisfying

αS〈bH〉 = i〈(ẑ · ũZ )b̃H〉 and αT 〈bH〉 = −i〈(ẑ · b̃Z )ũH〉. (3.20)

They are given by

αS =
iKa

2f0,0

(2f1,0 + 2f0,1 + f1,1 + f1,−1), (3.21a)

αT =
a

2kf0,0

(−2Cf1,0 + (1− C)f1,1 − (1 + C)f1,−1). (3.21b)

Therefore, equation (3.17) can be written in the form

p+ Rm−1k2 + ikK〈ψ〉 = −k(αS + αT ). (3.22)

The complex coefficients αS and αT correspond, respectively, to the relative contribu-
tion of the terms −ikK〈ψ̃b̃H〉 and 〈(b̃H · ∇)ũH〉 in (3.2) to the horizontal mean field
generation. Their real parts are related to the stretch and twist mechanisms introduced
by Soward (1987).

The term ikK〈ψ〉 in (3.22) expresses the influence of the mean vertical motion on
the pulsation of the mean magnetic field (imaginary part of p), upon which a dynamo
instability of convective type will form. This is not the case, for example in the Roberts
flow for which the pulsation is zero due to the zero mean of the alternated vertical
flow.

Now, defining α = αS + αT (also called the generalized α-effect in Soward 1994), we
can show that 〈ũ × b̃〉 = −iCα〈bH〉. For a given Rm , we can express α by its Taylor
series representation with k adopted as the expansion parameter

α(k) = α(0) + k
∂α

∂k
(0) + . . . . (3.23)

The first term is the usual α-effect and produces a non-zero mean electromotive force.
The term (∂α/∂k)(0) has the dimension of a magnetic diffusivity. Now, suppose that
the dynamo is of Roberts type (§2.2.1). Then (2.8), obtained in the limit of large Rm ,
and (3.22) lead to

α = O(Rm−2/3) (3.24)
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Figure 3. Growth rate pr versus k, for χ = 1, C = +i and Rm ∈ {2−2, 2−1, 20, . . . , 26}.

and

p = O(Rm−1/3), k = O(Rm1/3). (3.25)

In the case of a smooth Ponomarenko-type dynamo (§2.2.2), the relations (3.24) and
(3.25) hold, from (2.11) and (3.22).

4. Numerical results
For convenience, we use as control parameters Rm , the magnetic Reynolds number,

and χ, the pitch of the solid-body helical motion (ur, uθ, uz) defined in the vicinity of
the axis of rotation x = y = 0 as introduced in §2.2.2. We express the coefficients K
and a in terms of χ, applying the definition χ = uz/(uθ)r=1 and setting u2

r +u2
θ +u2

z = 1.
This yields

K = χ/2, a−1 = 2(1 + χ2)1/2. (4.1)

With regard to generalization, we note that it is sufficient to concentrate on a given
non-zero value of χ, as the eigenparameters for any other value of the pitch, say χ′,
can be deduced from the following change of variables:

k′ =
χ

χ′
k, Rm ′ =

(
1 + χ′2

1 + χ2

)1/2

Rm , p′ =

(
1 + χ2

1 + χ′2

)1/2 [
p+ Rm−1k2

(
1− χ2

χ′2

)]
.

(4.2)

The results below have been obtained for χ = 1.

4.1. Moderate Rm

For each value of C ∈ {−i,+i,−1,+1}, the growth rate pr has been computed for
different values of Rm up to 64. Only the case C+i (or C−i with k < 0) yields a
positive growth rate (figure 3).

For Rm = 16, we note that pr(k) presents two peaks of approximately equal values
for k = 0.23 and k = 0.87, meaning that two dominant modes may coexist. These
two solutions correspond to the two dynamo mechanisms introduced in §2.2. This
can be seen when plotting the magnetic intensity in the plane (x, y). In figure 4(a), the
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Figure 4. Isolines of the magnetic intensity |b| for Rm = 16 and (a) k = 0.23, (b) k = 0.87.
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Figure 5. (a) Generalized α-effect versus k, with the same parameters as in figure 3. (b) Usual α-effect

(−αr(k = 0)) versus Rm , for χ = 1 and C = +i. It is found that αr(k = 0) = O(Rm−2/3) for large
Rm .

magnetic intensity is found to be a maximum at the cell boundaries, corresponding
to a Roberts-type dynamo. In figure 4(b), the maximum is located inside the cell,
approximately at x = 0 and y = ±2, corresponding to a Ponomarenko-type dynamo
with an azimuthal mode m = 1. Therefore, there is a competition between the two
mechanisms (i.e. the Roberts and Ponomarenko mechanisms) and the dominance
of one over the other depends on Rm . The Roberts mechanism is dominant for
small Rm and the Ponomarenko mechanism for large Rm , the transition occurring
approximately at Rm = 16.

The real part of α(k,Rm) is plotted in figure 5(a) for the same values of Rm as in
figure 3. On applying (3.23), the usual α-effect is deduced for k = 0 from these curves
(plotted versus Rm in figure 5b). In the limit of large Rm , the usual α-effect is found
to be O(Rm−2/3), as predicted in §3.3.
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Figure 6. Growth rate versus k, for C ∈ {+i,−i,+1,−1} and (a) Rm = 28, (b) Rm = 29,
(c) Rm = 210, (d) Rm = 211.

4.2. Large Rm

4.2.1. Mode crossings

The results obtained for Rm 6 64 show that only C+i yields a non-negative growth
rate. Now, for larger values of Rm , the growth rates corresponding to C−i, C+1, C−1

can also be non-negative, depending on k and Rm (figure 6). For each value of C ,
the maximum growth rate, defined by

γ(Rm) = sup
k>0

pr(k,Rm), (4.3)

and the corresponding wavenumber kγ are plotted, versus Rm , in figure 7(a,b).
For Rm = 210 and Rm = 211, γC+1

is found to be larger than γC+i
(figure 6), implying

that the dominant mode does not require an α-effect as C+1 corresponds to a zero
mean magnetic field. This contrasts with §4.1 in which only a mean-field solution was
found. For Rm = 212, γC−i

becomes dominant (figure 7a) and we expect that for larger
Rm γC−1

will become dominant in turn. Furthermore, the curve C+i on figure 6 peaks
again for k ≈ 4 suggesting that for higher Rm , γC+i

will become dominant again. The
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Figure 7. The maximum growth rate (a) and the corresponding wave number (b), versus Rm , for
C ∈ {+i,−i,+1,−1}.

wavenumber kγ takes discrete values at large Rm (figure 7b), kγ ∈ {0.8; 1.6; 2.4; 3.2}.
Such mode crossings are in fact typical of a smooth Ponomarenko-type dynamo, as
shown below (§4.2.2). Incidentally, figure 7(a) suggests that the flow (2.2) is a slow
dynamo.

4.2.2. Helical modes

In order to describe the geometrical properties of the four subsets of eigensolutions
defined by the four values of C , it is convenient to write the b-field in the following
form:

bx + iby = (br + ibθ) exp(iθ), (4.4)

where (r, θ, z) are the cylindrical coordinates. Suppose that we have a helical mode as
a solution of our problem. Then it can be written

B = Re[b′(r) exp(pt+ i(kz − mθ))]. (4.5)

This implies that

(bx + iby)(r, θ) = (b′r + ib′θ)(r) exp[i(1− m)θ]. (4.6)

In addition, the relation (3.10), derived from the symmetries of the flow (2.2), can be
written

(bx + iby)(r, θ) = −iC(bx + iby)(r, θ − 1
2
π). (4.7)

Applying (4.6) to each side of (4.7), we find that

m+ l ≡ 2 (4), where C = il , l being integer. (4.8)

As a result, the four independent subsets of eigensolutions correspond to four different
families of azimuthal modes, determined as follows:

C+i m ≡ 1 (4), (4.9a)

C+1 m ≡ 2 (4), (4.9b)

C−i m ≡ 3 (4), (4.9c)

C−1 m ≡ 4 (4). (4.9d)
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This correspondence is confirmed when plotting the magnetic field intensity resulting
from the numerical calculations (figure 8a–e). Therefore, at large Rm , the smooth
Ponomarenko-type dynamo seems to be the dominant mechanism operating. This is
also consistent with the constant ratio mentioned in §4.2.1

kγ

m
∼ 0.8, (4.10)

which defines the pitch of the helical magnetic solution and determines the localization
of the resonant surface to a neighbourhood within which dynamo action occurs. In
figure 8(a–e), this surface corresponds to the cylinder r ≈ 1 on which the 2m white
islets are distributed.

Figure 8( f ) shows a Roberts-type dynamo solution for C+i and Rm = 211. It
corresponds to k = 2.5 for the curve C+i of figure 6(d). This curve has in fact
three maxima: two of Ponomarenko type and one of Roberts type. Though it is
not clear in figure 6(d), the transition between the different types of solutions is not
smooth. There is a discontinuous jump in the slopes as can be also seen in the other
curves of figure 6(a–d). This differs from the case Rm = 16 (figure 3) for which two
eigensolutions are plotted in figure 4. Here we can imagine easily a smooth transition
leading from one picture to the other upon changing k continuously from 0.23 to
0.87. In figure 9, a diagram is sketched in the parameter space (Rm, k), showing the
different types of dynamo, Roberts or Ponomarenko, which can be obtained.

5. Application to the core of an FBR
The velocity field (2.2) has been chosen since it corresponds to features of the flow

through the core of an FBR such as helicity and two-dimensional periodicity. However,
it may be too simple for the following reasons. For convenience we have modelled the
hexagonal array of rods and assemblies in the core by an orthogonal array. The flow
in one assembly has at least two scales of helical motion, namely the scales of one rod
and one assembly, instead of only one for the flow that we used in (2.2). The global
sodium flow inside the reactor is composed of upwards flow in the core but also of
downwards flow through the pumps and heat exchangers which is not considered.
From this, it follows that, at the scale of the reactor, the dynamo instability may be
absolute rather than convective, as mentioned in §3.3. Furthermore, the materials in the
core are far from having the same electromagnetic properties as assumed in our model.
Some thermoelectric currents have been experimentally measured but are neglected in
our calculations. Some assembly housings are ferromagnetic with a permeability 103

larger than the assemblies that we considered. Finally, the constituents have different
conductivities. The nuclear fuel is made up of PuO2 and UO2 which are much poorer
conductors than the sodium which flows between the rods. However, it is unclear
whether an average conductivity (e.g. based on the relative volume occupied by each
constituent) would be meaningful. Anyway, as the core is found to be subcritical in
terms of dynamo effect for σ = σNa, it must be even more so for a lower value of σ
resulting from the averaging.

These arguments may certainly change the results presented below. In this respect,
our findings should be taken with caution and only as a qualitative insight into the
ability of sodium flow, through the core of an FBR, to lead to dynamo action. In any
case, an accurate and quantitative approach would demand an intricate knowledge
of the three-dimensional sodium flow in a 217-rod assembly which, at present, is not
computationally tractable.
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Figure 8. Magnetic intensity |b| for Rm = 211 and (a) C+i, k = 0.8; (b) C+1, k = 1.6;
(c) C−i, k = 2.4; (d) C−1, k = 3.2; (e) C+i, k = 4; ( f ) C+i, k = 2.5.

In table 1, an evaluation of the magnetic Reynolds number (Rm) is presented for a
typical length scale of one rod and one assembly corresponding to the FBR Phenix.
The characteristic length L and velocity U, appearing in the definition (1.2) of Rm , are
expressed in terms of R0, the mid-distance between the centres of two neighbouring
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Figure 9. Both types of dynamo in the parameter space (k, Rm). The azimuthal mode m is
indicated for the dynamo of Ponomarenko type.

R0(m) χ k0 Rm Rm∗

Rod 3.3× 10−3 6 3.3× 10−3 2.7× 10−2 0.4
Assembly 6× 10−2 2 6× 10−2 0.68 1.1

Table 1. Typical parameters at the scale of one rod and one assembly of the FBR Phenix. For
k = k0 the marginal Rm is denoted Rm∗. The other data taken for computation are U0 = 5 m s−1,
σ = 4× 106 Ω−1 m−1, H0 = 2 m.

assemblies, and the vertical flow rate U0 in the core, which has been obtained by
direct measurement. The smallest possible value of the magnetic wavenumber k is
expressed in terms of the height H0 of the helical flow in the FBR and is denoted by
k0. The following relations are then derived:

L =
1

π
R0, U = U0

(1 + χ2)1/2

χ
, k0 = 2

R0

H0

, (5.1)

where χ is defined as in §2.2.2 and represents the pitch of the sodium motion at the
scale of either one rod (χ being equal to the tangent of the space wire angle) or
one assembly (χ−1 being equal to a relevant ratio UH/UZ among those appearing in
figure 2).

For k = k0 and for each value of χ given in table 1, the marginal value of Rm
(denoted Rm∗) corresponding to a growth rate pR = 0, has been computed and is also
included in table 1. The main result is that, at length scales of both one rod and one
assembly, the FBR regime is subcritical with respect to dynamo action. However, if
the FBR is far from reaching criticality at the scale of one rod, this is less likely at
the scale of one assembly. Indeed, the magnetic Reynolds number of the sodium flow
is equal to 60% of the critical Rm when considering the scale of one assembly and
to 7% when considering the scale of one rod.
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6. Discussion
We have analysed the dynamo action in a two-dimensional periodic incompressible

flow, made up from identical smooth helical motions. This flow differs from the
well-known Roberts flow which is also two-dimensionally periodic but for which
the direction of motion alternates between one cell and its immediate neighbour. In
both cases, the cell corners are high-order stagnation points but, in contrast with
the Roberts ‘almost fast’ dynamo which only just misses being a fast dynamo with
a growth rate pr = O(ln(ln Rm)/ ln Rm) at large Rm , the present flow is ‘really slow’

with pr = O(Rm−1/3). The magnetic structures are also different. Indeed, whereas the
magnetic energy is concentrated in sheets located at the boundaries connecting the
hyperbolic stagnation points for the Roberts flow, it is concentrated along resonant
cylindrical surfaces within the periodic cells for the present flow. In fact, we have
shown that the present flow behaves like a smooth Ponomarenko dynamo at the scale
of each periodic cell, with an azimuthal mode m = O(Rm1/3).

An heuristic argument to explain such differences with the Roberts flow may
rely on the role played by the boundaries. They are the location of the strongest
horizontal motion for the Roberts flow and they can enhance the stretching begun in
the corners. This is made harder for the present flow as the boundaries are surfaces
of zero velocity. As a result, the magnetic energy finds a more efficient location for
self-excitation: inside the cell. Another difference, linked also to the flow strength at
the boundaries, is the behaviour of the α-effect in the limit of large Rm(α = O(Rm−2/3)
instead of α = O(Rm−1/2) for the Roberts flow). But more striking is the existence of
zero-mean-field solutions, corresponding to the even azimuthal modes of the helical
solutions.

These considerations hold only in the limit of large Rm . Indeed, for Rm = 16,
both Roberts and Ponomarenko types of solutions may coexist for different values of
vertical wavenumbers. In this case, and more generally for moderate Rm , the mean
component of the magnetic field is always found to be non-zero.

Concerning the FBR Phenix, the standard regime of the flow through the core
has been found to be subcritical. However, though the flow considered has been
chosen since it meets general features of the actual sodium flow, such as helicity and
two-dimensional periodicity, the possibility remains that it is too simple (see §5).
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