Physics Letters A 374 (2010) 584-587

www.elsevier.com/locate/pla —_—

Contents lists available at ScienceDirect

Physics Letters A

P

Homopolar oscillating-disc dynamo driven by parametric resonance

Janis Priede ¢, Ratl Avalos-Zuiiiga b Franck Plunian *

@ Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United Kingdom

b Universidad Auténoma de San Luis Potos, Dr. Manuel Nava 8, CP. 78290, San Luis Potosi, SLP, Mexico

€ Université Joseph Fourier, LGIT (CNRS), B.P. 53, 38041 Grenoble Cedex 9, Grenoble, France

ARTICLE INFO ABSTRACT

Article history:

Received 21 July 2009

Received in revised form 3 November 2009
Accepted 6 November 2009

Available online 12 November 2009
Communicated by F. Porcelli

We use a simple model of Bullard-type disc dynamo, in which the disc rotation rate is subject
to harmonic oscillations, to analyze the generation of magnetic field by the parametric resonance
mechanism. The problem is governed by a damped Mathieu equation. The Floquet exponents, which
define the magnetic field growth rates, are calculated depending on the amplitude and frequency of the
oscillations. Firstly, we show that the dynamo can be excited at significantly subcritical disc rotation rate

when the latter is subject to harmonic oscillations with a certain frequency. Secondly, at supercritical
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mean rotation rates, the dynamo can also be suppressed but only in narrow frequency bands and at
sufficiently large oscillation amplitudes.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In dynamo experiments, a high driving power is necessary to
achieve the self-excitation of the magnetic field. The ensuing liquid
metal flow is usually strongly turbulent. In both Riga and Karl-
sruhe dynamo experiments [1,2], the turbulent fluctuations were
partly inhibited by the internal walls, whereas in the Cadarache
experiment [3], the absence of such walls resulted in large-scale
flow fluctuations [4]. The effect of flow fluctuations on the dynamo
threshold has been addressed in several recent studies [5-14].
Solving the kinematic dynamo problem for a given non-stationary
flow usually governed by the Navier-Stokes equations shows that
turbulence generally has an adverse effect on the dynamo excita-
tion, unless the fluctuations are strong enough to drive the dynamo
by themselves without any mean flow. In the latter case, we speak
of a fluctuation dynamo [15,16], whose experimental implementa-
tion seems hardly feasible because of the high excitation thresh-
old. However the possibility that fluctuations excite the magnetic
field by the parametric resonance mechanism [17] cannot be ex-
cluded. Parametric resonance has been proposed in the somewhat
different context of spiral galaxies as a promoter of bisymmetric
magnetic field structure [18-21].

In this Letter, we use a simple model of the Bullard-type disc
dynamo [22] to show that the magnetic field can indeed be ex-
cited by the parametric resonance mechanism, even when rela-
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tively small harmonic oscillations are added to significantly sub-
critical disc rotation rates.

2. Problem formulation

Consider a Bullard-type disc dynamo [22] which consists of a
solid conducting disc rotating with a generally time-dependent an-
gular velocity z(t) about its axis, and a wire twisted around the
axle and connected by sliding contacts to the rim of the disc and
the axle as shown in Fig. 1. The disc is assumed to be segmented
so that azimuthal current can flow only at its rim. This corresponds
to the modification of the Bullard disc dynamo suggested by Mof-
fatt in order to eliminate exponential growth of the magnetic field
in the limit of a perfectly conducting disc [23]. The system is de-

Fig. 1. Sketch of a homopolar disc dynamo.
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Fig. 2. (a) Growth rate y versus the reciprocal frequency and (b) the critical amplitude §. versus the frequency for the marginal mean rotation rate at g = 0.

scribed by the following set of dimensionless equations (for details
see Ref. [25]):

x=r(y—x),
y=xz+mx—(m+1)y,
z=g[1+x(mx— (m+1)y)] —kz, (1)

where x and y are magnetic fluxes through the loop made by
the wire and the rim of disc, respectively; z is the dimension-
less angular velocity of the disc; r accounts for the resistance of
the disc relative to that of the loop, and m characterizes the rel-
ative mutual inductance of the disc and the loop; the dot stands
for the time-derivative d/dt. The disc is driven by a generally time-
dependent torque g, and braked by a viscous-type friction charac-
terized by the coefficient k, which is necessary for the structural
stability of the system [24]. Henceforth, we assume the friction to
be strong with respect to the inertia of the disc accounted for by
z in Eq. (1), which, thus, results in z = zp[1 + x(mx — (m + 1)y)],
where zg = g/k. The remaining two 1st-order ODEs in (1) can be
combined into a single 2nd-order Duffing-type equation [7] with a
non-linear friction

X+ (14 pxH)x—ax+21x> =0, 2)

where x and ¢ are rescaled by (m+1+r) and (m+1+1r)"1, re-
spectively, and & =r(zg—1)/(m+1+1)2, B =zo(m+1)(m+1+71),
and A =rzg. Further, we focus on the evolution of small initial per-
turbations of the magnetic field characterized by x « 1, for which
Eq. (2) can be linearized by setting 8 = A = 0. Then the only re-
maining parameter « depends directly on the deviation of the disc
rotation rate from its critical value & = 0. For @ > 0, a small ini-
tial magnetic field starts to grow exponentially provided that the
disc rotates steadily [22]. Incidentally we remark that the original
one-dimensional disc dynamo model of Bullard [22] corresponds
taking 1/r =0 (and k = 0) in (1), leading to an equation of only
1st-order derivative in x.

In this study, we are interested in how the generation of the
magnetic field is affected by the unsteadiness of the disc rotation

o = ag + § cos(wt), (3)

which besides the mean part oo contains also an oscillatory
component with the amplitude § and the circular frequency w.
Then the linearized Eq. (2) reduces to a damped Mathieu equa-
tion

X+ — (0rp + S cos(wt))x =0.

Using the substitution x(t) = exp(—t/2)x (wt/2), the equation
above can be transformed into the canonical Mathieu equa-
tion

X +[a—2qcos2r)]x =0, (4)

where a = —(1 + 4ag)/w?, q = 25/w? and T = wt/2. According
to Floquet theory, a particular solution to Eq. (4) can be writ-
ten as x(t) =exp(ivt) f(r), where f(t) is a m-periodic function
and v is the Floquet exponent—both dependent on the param-
eters a and g. According to this solution, the amplitude of the
magnetic field x(t) evolves exponentially in time with the max-
imum growth rate y = (|S[wv]| — 1)/2, where the modulus ac-
counts for the time-reflection symmetry of Eq. (4) [26]. Thus,
the amplitude of the magnetic field grows exponentially when
y > 0, whilst the marginal state is defined by y = 0. We use
the Maple computer algebra software to calculate Floquet expo-
nent which defines the growth rate y depending on the amplitude
& and the frequency w. Next, we find the critical oscillation am-
plitude §. as the function of frequency w for fixed values of the
mean rotation o by solving numerically equation |J[wv]| =1,
which corresponds to y = 0. Eventually, we determine the mini-
mal oscillation amplitude 8,j, and the corresponding frequency at
which an exponentially growing magnetic field first appears. The
corresponding numerical results are presented and discussed be-
low.

3. Results

We start with a marginal mean disc rotation rate og = 0, which
corresponds to the dynamo excitation threshold when the disc ro-
tates steadily, i.e., y =0 when § = 0. As seen in Fig. 2(a), the disc
oscillations about the critical rotation rate with a sufficiently small
amplitude (8 = 0.25) brings the growth rate to a constant level
below zero as the frequency is reduced (reciprocal frequency in-
creased). As the oscillation amplitude increases, firstly, the growth
rate splits into separate frequency bands whose width decreases
as ~1/w for w — 0. In order to show this increasingly fine-scale
structure of the growth rate as w — 0, we use the reciprocal fre-
quency which is proportional to the period of disc oscillations.
Secondly, the growth starts to increase with the oscillation am-
plitude and approaches zero again at § ~ 0.75 for a certain critical
frequency. Further increase in the oscillation amplitude to § =1
results in the appearance of several frequency bands with pos-
itive growth rates (y > 0) which are shown as filled regions in
Fig. 2(a). The critical amplitude §., at which the growth rate turns
zero, is shown for og =0 in 2(b) against the oscillation frequency.
Marginal state with ¥ = 0 corresponds to the boundaries of the
separate frequency bands shown by different colors. Growth rate
is positive corresponding to the dynamo action inside the filled
frequency bands, which approach each other closely as the oscilla-
tion amplitude increases. Note that only a certain number of first
instability bands are shown in Fig. 2(b). There is an infinite se-
quence of similar parametric instability bands of decreasing width
as w — 0, which is typical for Mathieu equation. Thus, the range
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Fig. 3. (a) Growth rate y versus the reciprocal frequency and (b) the critical amplitude §. versus the frequency for a strongly subcritical mean rotation rate at org = —10.
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Fig. 4. Minimal oscillation amplitude and critical frequency versus subcritical rota-
tion rate parameter (« < 0).

of unstable frequencies, which is intervened by infinitely many,
much narrower stability bands, extends down to w = 0, whereas
it is bounded from above by the first instability band. The critical
oscillation amplitude, which is the lowest for the first instability
band, rises to an asymptotic value depending on « as w — 0. The
minimal value of the critical oscillation amplitude and the corre-
sponding frequency at which it occurs are plotted in Fig. 4 versus
subcritical (negative) values of «.

The reduction of disc rotation rate to a moderately subcritical
value of ag = —1 results in the increase of the minimal oscilla-
tion amplitude necessary for the dynamo action (y > 0) up to
8¢ &~ 2. It means that the maximum disc rotation rate (3) during
the oscillation cycle temporally exceeds the critical value o =0
for steady rotation. This, however, changes when the disc rota-
tion rate is reduced further down to o9 = —10, for which the
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growth rates and the corresponding generation bands are shown in
Fig. 3. In this case, a positive growth rate band is seen in Fig. 3(a)
already at §. = 8. This implies that o < 0 during the whole cy-
cle of disc oscillation. Thus, the dynamo appears at a maximum
disc rotation rate below its critical value for a steady rotation.
There is a range of frequencies seen Fig. 3(b), at which a subcrit-
ical growth of the magnetic field is possible with the oscillation
amplitude 8. < —ap = 10. As seen in Fig. 4, such a subcritical ex-
citation of magnetic field appears already at op < —4, where the
minimal required oscillation amplitude §y,j, becomes smaller than
—o, which is shown by the dashed line. Note that for a strongly
subcritical g and steadily rotating disc, an initial perturbation of
the magnetic field oscillates with the period O(1/,/—cap), which is
much shorter than the characteristic damping time O (1). Thus, for
such g the damping of magnetic field oscillations becomes rela-
tively slow that enables parametric excitation of the magnetic field
by a relatively weak modulation of the disc rotation rate.

For g < —0.25, the bands of unstable frequencies are asso-
ciated with the subharmonics of Mathieu equation defined by
a'/2=1,2,3,... in Eq. (4) [26]. Thus, the most unstable band cor-
responds to the first subharmonic with w; = v/—4ap — 1 which is
seen in Fig. 4 to approximate w. well for w > 1. In addition, it
is worth noting that the critical frequency w., at which &y, oc-
curs, is numerically very close to 8y, itself in the whole range of
Op < 0.

For a supercritical disc rotation rate with oo = 1, the growth
rate y, which is seen in Fig. 5(a) to be positive for a steadily
rotating disc (8 = 0), first reduces as the oscillation amplitude
is increased to § = 2. Moreover, y is seen to become negative
within certain, relatively narrow frequency bands. These negative
growth rate bands (y < 0), where the dynamo is suppressed by
the disc oscillations, are shown in Fig. 5(a) by filled curves. As
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Fig. 5. (a) Growth rate y versus the reciprocal frequency and (b) the critical modulation amplitude §. versus the frequency for a slightly supercritical mean rotation rate at

o = 1. Filled curves correspond to suppressed dynamo.
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seen in Fig. 5(b), the width of the first suppressed frequency band
noticeably increases while the whole band shifts towards the high-
frequency range, i.e., low reciprocal frequencies, as the oscillation
amplitude increases. At the same time, the width of the subse-
quent frequency bands, where the dynamo is suppressed, remains
very small, while the spacing between the adjacent suppression
bands reduces in terms of the reciprocal frequency.

4. Conclusion

We have shown in this study that kinematic dynamo can be
excited by the parametric resonance when the velocity of the
conducting medium is subject to harmonic oscillations. It is re-
markable that such resonance occurs even if the time-dependent
velocity stays always much below the dynamo threshold calculated
for a constant velocity. This effect has not been taken into account
so far in the specifications for a disc dynamo experiment [27,28].
Even though this was demonstrated for a simple model Bullard-
type disc dynamo, we expect that similar mechanism may also be
relevant for more realistic dynamos.
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