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ABSTRACT: A boundary integral formulation is applied to model the seismic response of

alluvial valleys under incident P. S and Rayleigh waves. The integral representâtions

used for diffracted and refracted elastic fields are of single-layer type. This approach

is called indirect BEM in the literature as the sources strengths should be obtained as an

intermediate step. However. it provides far more insight on the physics of the probl~m than
. the direct approaches. This is because diffracted waves are constructed at he boundarles

from which they are radiated. The two-dimensional response of a very soft parabolic

valley is studied. Results are displayed in bath frequency and time domains. These

results show the significant influence of locally generated surface waves in seismic
~ response and suggest practical approximations.

1. INTRODUCTION comed for many applications. Such alternative
could be the BEM, either direct or indirect,

It is now widely accepted the contribution of with analytical Green's functions. ln a recent
local topographic and the geological conditions work Zhang and Chopra (1991) applied a direct
to amplification of ground motion during earth- BEM to model the ground motion at a three-
quakes. The subject has received attention dur- dimensional topography.
ing the last two decades and significant prog- ln this work the indirect BEM is applied to
ress in the evaluation of su ch effects has been study ground motion on alluvial valleys under
achieved (see Sanchez-Sesma, 1987 and Aki, 1988 incident P, S and Rayleigh waves. ln our ap-
for recent reviews). On the other hand, recent proach diffracted waves are constructed at the
earthquakes have evinced the great significance boundaries from which they are radiated. There-
of site effects (e.g. Vidale y Helmberger, fore, it can be regarded as a numerical reali-
1988: Campillo et al., 1988). zation of Huygens' principle. This is in fact

ln a pioneering work, Aki and Larner (1970) an improvement over a boundary method that has
introduced a numerical method based on a dis- been used to deal with various problems of dif-
crete superposition of homogeneous and inhomo- fraction of elastic waves (e.g. Sanchez-Sesma
geneous plane waves. Using this technique, Bard and Esquivel, 1979; Luco et al. 1990). ln its
and Bouchon (1980a,b; 1985) studied alluvial many variants, such technique is based upon the
valleys and pointed out the significant raie of superposition of solutions for sources with
sediment-induced surface waves in the valleys' their singularities placed outside the region
response and the resonant characteristics of of interest. However, in the applications, the
these configurations as weil. The Aki-Larner location of sources requires particular care. technique is the departure of discrete wave- and the trial and error process needed is dif-

number approximations. ficult to apply, particularly when many fre-
The combination of discrete wavenumber expan- quencies are to be computed.

sions for Green's functions (Bouchon and Aki, As the singularities of Green's functions are
1977) with boundary integral representations integrable (see e.g. Kobayashi, 1987; Manolis
has been successful in various studies of site and Beskos 1988) we put the sources at the
effects. ln some of them source distributions boundary and properly consider their effects.
at the boundaries are used (e.g. Bouchon et ln this way, the uncertainty about the location
al., 1989) whereas others make use of Somiglia- of sources is eliminated. Therefore, our indi-
na representation theorem (e.g. Kawase and Aki, rect BEM approach retains the physical insight
1989; Papageorgiou and Kim, 1991). These are of source method, with the benefits of analyt-
discrete wavenumber versions of BEM, indirect ical integration of exact Green's functions.
and direct, respectively. However, this combi- ln what follows, the single layer boundary
nation requires considerable amount of computer representation of elastic wave fields is
resources. An alternative approach may be wel- briefly described and illustrated with the res-
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ponse of a shallow parabolic soft alluvial de- 3. DIFFRACTION BY AN ELASTIC INCLUSION
posit in a half-space. Transfer functions are
given in a frequency-space description which Consider the elastic half-space, E, with an
suggests approximations of practical interest. elastic inclusion, R, as shown in Figure 1
Results are combined to produce a quasi three- under incidence of elastic waves. The free-
dimensional time response in which locally gen- surface boundaries of regions E and Rare de-
erated Love and Rayleigh surface waves produce noted by aiE and aiR, respectively. The inter-
rotating polarization patterns. face aZE = aZR is the common boundary between

them. The ground motion in this irregular con-
figuration cornes from the interferences of in-

2. AN INTEGRAL REPRESENTATION coming wàves with reflected, diffracted and
refracted ones. The total motion in the half-

Consider the domain V and its boundary S. If an space is the superposition of the diffracted
elastic material occupies such a region, the waves and the free-field:
harmonic displacement field can be written,
neglecting body forces, by means of the single uE = u (0) + u (d) (3)
layer boundary integral 1 1 1

u.(x)= J '" (()G (x,()dS (1) where u:O)=free-fied displacement, i.e. the
1 S) 1) ( solution in the absence of the irregularity.

where u (x)=ith component of displacement at x,
1 o,E(M)

G (x,()=Green function, i.e. the dlsplacement Ro
1) -

in the direction 1 at point x due to the appli- X
cation of a unit force in the direction) at E(LI
point (, '" «()=force density in direction ).

)
This integral representation allows computa-

tion of stresses and tractions by application
of Hooke's law except at boundary singulari- Z
ties, i.e. when x=( on the boundary. By a lim-
iting process based on equilibrium considera-
tions it is possible to write, for x on S that Figure 1. Half-space, E, with an elastic

inclusion, R, and incidence of P, Sand
t (x) = c '" (x) + J '" (()T (x,()dS (2) Rayleigh waves. The discretization along the
IlS) 1) ( interface, the free surface of inclusion and

portions of the flat surface of the hàlf-space
where t = Ith component of traction at the gives L, K and 2M segments.

1
boundary, c=.0.5 if x tends to S from.inside According to our previous discussion, the
and c= -0.5 If :x tends to S fr.om o.utslde, diffracted field is given by equation 1 which,
TI)(x,()= traction Green functlon, I.e. the with appropriate superscrips to indicate the
traction in the direction 1 at point x on the reg ion of validity, can be written as:
boundary with normal n (x) (assumed to be
specified and pointing outside if x is at S) u(d) (x) =

J ",E«()GE (x ()dS . (4)
due to the application of a unit force in the 1 aE) 1)' (

direction) applied at (. The first term of the
right hand side must be dropped if x is not at Refracted elastic fields on the inclusion R
S. This result has also been found by Kupradze can be written as.(1963). ln its scalar version, the result ap- .

peared first in a paper by Fredholm in 1900 u(r) (x)= J ",R«()GR (x,()dS . (5)(Webster, 1955). 1 aR ) 1) (
Equations 1 and 2 are the basis of our ap-

proach. Although indirect it allows direct The traction-free boundary conditions imply
interpretation of the physical quantities
involved. Expressions for Green's functions can (0) (d)
be found in the literature (e.g. Kobayashi, tl +tl ~ o on aiE (6)
1987 and Sânchez-Sesma and Campillo, 1991). It
suffices to say here that the singularity of (r)
displacements is either logarithmic or l/r for and t = o on a R (7).. 1 1
2D or 3D problems, respectlvely. Regardmg the
tractions, such sing~larities are explicitly of equations 6 and 7 and those of conti nuit y along
the form l/r or l/r. the interface lead to a system of integral

equations for boundary sources, i.e. those pro-
ducing diffracted and refracted fields.
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4. DISCRETIZATION 5. NUMERICAL RESULTS

ln order to solve the resulting system of inte- The accuracy of this approach bas been verified
gral equations we have to discretize them. Let by Sanchez-Sesma and Campillo (1991) for pro-
us assume the force densities t!>J(ç) constant blems of topographical lrregularities and by
over each of the boundary segments with equal Ramos-Martinez and Sanchez-Ses ma (1991) for
length AS along each appropriate boundary. As- the response of alluvial valleys. Excellent
sume that M, Land K are the number of segments agreement was found with published results
(elements) along the discretized part of the (e.g. Kawase and Aki, 1989).
flat surface of one side, of the irregular in- The results presented here were obtained
terface and of the free surface of region R as using a discretization length L for each of the
depicted in Figure 1. The total number of equa- flat parts, where L=length of the interface,
tions is 4M+4L+2K which is the same as the num- and 10 segments per S wavelength. The results
ber of unknowns. are virtually the same even when such parameter

To clarify ideas, let us write the discre- is reduced to 6.
tized versions of equations 1 and 2: Some results follow for incident S waves,

N both antiplane SH and inplane SV ones, upon a
u (x) = >: t!> (ç)g (x,ç) (8) very soft shallow parabolic valley. The maximum

1 1=1 J 1 1) 1 depth is 0.05 times the half width (h=a/20) as

where it is shown in figure 2. Material properties
AS are pR/pE:=1/2 and {3R/{3E:=1/4 for mass densityÇl+ /2 and shear wave velocity ratio, respectively.

( f;)= J G (x f;)dS (9) Poisson ratios of 1/3 and 0.49 were selectedglJ x, 1 !J' f;' for the half-space and the valley. The a.I{3

ç -AS/2 ratios are then 2 and 7.14, respectively.1 We can con si der the incidence of a plane S
and wave with a given incidence angle '1 and arbi-

N trary polarization 9 (see figure 2) by the sim-
t (x) = L t!> (f;)t (x,ç) (10) pie combinat ion of SH (9 = 0) and SV (9 = 7(/2)

1 1 = 1 J 1 1 J 1 responses. Each one will be modulated by sin 9

and cos 9, respectively. This allows to study
where how the propagation of Love and Rayleigh sur-

f; +AS/2 face waves interact and control the polariza-1 tion of horizontal motion.

t (X,f;I) = J [c o(x-f;) + T (x,f;)]dS. 0
1) IJ 1 IJ ~ R 1- - -Î ".=049

f; -AS/2 I~~~~-:+ 10 -
! (11) rE~ X Il,=0.333

The integrals in equation 9 are computed S P. = 4-
numerically with Gaussian integration, except i - .8,
in the case wh en x is in the neighborhood of f;1 i .8.- ~
for which we obtained analytical expressions Z
from the ascending seri es for Bessel functions
(see e.g. Abramowitz and Stegun, 1972). Whereas
those in equation Il are also computed numeri-
cally except when Xn=f;I. ln this case, we have:

t (x ,f; ) = 0.5 0 , (12)
IJ n n 1)

because the only contribution to the integral
in equation 11 for n=1 cornes from the Dirac's
delta term. The contribution from the tractions
Green's tensor is null as long as the discreti- Figure 2. Soft alluvial valley with parabolic
zation segment is a straight line, which is the interface under incidence of plane S waves. In-
case assumed here. ln fact, it can be verified cidence and polarization angles are represented
that, such part of the integrand is a singular by '1 and 9, respectively. Material properties
odd function on the segment. Therefore, its are pR/pE:=1/2 and (3R/{3E:=1/4 for mass density
Cauchy's principal value is zero. The value for and shear wave velocity ratios, respectively.
tlJ in equation 18 can be interpreted as half Poisson ratios are 1/3 and 0.49 for regions E
of the applied unit line force and means that and R.
the force is distributed symmetrically for any
two half-spaces containing the line of applica- . .
tion of the load, regardless of its direction. Co~putatlons were p~rfo~med ln the frequency

Once the values of t!>J(f;I) are known, the dif- domaln and are shown ln fIgures 3 and 4 for
fracted field is computed by the appropriate vertical incidence and in figures 5 and 6 for
discretization of equations 4 and 5. oblique incidence. A great variability of am-
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Figure 3. Contour map of transfer function v in Figure 5. Contour map of transfer function v in
the frequency-space domain (f-x) for vertical the frequency-space domain (f-x) for incidence
incidence of SH waves upon a shallow parabolic of 30oof SH waves upon a shallow parabolic val-
valley. 7)=normalized frequency. ley. 7)=normalized frequency.
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Figure 4. Contour map of transfer function u in Figure 6. Contour map of transfer function u in
the frequency-space domain (f-x) for vertical the frequency-space domain (f-x) for incidence
incidence of SV waves upon a shallow parabolic of 30oincidence of SV waves upon a shallow
valley. 7)=normalized frequency. parabolic valley. 1)=normalized frequency.

plifications in frequency do main can be seen. value of 10 for 7)=3.75. ln any event, horizon-
lt is larger for the SH case. ln both cases tal motion dominates the valley's response for
horizontal amplification reached more than 25 the range of frequencies studied.
times the amplitude of incident waves at some These contour maps of transfer functions in
receivers. This happens for frequencies larger the frequency-space domain (f-x) of figures 3
than about 7)=2. Note that the one-dimensional to 6 reveal a fine structure in which lateral
shear model predicts a maximum amplification of propagation plays a significant role for fre-
16, and for the center of the model that would quencies higher than the one that controls the
occur at 1)=2.5. However, lateral interferences ID response at the center. ln these results,
from surface waves strongly modify that. On the the maximum amplifications for normalized fre-
other hand, vertical motion for incidence of SV quencies larger than 1)=2.5 occur at the borders
waves (not shown here) is significantly excited of a portion that grows with frequency. lndeed,
for frequencies larger th an about 1)=2. giving a if we con si der that a first resonant frequency
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of an assoclated 10 shear model with the local
thickness h(x) is given by fo;{3R/4h(x) which,
for this model can be written as

2 -171; 2.S[I-(xla) J .0 ~

therefore, the borders of the excited central ~.
portion for a given frequency !/>2.S occur ap- ~
proximately at xata(1-2.S/7Ir/ . Outside this .~
region amplification is moderate. The amplifi- "'t:3

cation inside can be very large with a clearly ,

defined resonant behavior. This phenomenon can C/)

be explained if we consider that from a given
zone of "local" resonance wave propagation is
estimulated towards deeper parts. Then, ampli- 0fications are also controled by surface waves. ... t/tO ' . .

The maxima show a lateral resonant pattern.
Although, in this example we have very small Figure 8. Synthetic seismograms vtt) for
material damping (Q;SOO) these results suggest incidence of 30° of SH waves in 51 stations (from
that practical approximations can be found to -l.25a to 1.25a) across the surface of the
describe the response of shallow, soft alluvial two-dimensional shallow parabolic valley. The
deposits in terms of surface waves. incident time signal is a Ricker wavelet with

The results for horizontal displacement am- central frequency lùp = 2n{3E/a.
plitude u under vertical incidence of SV waves,
even with the mode conversions that occur, is
similar with fewer maxima than in the SH case.
This can be explained considering the different
behavior of dispersion curves of Love and
Rayleigh waves in this model (figure 7). ~
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Figure 9. Synthetic seismograms u(t) for
incidence of 300of SV waves in 51 stations

0 (from -1.25a to 1.25a) across the surface of
0 10 20 JO"O h d. . 1 h 11 b 1. 11Fro,/uoncy. '1 t e two- ImenSlon~ s a ow para 0 IC va ey.

. . The incident time signal is a Ricker wavelet
Figure 7. Dispersion curves of surface waves . th t 1 f 2 Q 1..' WI cen ra requency lùp = n~E a.
for a one-dlmenslonal model wlth a depth of
0.05 times the half width of parabolic deposit
and the same physical properties. S wav - 30.0 8= 45.0 """

We computed synthetic seismograms from fre- " ~
quency domain results by using the FrT al- '. ~
gorithm. The time variation of incoming wave- ~ ~
field is given by a Ricker wavelet with charac- :3 ~
teristlc period tp=O.Sto, where to~ 2a/{3E. For!. .-:::-
an incidence angle r =0, Figures 8 and 9 show (/) ""-

the synthetics for SH and SV waves, respective- ly. These results can be combined to produce a

quasi three-dimensional response with the hori- 0.0. 't/ tO . . .0
zontal motion given by the inplane u and anti- , U

plane v components, respectively. Figure 10 Figure 10. Horizontal polarigrams and particle
shows the particle motion and polarigrams for motion for 11 stations (from -l.25a to 1.25a)
sites across the valley when the po1arization across the two-dimenslonal shallow parabolic
angle is 9=45°. The soft 1ayer response produ- valley mode1. Incidence 300of S waves with
ces rotating horizontal polarization patterns. polarization angle 9=45°.
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6. CONCLUSIONS Bard, P.-Y. and M. Bouchon 1985. The two-
dimensional resonance of sediment-filled val-

An indirect boundary integra1 formulation for 1eys, Bull. Seism. Soc. Am. 75: 519-554.
dynamic elasticity has been presented. It is Bernard, P. and A. Zollo 1989. Inversion of
based upon the integral representation of the near-source S polarization for parameters of
diffracted elastic waves in terms of single double-couple point sources. Bull. Seism.
layer boundary sources. Although this approach Soc. Am. 79: 1779-1809.
is called indirect BEM in the literature, it Bouchon, M. and K. Aki 1977. Discrete wave-
provides far more insight on the physics of number representation of sei smic-source wave
diffraction problems than the direct ap- fields, Bull.' Seism. Soc. Am. 67: 259-277.
proaches. ln addition to the physical insight Bouchon,M., M. Campillo and S. Gaffet 1989. A
gained with this method, it appears to be ac- boundary integral equation-discrete wavenum-
curate and fast. ber representation method to study wave pro-

A very soft shallow deposit was analized for pagation in multilayered media having irre-
incident SH and SV waves. Very large amplifica- gular interfaces. Geophysics 54: 1134-1140.
tions were found and the contour maps of trans- Kawase, H. and K. Aki 1989. A study on the res-
fer functions in the frequency-space domain ponse of a soft basin for incident S, P and
(f-x) reveal a fine structure in which locally Rayleigh waves with special reference to the
generated surface waves play a significant role long duration observed in Mexico City. Bull.
for frequencies higher than the one that con- Seism. Soc. Am. 79: 1361-1382.
trois the ID response at the center. The maxi- Kobayashi, S. 1987. Elastodynamics, in Boundary
mum amplifications occur at the borders of a element methods in mechanics, D.E. .Beskos
portion that grows with frequency. Such a fre- (ed.) North-Holland, Amsterdam.
quency corresponds to the "local" ID shear Luco, J.E., H.L.Wong and F.C.P. De Barros
model resonance. As wave propagation is esti- 1990. Three-dimensional response of a
mulated towards deeper parts, amplifications cylindrical canyon in a layered half-space.
are also controled by surface waves. These re- Earthq. Eng. Struct. Dyn. 19: 799-817.
sults suggest that practical approximations can Manolis, G.D. and D.E. Beskos 1988. Boundary
be found to describe the response of shallow, Element Methods in Elastodynamics, Unwin
soft alluvial deposits in terms of surface Hyman Ltd, London.
waves, Love and Rayleigh for the SH and SV Papageorgiou, A.S. and J. Kim 1991. Studyof
cases. respectively. the propagation and amplification of seismic

waves in Caracas Valley with reference to the
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