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ABSTRACT 
 
In realistic materials, multiple scattering takes place and average field intensities or energy 
densities follow diffusive processes. Multiple P to S energy conversions by the random 
inhomogeneities result in equipartition of elastic waves which means that, in the phase 
space the available elastic energy is distributed among all the possible states of P and S 
waves, with equal amounts in average. In such diffusive regimes the P to S energy ratio 
equilibrates in a universal way independent of the particular details of the scattering. We 
study the canonical problem of isotropic plane waves in an elastic medium and show that 
the Fourier transform of azimuthal average of the cross-correlation of motion between two 
points within an elastic medium is proportional to the imaginary part of the exact Green 
tensor function between these points, provided the energy ratio ES/EP is the one predicted 
by equipartition in two- and three-dimensions, respectively. These results clearly show that 
equipartition is a necessary condition to retrieve the exact Green function from correlations 
of the elastic field. However, even if there is not an equipartitioned regime and correlations 
do not allow to retrieve precisely the exact Green function they may provide valuable 
results of physical significance by reconstructing specific arrivals. 
 
INTRODUCTION 
 
In order to build descriptions of the Earth structure useful for exploration or seismic risk 
studies, geophysicists have studied seismic noise and the coda waves generated after the 
passage of the direct arrivals, also called ballistic waves. In his pioneering studies Aki 
pointed out that seismic noise and coda waves may contain valuable information of the 
propagation media (Aki, 1957; Aki and Chouet, 1975). Aki’s long term program ranged 
from single and multiple scattering descriptions to radiative transfer ideas aimed to explain  
coda envelopes. A comprehensive account can be found in Sato and Fehler (1998). 
 
It has been demonstrated recently that the elastodynamic Green function can be recovered 
from isotropic elastic wavefield generated by either multiple scattering or by a large number 
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of sources (such as microseisms) as well (Campillo and Paul, 2003; Shapiro and Campillo, 
2004, Sabra et al., 2005). Moreover, these experimental results clearly show the existence 
of long range correlation.  
 
On the other hand, equipartition means that in the phase space the available energy is 
equally distributed, with fixed average amounts, among all the possible states. This simple, 
yet powerful concept is one of the building blocks of modern thermodynamics, has also 
been put forward for multiple scattered waves and specifically for elastic waves. To 
establish the corresponding ratios several devices have been used. In fact, for waves within 
a diffusive regime, Weaver (1982) employed an elegant mode counting argument that we 
explain in the Appendix together with an interpretation in the phase space. Later he showed 
(Weaver, 1990) the equipartition as a limit of multiple scattering whereas Ryzhik et al. 
(1996) formally established the transport equation of elastic waves and the associated 
diffusion approximation. They pointed out that in such diffusive regimes the P to S energy 
ratio equilibrates in a universal way independent of the details of the multiple scattering. 
On the other hand, Snieder (2002) used an ingenious probabilistic ball-counting algorithm. 
 
In real materials the multiple scattering that takes place generates an interesting fact. 
Although in the micro scale the field equations remain the same (Newton and Hooke’s 
laws, thus Navier’s equations) intensities, like other averages, follow diffusive processes 
and these averages satisfy diffusion-like equations (e.g. heat equation). Therefore, in the 
diffusive regime (when traveled distances are much longer than the transport mean free 
path and the travel times long compared to the transport mean free time) the P to S energy 
conversion by the random inhomogeneities equilibrates in a universal way independent of 
the details of the scattering. The equipartition of energy in 3D for an homogeneous 
background medium leads to the relation ),,()/(2),( 3 xx tEtE PS βα=  where ES  and EP are 
the S and P spatial energy densities, and α and β are the P and S wave speeds, respectively.  
 
Evidence of the transition toward equipartition has been observed in real data (Shapiro et 
al., 2000, and Hennino et al., 2001) from the observation of the stabilization of the P to S 
energies ratio in the coda at a value compatible with the theory. In fact, coda waves are 
natural candidates to undergo equipartition. This is attested by the stabilization of the 
energies ratio. Coda waves continue ringing long for a duration which is various times the 
source-site travel time and this suggests, at least, intense multipathing. The exponential 
decay of coda waves, characterized by the coda Q which, although frequency dependent, is 
a regional constant, independent of magnitude and source depth (Aki and Chouet, 1975). 
This is very strong indication that coda waves sample the Earth uniformly around the 
recording station. Equipartition is expected to arise naturally in the diffusive regime. The 
energy ratio stabilization appears before the complete isotropy of the field but indicates that 
the diffusion can be used as a good approximation (Paul et al., 2005).  
 
In this work we deal with the canonical problem of a uniform random distribution of plane 
waves within a homogeneous elastic medium. The cross correlation of the fields produced 
at two points by generic plane waves is computed, then azimuthally averaged. Polar and 
spherical coordinates are used for 2D and 3D, respectively. We show that the Fourier 
transform of the average of the cross-correlation of motion between two points is 
proportional to the imaginary part of the tensor Green function between these points, 
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provided the energy ratio ES/EP is (α/β)2 and 2(α/β)3, in two- and tree-dimensions,  
respectively (see the Appendix). These results clearly show that, for an elastic medium, 
equipartition is a necessary condition to retrieve the Green function from correlations of the 
isotropic elastic field. However, the usefulness of correlations is not confined to the 
equipartitioned case. Indeed, correlations do provide significant information even in cases 
where the fully diffuse nature of the fields is not at all obvious as it was demonstrated in the 
several applications already mentioned.  
 
The case of the homogeneous, isotropic, elastic body with an isotropic random distribution 
of plane waves is an important canonical problem. We retrieve the exact properties of 
Green function, like distance behavior of P and S waves and the precise balance between P 
and S amplitudes. Obviously, the energy ratio between P and S in the diffuse incoming 
random field governs the balance in the correlation. In the elastic case the particular value 
of this ratio that leads to the exact full Green function is precisely the one predicted by the 
theory of Equipartition. We also discuss the implications of these results for the retrieval of 
the surface terms of Green function in layered medium.  
 
THE 2D SCALAR CASE 
 
Let’s start with a two-dimensional scalar field. Without loss of generality we assume we are 
dealing with SH waves in a homogeneous elastic medium (see e.g. Aki and Richards, 
1980). Propagation takes place in the x1-x3 plane. Therefore, the antiplane (out-of-plane) 
displacement v(x,t) fulfils the wave equation 
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where β = shear wave velocity and t = time. A typical harmonic, homogeneous plane wave 
can be written as  
 

)exp(i)iexp(),(),,( tnkxFtv jj ωψωω −=x ,      (2) 
 
where k = ω/β = S wavenumber , F(ω, ψ) = complex waveform, ω=circular frequency,  xT 
= (x1, x3) = Cartesian coordinates (such that x1 = r cosθ = 1γr  , x3 = r sinθ = 3γr , with r, θ = 
polar coordinates) and nj = direction cosines (n1= cos ψ , n3 = sin ψ ) that define wave 
propagation.  
 
Consider the correlation of the motion described in Eq. 2, evaluated at positions x and y, 
respectively. For simplicity assume y at the origin. In this way the scalar product 

]cos[ θψγ −== rrnxn jjjj . Thus, we can write 
 

])cos[exp(),(),(),(),( ** θψψωψωωω −= krFFvv ixy .    (3) 
 

Here and hereafter the time factor )exp(i tω  is omitted. If we assume an isotropic field in 
which waves propagate back and forth in directions given by ψ and such that the average 
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spectral density is 2* )(),(),( ωψωψω FFF = , roughly independent of  ψ, then an azimuthal 
average over ψ leads to 
 

)()(])cos[exp(
2
1)(),(),( 0

2
2

0

2* krJFdkrFvv ωψθψ
π

ωωω
π

∫ =−= ixy ,  (4) 

where )(0 krJ = Bessel function of the first kind and zero order of argument kr. This result 
comes out naturally from the Neumann expansion of the complex exponential 
 

 ][cos)(i])cos[iexp(
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θψεθψ −=− ∑
∞

=

nkrJkr n
n

n
n ,     (5) 

 
where εn= Neumann factor (=1 if n=0, =2 for n>0). It is clear that the only contribution to 
the integral comes from n=0.  The result in Eqn. 4 has been found by Aki (1957) in the 
framework of his study of microtremors. It is the basis of the Spectral Auto-Correlation 
(SPAC) method. 
 
In acoustic problems, the average correlations between a pair of sensors placed within 
isotropic noise lead to the zero order Bessel functions, cylindrical or spherical, in two- and 
three-dimensions, respectively, as was well known since the early 60’s. In his classic paper 
Cox (1973) overcame the isotropy assumption and considered an arbitrary directional 
distribution of uncorrelated plane waves. He expanded such distribution using spatial 
harmonics and obtained analytical expressions for each term of the expansion. It is possible 
to study elastic fields using Cox (1973) approach. 
  
Consider now the Green function in the frequency domain 
 
G22(x, y; ω) =1/4iµ [J0(kr) − iY0(kr)],       (6) 
 
where Y0 (kr) = Neumann function of zero order and µ = shear modulus.  From Eqs. 4 and 6 
it is clear that J0(kr) is proportional to the imaginary part of the Green function. In fact, if 

2/)( 22 ωρω FESH = = energy density for SH waves, we can write 
 

[ ]),,(Im8)(2),(),( 22
2

02
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−−== ,   (7) 

 
It is convenient to establish that J0(kr) contains all the information regarding the Green 
function. Its real part is just the Hilbert transform of the imaginary one ( J0(kr) and Y0(kr) 
form a Hilbert pair. See, e. g. Aki and Richards,1980 for a discussion). Therefore, the 
transform of  –iJo(kr) gives a signal that is proportional to the causal Green function with an 
even contribution in the negative times.  
 
More precisely, taking the inverse Fourier transformation of Eq. 6, we have 

2222222
/

)/(
2

1)exp(),,(
2
1),,(

β
β

πµ
ωωω

π rt
rtHdtGtG

−

−
== ∫

∞

∞−

iyxyx  ,   (8) 



 5

where H = Heaviside function. We should note that this is a causal Green function because  
imaginary and real part contribute equally in the positive times and cancel out exactly in 
negative times. 
 
 

THE 2D VECTOR CASE 
 
With reference to Fig. 1, assume we are dealing with P and SV waves in a homogeneous, 
isotropic, elastic medium. Again, propagation takes place in the x1-x3 (or x-z) plane. 
Therefore, the in-plane displacements ui(x,t), where i=1,3, fulfills Navier equation 
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where α = compressional wave velocity and t = time. In Eq. 9 the Einstein summation 
convention is used. Let us remember the form of the Green’s function (e. g. Sánchez-Sesma 
and Campillo, 1991): 
 

{ } 3,1,)2(
8i
1),( =−−= jiBAG ijjiijij δγγδ
ρ

ω y;x ,     (10) 

 
where ρ = mass density,  
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with )(i)()()2( •−•=• mmm YJH = Hankel function of the second kind and order m expressed 
in terms of the Bessel functions of the first and second kind. The S and P wavenumbers are 
given by k= ω /β and q= ω /α, respectively. 
 

         
Figure 1.  Propagation of plane P and SV waves in 2D. 
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The propagation of both P and SV waves assuming the field composed of harmonic, 
homogeneous plane waves can be described by means of  
 

)iexp(),()iexp(),(),,( ,
jjljjll mkxmSnqxnPtu −+−= ψωϕωωx ,   (12) 

 
where, P and S = complex waveforms and mj , nj = direction cosines (m1=cosψ , m3 = sinψ,  
n1= cos φ , n3 = sin φ ). Note that polarization of the P part is given by nl while for S part we 
have 1

,
33

,
1  and mmmm =−=  and this guarantees the proper polarization for shear waves (see 

e. g. Aki and Richards, 1980).  
 
Consider the cross-correlation of this vector motion, evaluated at positions x and y, 
respectively. For simplicity assume y at the origin. Thus, we can write 
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Specializing Eq. 11 for l=1 and s=1 we have 
 

])cos[exp()sincossin(                  

])cos[exp()cossincos()()(
*22

*22*
11

θψψϕψ

θϕϕψϕ

−−+

−−=

krPSS

qrSPPuu

i

ixy
   (14) 

 
for l=3 and s=3 we can write 
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and finally for l=1 and s=3 we have 
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Assume an isotropic 2D field in which P and SV waves propagate in the directions given 
by φ and ψ. Spectral densities P2 and S2 are independent of the propagation angles. Let us 
assume further that P2α2 = ε S2β2. Then the azimuthal average over φ and ψ of Eqs 14-16, 
taking into account Eq. 5,  leads to 
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with )(krJn = Bessel function of the first kind and order n of argument kr. This result is 
precisely the extension of the scalar SH case. It can be demonstrated that the cross terms 
cancel out in the averaging. If ε = 1 in Eqs. 18 then from Eqs. 10 and 11 one can see that 
the expression within brackets in Eq. 17 is precisely )];,(Im[8 ωρ yxijG− . Considering that 

 2βρµ =  and 2/22SES ρω=  we can write 
 

[ ]),,(Im8),(),( 2* ωωω yxxy ijSji GkEuu −−= ,     (19) 
 
which generalizes the result of  Eq. 7. These two equations are remarkable. It can be shown 
that they hold if  x and y and/or i and j are exchanged. These properties are consequences of 
reciprocity. 
 
The energy ratio we consider (ε = 1) can be interpreted as a 2D expression of the energy 
Equipartition Principle in the only two states of propagation, namely P and S waves, that is 
easily found to be 2)/(/ βα=PS EE  by a mode counting argument (see Appendix). 
 
The case without equipartition, namely 2222 βα SP ≠ , does not allow to retrieve the exact 
Green function. However, it is of great practical interest as all the Green function 
components are there, with amplitudes for each wave consistent with the actual energy 
ratio.  
 

THE 3D VECTOR CASE 
 
Now we have to deal with P, SV and SH waves in a homogeneous, isotropic, elastic 
medium. Propagation takes place in the 3D and displacements ui(x,t), where i=1, 2, and 3, 
fulfills again Navier’s equation: 
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where both i and j run from 1 to 3. 
 
It can be shown (Sánchez-Sesma and Luzón, 1995) that the Green tensor is given by 
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where f1 and f2 are Stokes’ functions, and they are given by 
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These functions have the constants 1 and  ( ) 2/)/(1 2αβ+ , respectively as limits if ω or r 
tend to zero. It is convenient for our analysis to express f1 and f2 in terms of spherical 
Hankel’s functions of the second kind. Then, it is possible to show that 
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)(i)()()2( zyzjzh mmm −= = spherical Hankel’s function of the second kind and order m 

expressed in terms of the spherical Bessel functions of the first and second kind, 
respectively. The structure of Eqs. 24 is similar to that of Eqs. 11, in the 2D elastic case, the 
differences are in the cubes of propagation velocities in denominators and the factor 2 in 
the second term of a. 
 
Consider the propagation of  P, SV and SH waves (see Fig. 2) assuming the field composed 
of harmonic, homogeneous plane waves by means of  
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where, k= ω /β and q= ω /α , P, SV, and SH = complex waveforms and nj, mj, hj = direction 
cosines, respectively. 
 
 

      
Figure 2. Propagation of plane P, SV and SH waves in 3D. 
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A convenient way to express all the possible propagation directions is by means of the 
spherical coordinates r, θ , and φ (the values j =1, 2 and 3 correspond as usual to Cartesian 
coordinates): 
 

{ } { } { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

2

22

22

1

11

11

0

00

00

cos
sinsin
cossin

   and   ,
cos

sinsin
cossin

   ,
cos

sinsin
cossin

θ
ϕθ
ϕθ

θ
ϕθ
ϕθ

θ
ϕθ
ϕθ

jjj hmn .  (26) 

 
The polarization of motions is important and has to be described using the spherical 
coordinates. P waves are polarized as the propagation directions nj . For SV and SH waves 
we choose vertical and horizontal polarizations expressed by 
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It is convenient to express the position vector xj as rγj where 
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Consider now the cross-correlation of the vector motion, evaluated at positions x and y, 
respectively. For simplicity assume y at the origin and x at θ = 0 with a distance r from the 
origin. Thus, we can write 
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This vector product is a second order tensor and is expressed as the sum of nine elementary 
tensors (the exponentials are scalars). The squares in this equation stand for spectral 
densities. Let’s perform the azimuthal average over all possible incidences of P, SV and SH 
waves by formally applying three times (over the angles φm and θm for m=0, 1 and 2, 
respectively) upon our tensor of Eq. 29 of an operator of the form  
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0 0
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which gives one when acting over a unitary constant because the integrand of the double 
integral is the differential of area of the unit sphere. 
Performing the average for l=1 and s=1 one obtains 



 10

 

,sin)cosiexp(
4

                     

sin)cosiexp(cos 
4

                     

sin)cosiexp(sin
4

)()(

0
222

2

111
0

1
2

2

0
0000

2
2

*
11

∫

∫

∫

+

+

=

π

π

π

θθθ

θθθθ

θθθθ

dkrS

dkrS

dqrPuu

H

V

xy

     (31) 

 
for l=2 and s=2 we find: 
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For l=3 and s=3 the result is 
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It can be demonstrated that the other terms of the average correlation tensor )()( * xy sl uu ,  
i. e. those for sl ≠ , cancel out. 
 
Considering the Poisson-Gegenbauer’s Integral (see Abramowitz and Stegun, 1972) 
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where =)(cosθnP Legendre polynomial of order n, and the identities ,1)(cos0 =θP  

,cos)(cos1 θθ =P  and ,2/)1cos3()(cos 2
2 −= θθP  then Eqs. 31-33 can be written as 
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The spectral densities 222  and ,  , HV SSP  are independent of propagation angles. Let us assume 
that they satisfy the relationship 323232 ββα HV SSP == which express that, in average, the 
energy ratio of S (including SH and SV modes) to P waves is given by 33 // βα2=PS EE , 
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the equipartition ratio for 3D elastic fields (see Appendix). Here 2/22SES ρω= , with  
222
HV SSS += . Therefore, Eqs. 35-36 and the identity )()( *

11 xy uu = )()( *
22 xy uu , taking 

into account Eqs. 20, 23 and 24, lead to 
 
 

[ ]);,(Im4),(),( 3* ωπωω yxxy ijSji GkEuu −−= .     (37) 
 
 
Note that this result corresponds to θ = 0 (or 1,0 321 === γγγ ) and then, from Eq. 20, we 
have ,4/);,( 211 rfG πµω =yx  rfG πµω 4/);,( 222 =yx  and rfG πµω 4/);,( 133 =yx , being 
null the other components of Green function. Because both the azimuthal average 
correlation and the Green function are tensors their equality remains valid for any reference 
system. Therefore, Eq. 37 is valid for arbitrary x and y. Again, note that Eq. 36 holds if x 
and y and/or i and j are exchanged, because of reciprocity. 
 
Without equipartition, 222222 ββα HV SSP ≠≠ , we do not retrieve precisely the exact Green 
function. However, the relevant physics is there with amplitudes for each wave consistent 
with the actual energy ratios.  
 
Note that Eq. 34 for n=0 and z=krcosθ with k=ω/c(ω) expresses the azimuthal average of 
correlation coefficient for the acoustic case in 3D.  
 

 
DISCUSSION 
 
The proportionality of the correlation and the Green function is established for a specific 
ratio between the energy of isotropically distributed P and S waves. This energy ratio is an 
expression of the Principle of Equipartition of energy in the states of propagation, namely P 
and S waves. The fulfillment of this condition is necessary for Eqs. 19 and 37 to be valid.  
 
In practice the azimuthal average is replaced by the stacking of correlations of coda records 
from different earthquakes of various magnitudes.  Normalization is therefore required and 
normalized versions of Eqs. 19 and 37 are more useful. 
 
The density of energy E can be estimated in each realization as  
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Using the equipartition condition, the total energy densities in two- and three-dimensions 
are given by E=ES(1+β2/α2) and E=ES(1+β3/2α3), respectively. Thus, more practical 
expressions can be devised in the forms: 
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for two- and three-dimensions, respectively. The equipartition ratio, for Poisson coefficient 
of 0.25, is 3 and 10.4 in these two cases. Thus, the first factor in Eqs. 39 and 40 is of the 
order of one.  
 
Equation 39 for 2D elasticity is formally applicable to the surface terms of Green functions 
in a layered space, at least for a singe mode. In Aki and Richards (1980) asymptotic 
expressions of the Green function are given in terms of normal modes for a unit force 
within a layered halfspace. Thus formal relationships exist between the horizontal 
components of Rayleigh and Love waves and their in-plane counterparts of P and SV 
waves, respectively. On the other hand, for the vertical displacements of Rayleigh waves 
the problem is analogous to the 2D scalar homogeneous problem (i=j=2). Because the 
symmetries are the same, it suffices a proper interpretation. The x and z axis should be 
horizontal, the y axis vertical and wavenumbers q = ω/cR(ω) and k = ω/cL(ω) would 
correspond to Rayleigh and Love waves. After tensor rotation, the longitudinal and 
transverse components will give the contributions of Rayleigh and Love waves. This 
analysis is similar of the one given by Snieder (2004). With the presence of various modes, 
equipartition will certainly arise in the diffusive regime but the precise relationship of 
correlation with Green function requires further scrutiny. In any case, the Fourier transform 
of correlations may reveal the various modes. 
 
Lobkis and Weaver (2001) give a demonstration of the proportionality between Green 
function and correlation based on a modal approach that was later extended to open 
medium (Weaver and Lobkis, 2004). They considered a source distribution in their acoustic 
formulation. They did not require any sources in the neighborhood of receivers and 
extended the argument to apply to the far more useful case of the receiver region insonified 
by a conventionally diffuse equipartitioned set of random plane waves. Van Tiggelen 
(2003) gives a theoretical analysis of  the reconstruction of the scalar Green function from 
correlation of the signals produced by a single source in a disordered medium with 
homogeneous background using the diffusion approximation. Wapenaar (2004) gives an 
interpretation based on a special kind of representation theorem and assumed a continuous 
distribution of sources on a closed surface surrounding the receivers. Using a 
heterogeneous acoustic model van Manem et al. (2005) actually tested this idea and 
compute the field with finite differences. Wapenaar’s (2004) is a formal argument that is 
close to the one of the perfect time reversal mirror (Derode et al., 2003) but generalized to 
elasticity. The analogy with the time reversal, as well as Wapenaar’s argument, indicates 
that the reconstructed signal, when it emerges correctly from the remnant fluctuations, is 
the actual Green function of the medium. 
 
Snieder (2004) used a model for surface waves that assumes that multiple scattering is 
equivalent to the contribution of a random, uncorrelated (secondary) source distribution. 
Indeed, he obtained the surface waves in the correlation and gave a geometrical 
interpretation (stationary phase: constructive contributions from the ‘sources’ located in the 
direction defined by the two receivers). Snieder also concluded that Green function 
reconstruction has no relation with equipartition while we show here that in canonical 
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cases, it is a clear requirement. The stationary phase argument is also strongly used by 
researchers from ocean acoustics since the early works by Kuperman and Ingenito (1980). 
For example, Roux et al. (2005) computed the correlation in a 3D acoustic medium with a 
homogeneous distribution of uncorrelated sources and get the 3D Green’s function. Again 
dealing with a purely homogeneous background he gives a geometrical interpretation 
(stationary phase in a region around the direction of the receivers referred to as ‘end fire 
lobes’). One must note that none of these last authors really deal with a Green function 
made of different contributions for which the relative amplitudes of the contributions are 
discussed.  Our analytical results indicate that both equipartition and isotropy of the field 
are required to exactly retrieve the elastic Green function.  Since equipartition is expected 
for multiply scattered waves, late coda records are good candidates for use in reconstruction 
of complete Green functions.  Furthermore, the randomness of the field and particularly its 
isotropy can be improved by averaging the cross-correlation over a set of sources (see Paul 
et al., 2005 for a thorough discussion). Seismic noise on Earth has an origin that is not fully 
understood and there is no guarantee that noise has a homogeneous distribution of arrival 
directions or any kind of equipartition between the different waves since it can be 
dominated by ballistic arrivals. It can be isotropic enough to make it possible good 
reconstructions of specific arrivals, such as fundamental mode of surface waves. It was 
demonstrated that long range correlations in the noise can actually be used to retrieve the 
surface wave part of the Green functions (Shapiro and Campillo, 2004; Sabra et al. 2005) 
and even to produce tomographic maps (Shapiro et al. 2005). In spite of the practical 
success of these approaches, that shows the robustness of the method, its interpretation and 
the limits of the method are still open for discussion.  It is noteworthy that the P and S 
energy densities equilibrate to the equipartition ratio before the field isotropy is reached 
(e.g. Paul et al., 2005).  An anisotropic flux as well as the absence of equipartition has to be 
considered to fully understand the limitations of  the method. 
 
 

CONCLUSIONS 
 
The equipartition of the energy carried by diffuse elastic waves in 3D leads to the 
relationship ,)/(2 3

PS EE βα=  where ES and EP are the S and P spatial energy densities, 
and α and β are the P and S wave speeds, respectively. In 2D that factor is simply (α/β)2. 
The case of the elastic, isotropic and homogeneous body under isotropic random 
distribution of plane waves is an important canonical problem. We retrieve from the field 
correlations the exact properties of Green function, like distance behavior of P and S waves 
and the precise balance between P and S energies. Even if there is not scattering at all, 
equipartition can be reached within a portion of a perfect elastic solid if random sources are 
isotropically distributed far away from the center of the station pair. The energy ratio 
between P and S in the diffuse incoming random field governs the balance in the 
correlation. In the elastic case, the particular value of this ratio that leads to the exact full 
Green function is precisely the one predicted by the theory of equipartition. Without 
equipartition we do not retrieve the exact Green function from the correlation. However, 
different arrivals can be usefully reconstructed with amplitude of each of them governed by 
the energy distribution among the modes of the recorded field.  
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APPENDIX Equipartition Ratio of Elastic Waves Within a Diffuse Field 
 
Diffuse field  
 
The extension of some of the concepts of room acoustics to elastic waves lead to the 
consideration of diffuse fields (Eagle, 1981). One definition of a diffuse field at a given 
frequency establishes that at each point of the vibrating medium the disturbance be an 
isotropic random superposition of plane waves.  Weaver (1982) extended such a definition 
of a diffuse field in a system and allowed it to be an excitation for which each normal mode 
with a natural frequency in the neighbourhood of that frequency is, statistically speaking, 
excited to equal energy. Additionally, there is no correlation in phase and amplitude 
between the degrees of excitation of different modes.  
 
In what follows we explain the mode counting approach followed by Weaver (1982) to 
found the energy partition ratio between shear and dilatational waves in a diffuse field. 
Additionally, we present an alternative view regarding the issue from the perspective of 
plane waves. In both cases we give a self-contained account.  
 
Weaver’s Mode Counting Approach 
 
The displacement field ),( tui x  within a homogeneous, isotropic, elastic medium must fulfil 
Navier’s equation: 
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where, ix  stands for x, y and z (when i=1,2 and 3, respectively);  λ, µ= Lamé constants, 
ρ=mass density, and t=time. Solutions of Eqn. A1 can be found by means of Helmholtz’s 
decomposition: 
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and Φ , kΨ  are scalar and vector potentials (for P and S waves, respectively) and ijkε = 
permutation symbol (see e.g. Aki and Richards, 1980). The potential for P waves should 
fulfil the wave equation in three dimensions: 
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where ρµλα /)2( += = P wave propagation velocity. Without loss of generality, let us 
assume standing P waves within a finite region (a cube with side L much larger than the 
wavelength) with Dirichlet boundary condition ( 0=Φ ) at the edges so that we can give a 
modal solution of the form 
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Here Λ= /2παω = circular frequency, and Λ= wavelength of P waves. Substituting this 
solution into the wave equation (Eqn. A3) gives 
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which can be simplified to 
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Our aim is to obtain the number of modes which can meet this condition. This amounts to 
counting all the possible combinations of the integer n values. This can be done 
approximately by treating the number of combinations as the volume of a sphere in the "n-
space" multiplied by 1/8 to consider only the positive n’s (see e. g. Kittel and Kroemer, 
1980). Therefore, the number of dilatational modes is given by  
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This value becomes a very good approximation when the size of the control volume is 
much greater than the wavelength. 
 
Regarding S waves, the arguments follow along the same lines using instead ρµβ /= , 
the shear wave velocity. Additionally, we have waves polarized in two perpendicular 
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planes, so we must multiply by two to account for that. We can write then the number of 
transverse modes as:  
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Having developed expressions for the numbers of dilatational and transverse waves in a 
large control volume L3=V it is of interest to know the distributions with frequency. This 
may be obtained by taking the derivative of the number of modes with respect to frequency: 
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for dilatational and transverse waves, respectively. These expressions assume no coupling 
between P and S waves. Weaver (1982) points out that this is not the case for the true 
normal modes of a finite solid. However, for a sufficiently large solid with 1/ >>cLω  the 
coupling is weak. It tends to zero as V goes to infinity and thus the estimates become exact. 
 
Let us make the diffuse-field assumption and assign energy to the elastic standing waves in 
a volume according to the principle of equipartition of energy. The energy associated to 
each state is then proportional to the number of modes. In this way, the ratio of the 
expected amounts of energy in transverse and dilatational waves in a small frequency 
interval ω∆  is the ratio of Nt to Nd: 
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This result is due to Weaver (1982).  
 
In two-dimensions we deal with the mode counting in similar way. Instead of a “mode- 
volume” we have a “mode-area” and in-plane S waves have only one polarization. 
 
Therefore, the number of dilatational and transverse modes in a given area A=L2 are   
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Then, using the same arguments above, the energy ratio in 2D becomes simply  
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Up to here the equipartition concept à la Weaver is based upon the extension of the results 
from those of a finite body to and infinite domain.  
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Plane Waves Approach 
 
If instead of modes we speak of plane waves defining the phase space, a simple argument 
can be given for the case of the homogeneous infinite space. In this case, the P and S plane 
waves form a continuous set of solutions of the Navier equation. Assuming equipartition in 
the phase space means an excitation of all plane waves at a constant energy level. At a 
given frequency ω, the phase space is defined by (qx, qy, qz). The plane P waves are 
distributed on a sphere defined by 
 

,)/( 2222 αω=++ xxx qqq         (A12) 
 
where α = P wavespeed. Similarly, S waves are distributed on a sphere defined by 
 

,)/( 2222 βω=++ xxx kkk         (A13) 
 
with two possible polarizations. Assuming a uniform distribution of energy, it comes out 
that for P waves in a narrow frequency band [ω, ω+∆ω] the energy is proportional to the 
volume of the thin shell containing the solutions: 
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while for the two polarizations of S waves, the energy is: 
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The ratio of energy in 3D is therefore: 
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and corresponds to Eq. A10. The argument for the 2D case follows in parallel. 
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