Bandung Institut of Technology Lecture, April-May 2013

Remote sensing: An efficient tool for volcanoes monitoring

V. Pinel, Virginie.Pinel@ird.fr

Merapi Volcano, Indonesia (2008), from National Geographic

<u>Remote sensing :</u> <u>observation of volcanoes from space,</u> <u>a complementary approach to in-situ field measurements.</u>

Outline of the course:

A <u>Passive measurements</u> : Require sunlight except for thermal measurements

- 1 Meteorological satellites (ash, gas detection and quantification)
- 2 Thermal measurements (eruption detection, effusion rate)
- 3. Optical imagery (DEM, structural studies, eruptive deposits characterization)
- B Active measurements (radar): Do not require sunlight
 - 1. InSAR
 - 2. DEM
 - 3. Deposits surface and thickness

<u>Remote sensing :</u> <u>observation of volcanoes from space,</u> a complementary appro<u>ach to in-situ field measurements.</u>

Figure 1.5. Transparency of the Earth's atmosphere as a function of wavelength (schematic). Black regions are opaque, white regions transparent.

<u>Remote sensing :</u> <u>observation of volcanoes from space,</u> <u>a complementary approach to in-situ field measurements.</u>

Outline of the course:

A <u>Passive measurements</u> : Require sunlight except for thermal measurements

- 1 Meteorological satellites (ash, gas detection and quantification)
- 2 Thermal measurements (eruption detection, effusion rate)
- 3. Optical imagery (DEM, structural studies, eruptive deposits characterization)
- B Active measurements (radar): Do not require sunlight
 - 1. InSAR
 - 2. DEM
 - 3. Deposits surface and thickness

Meteosat Second Generation

4 geostationary meteorological satellites (Ø=3.2m,h=2.4m)

The MSG system provides accurate weather monitoring data through its primary instrument — the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) — which has the capacity to observe the Earth in **12 spectral channels**.

Repeat time: 15 min

4 channels in the visible (1HRV –resolution 1km otherwise resolution 3 km) 8 channels in the thermal IR (resolution 3 km)

Meteosat Second Generation

Can be used to :

-detect ash and estimate ash concentration (*Prata et al, 89*)
-detect and estimate SO₂ concentrations (less efficient than UV absorption)
-to detect lava flows and estimate flow rates (thermal anomalies)

http://wwwobs.univ-bpclermont.fr/SO/televolc/hotvolc/index.php

HotVolc

Time series

From Gouhier et al., CNFGG, 2012

HotVolc

From Gouhier et al., CNFGG, 2012

Ash detection: the « Split-Window » method from Prata, 1989

From Guehenneux et al., CNFGG, 2012

Ash detection: enhancement of the « Split-window » method

From Guehenneux et al., CNFGG, 2012

Meteorological Satellites available for IR-visible-UV observations

From Jegou et al., CNFGG, 2012

Meteorological Satellites available for IR-visible-UV observations

Atmospheric measurements from nadir IR sounding

IASI (Infrared Atmospheric Sounding Interferometer)

 $-Infrared(3.62 \ \mu m \text{ to } 15.5 \ \mu m)$

 \Rightarrow 2 overpasses per day (9:30am, 9:30 pm local time)

-Spatial resolution: (12 km x 12 km)

-Retrieval of SO₂ assuming a 7 km high plume.(Clerbaux et al. 09) Detection of SO_2 above 5 km

Meteorological Satellites available for IR-visible-UV observations

OMI (Ozone Monitoring Instrument) NASA

- -UV (306-380nm)
- →1 overpass per day (1h45pm local time)
 -Spatial resolution: (13 km x 24 km)
 Detection of SO₂ in the lower troposphere

Gas measurements for the 2010 Merapi eruption

Surono et al, 2013

E: explosion, L: Lahar

<u>Remote sensing :</u> <u>observation of volcanoes from space,</u> <u>a complementary approach to in-situ field measurements.</u>

Outline of the course:

A <u>Passive measurements</u> :

1 Meteorological satellites (ash, gas detection and quantification)

2 Thermal measurements (eruption detection, effusion rate)

3. Optical imagery (DEM, structural studies, eruptive deposits characterization) B <u>Active measurements (radar)</u>:

DEM

Deposit surface and thickness

IR satellites are used to detect temperature anomalies

*MODIS (**Moderate Resolution Imaging Spectroradiometer**): NASA on Terra and Aqua Spatial resolution 1*1 km

Information here: <u>http://modis.higp.hawaii.edu/</u>

*AVHRR *Advanced Very High Resolution Radiometer* NOAA Spatial resolution 1*1 km

*Landsat TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper Plus) NASA Spatial resolution 30 m*30 m (resampled)

*ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) NASA on Terra TIR Spatial resolution 90m*90m

IR satellites are used to estimate magma discharge rate

Example for Piton de la Fournaise (Reunion Island) based on MODIS data (10% can be used)

From Coppola et al, 2009

Experimental study to validate the use of thermal data *Garel et al, 2012*

<u>Aim of the study</u>: to make the link between magma flow rate and the thermal signal measured by remote sensing.

Study of flow and cooling of a fluid (μ =constant) injected at a constant flow rate.

Experimental setup

Thermal signature of lava flows

Experimental results: (0°) (a)40 t = 1200 sSurface temperature T_{top} 36 10 cm 32 $r_c(t)$ t = 160 s , t = 1710 s , t = 4470 s , t = 8010 s , t = 8000 s , $t = 8000 \text{$ t = 60 s28 24 temperature threshol 20₀ 2 6 10 Distance to the source r (cm) 25 30 35 40 20 Surface temperature ($^{\circ}C$) (b) 20 r and r_c (cm) Physical and thermal Radial extent $R_N(t)$ Analytical and numerical studies allow to quantify: Thermal radius $r_c(t)$ -the coefficient between r_c and magma flow rate radii R_N (weakly dependant on magma viscosity) -the time required to be in the stationnary state (highly dependent on magma viscosity: a few days for basalts, 2000 4000 6000 8000

Time t (s)

A few years for lava domes)

<u>Remote sensing :</u> <u>observation of volcanoes from space,</u> <u>a complementary approach to in-situ field measurements.</u>

Outline of the course:

A <u>Passive measurements</u> :

1 Meteorological satellites (ash, gas detection and quantification)

2 Thermal measurements (eruption detection, effusion rate)

3. Optical imagery (DEM, structural studies, eruptive deposits characterization)

B Active measurements (radar):

DEM

Deposit surface and thickness

Optical Satellites (visible)

*Landsat: 1st satellite dedicated to Earth Observation (1972) (NASA) Spatial resolution 15m *ALOS AVNIR-2 (JAXA) Spatial resolution 10 m, revisit rate of 2 days *IRS (Indian Remote Sensing) (1995) Spatial resolution 5.8m *SPOT (CNES) (1986) Spatial resolution 2.5m *Pleiades (CNES) soon Spatial resolution 0.5m *IKONOS (1999) Spatial resolution 0.84m *Quickbird (2001) Spatial resolution 0.6m *Geoeye1 (2008) Spatial resolution 0.5m

Image from Pleiades (visible)

Use of optical images to produce DEM Ex: ASTER

DEM is generated from a stereo-pair of images acquired with nadir and backward angles over the same area

Use of optical images to produce DEM Ex: ASTER

Images spatial resolution : 15 m DEM with 30 m spatial resolution, you can download it for free

Stereogrammetry (SPOT 2.5m)

Spot: 25/02/2011 Incidence angle= 1.38°

Spot: 6/03/2008 Incidence angle=28.75°

Stereogrammetry (SPOT 2.5m)

1 fringe is for 100 m

Structural analysis of Semeru

The 11/08/2003 SPOT5 image, looking SW and draped on the SRTM DEM

From Solikhin et al, 2012

Structural analysis of Semeru

Spot 5 (2.5m)

From Solikhin et al, 2012

Deposits study

Spot 5 (2.5m)

From Solikhin et al, 2012

<u>Remote sensing :</u> <u>observation of volcanoes from space,</u> <u>a complementary approach to in-situ field measurements.</u>

Outline of the course:

A <u>Passive measurements</u> : Require sunlight except for thermal measurements

- 1 Meteorological satellites (ash, gas detection and quantification)
- 2 Thermal measurements (eruption detection, effusion rate)
- 3. Optical imagery (DEM, structural studies, eruptive deposits characterization)

B Active measurements (radar): Do not require sunlight

- 1. InSAR
- 2. DEM
- 3. Deposits surface and thickness

Wavelength used by SAR imagery

Satellites

Spatial and temporal resolution is improving

A large amount of data is expected around 2015 with Sentinel 1

Cosmo-Skymed

SAR geometry

Foreshortening

InSAR provides maps of surface displacement in Line of Sight

2 acquisitions radar: ---> Master Image (M) Slave Image (S)

Couple of images characterized by: $B\perp$, ΔT

$$Int = y_M y_S^* = |y_M||y_S|exp(j(\phi_M - \phi_S))$$

$$\Phi_{\rm M} - \Phi_{\rm S} = \Delta \Phi = \Delta \Phi_{\rm spatial} (B_{\rm perp}, z) + \Delta \Phi_{\rm atmo} + (4\pi/\lambda) d + \Delta \Phi_{\rm noise}$$

1 fringe corresponds to a displacement of $\lambda/2$ in the Line of Sight Precision around 1 cm

Exemple ENVISAT images on Colima volcano

InSAR can also be used to produce DEM

2 acquisitions radar: \longrightarrow Master Image (M) Slave Image (S)

Couple of images characterized by: $B\perp$, ΔT

 $\Delta \Phi_{\text{spatial}} = (4\pi h B_{\text{perp}}) / (\lambda R \sin \theta)$

$$Int = y_M y_S^* = |y_M| |y_S| exp(j(\phi_M - \phi_S))$$
$$\Phi_M^- \Phi_S = \Delta \Phi = \Delta \Phi_{\text{spatial}}(B_{\text{perp}}, z) + \Delta \Phi_{\text{atmo}} + (4\pi/\lambda) d + \Delta \Phi_{\text{noise}}$$

Exemple ENVISAT images on Colima volcano

$$\Delta \Phi = \Phi_{M} - \Phi_{S}$$

SRTM DEM

Resolution : 90m Precision: 10 m

Produced in 2000 Can be downloaded for free

Tandem-X

SRTM

Tandem-X

From Albino & et Kervyn, CNFGG, 2012

Comparison of available DEM

	ASTER GDEM	SRTM3*	GTOPO30**	10 m mesh digital ele∨ation data
Data source	ASTER	Space shuttle radar	From organizations around the world that have DEM data	1:25,000 topographic map
Generation and distribution	METI/NASA	NASA/USGS	USGS	GSI
Release year	2009~	2003 ~	1996~	2008~
Data acquisition period	2000 ~ ongoing	11 days (in 2000)		
Posting interval	30m	90m	1000m	about 10m
DEM accuracy (stdev.)	7~14m	10m	30m	5m
DEM coverage	83 degrees north ~ 83 degrees south	60 degrees north ~ 56 degrees south	Global	Japan only

Limitations: Clouds

Steep slopes

Comparison of available DEM

Iceland ASTER Global DEM in Iceland SRTM3 Coverage ASTER GDEM ERSDAC **ASTER GDEM Coverage** Mt. Everest Void The ASTER GDEM is Mt.Everest available for high-latitude and steep mountainous areas not covered by SRTM3. ASTER GDEM SRTM3

Comparison between ASTER GDEM and SRTM3

Comparison of available DEM

Difference to the DEM provided by SPOT (resolution 20m)

InSAR can also be used to quantify lava flow thickness

$$\Phi_{\rm M} - \Phi_{\rm S} = \Delta \Phi = \Delta \Phi_{\rm spatial}(B_{\rm perp},z) + \Delta \Phi_{\rm atmo} + (4\pi/\lambda) d + \Delta \Phi_{\rm noise}$$
$$\Delta \Phi_{\rm spatial} = (4\pi h B_{\rm perp},) / (\lambda R \sin \theta)$$

Estimation of DEM variation with a precision around 9 m (5 images with large perpendicular baselines) *From Ebmeier et al, 2012*

Amplitude images are useful for monitoring (all images can be used)

El chichon crater- CSK- Descending track

Bot

Merapi volcano, TerraSAR-X image acquired on 4th November 2010

Merapi volcano, CosmoSkymed images Use of amplitude to detect changes

From Bignami et al, 2013

Merapi volcano, CosmoSkymed images Use of interferometry to quantify elevation change

From Bignami et al, 2013

Montserrat volcano, TerraSAR-X images Use of amplitude to detect change

From Wadge et al, 2011

Montserrat volcano, TerraSAR-X images Use of shadow extension to detect deposit thickness

$$\operatorname{Area}_{\operatorname{trap}} \approx 0.5(h_1 - h_2) \cdot (w_1 + w_2)$$

Area_{triang}
$$\approx 0.5(h_0 - h_2) \cdot w_2$$

From Wadge et al, 2011

Conclusion:

Remote sensing can be useful to:

- Detect long term (deformation and gas) and short terms precursors (gas)
- Detect eruptions
- Assess hazards during eruptions
- Follow edifice destructions, deposits emplacements

Two main advantages: -global monitoring -cannot be destroyed by the eruption

Bibliography:

-A. Hooper, F. Sigmundsson and F. Prata (2012), Remote sensing of volcanic hazards and their precursors, *Proceedings of the IEEE*, 100(10), 2908-2930.

-Thermal Remote Sensing of Active Volcanoes, A User's Manual, Andrew Harris, 2013

-Physical Principles of Remote Sensing, 3rd edition, W. G. Rees, 2012