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Abstract

In this article the problem of Green function retrieval from correlations is approached from a theoretical point of view
and for this purpose an integral identity is considered: a representation theorem of the correlation type for an inhomoge-
neous region embedded in a homogeneous space. The full homogeneous case is studied with the theorem and it is con-
cluded that, in the resulting field, the energy is equipartitioned. In infinite space this means that the ratio of P and S
energy densities stabilizes to a constant value. That equipartition is reached in the classical sense is also demonstrated.
Thus, in infinite space the energy densities associated with the possible degrees of freedom tend to share in equal parts
the available energy.

The representation theorem permits the verification of the well known result that by averaging correlations of motions
from diffuse, equipartitioned fields within an inhomogeneous, anisotropic, elastic medium it is possible to retrieve its Green
function. As a result of this it is shown that the average autocorrelation of the diffuse displacement field at a point is pro-
portional to the imaginary part of the Green function at the source precisely at this point. As a consequence, the energy
density of the diffuse field is proportional to the trace of the imaginary part of the Green tensor at the source. Thus, the
analytical form of the Green function permits the establishment, in and around an inhomogeneous region, of the theoret-
ical energy density of a diffuse field.

In both homogeneous and inhomogeneous cases (i.e. localized elastic inclusions or cavities) the equipartition of the
background illumination (the so called incident field in scattering theory) is a necessary and sufficient condition to retrieve
the exact Green function from correlations. Local effects lead to energy ratios that fluctuate in space and frequency. The
boundary of a half-space produces in its interior fluctuations of energy densities that are local effects of the diffuse field.
These results may be useful to assess the diffuse nature of seismic ground motion from a limited set of observation points
and to detect the presence of a target by its signature in the distribution of diffuse energy.
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1. Introduction

The pioneering work of Aki [1] has been crucial in the understanding of the role of coda waves and seismic
noise. Aki considered single and multiple scattering formulations and explored Radiative Transfer concepts in
order to explain coda envelopes [2]. The physics of multiple scattering is interesting. Although on the micro
scale the field equations remain unchanged (e.g. in dynamic elasticity Newton and Hooke’s laws lead to the
governing equations), the intensities follow a diffusion equation. Evidence of the transition toward a diffusive
regime has been observed. This appears in real data [3,4] in which the stabilization of the ratio of P- and S-
energies in the coda has a value in agreement with equipartition theory. This happens with coda waves, which
continue ringing for a duration which is much longer than the source–station travel time [5]. Because of multi-
ple scattering, coda waves arrive at the station from different directions. We expect these waves to sample the
medium more or less uniformly around the recording station. Therefore, coda waves qualify as a diffuse field
and equipartition should arise naturally.

Equipartition means that in phase space the available energy is equally distributed, in fixed average
amounts, among all the possible states. These ideas from thermodynamics have been introduced into acoustics
and elastic wave propagation by Weaver [6]. In mono atomic gases the three degrees of freedom define the
independent ‘‘states’’ and each one takes one third of the total energy. In diffuse dynamic elasticity we define
‘‘state’’ as an independent wave configuration. We can talk either of components (i.e. horizontal and vertical
that each takes one half of the energy) or wave types (we have P and S waves to deal with and energy will be
shared according to their respective wavelengths or wave speeds). In 2D we may have two components and, on
the other side, the P and S waves represent all the possible configurations. In 3D there are three orthogonal
directions (each with one third of the energy) and three wave types (the P and two possible polarizations for S
waves: SH and SV). If only the degrees of freedom are considered, then equipartition is governed in infinite
space by geometry. For example, in 2D or 3D the ratio EH/EV = 1 or 2, respectively, where EH and EV are the
horizontal and vertical energy densities. In 3D this means that there are two independent horizontal
directions.

Regarding wave types, the equipartition of energy in 2D or 3D for a homogeneous elastic medium leads to
the relation ES/EP = a2/b2 or 2a3/b3, respectively, where ES and EP are the S and P spatial energy densities and
b, a are the respective wave speeds. This has been found by Weaver [6] by counting modes. Note that his
approach is rigorous for closed systems, for which one can count the states and account for the energy in every
state. For the open systems like the one we dealt with, there are no discrete states. This would mean that equi-
partitioning from mode counting is not strictly applicable. However, the relative number of states scales with
the size ratio of the system but the energy ratio at the limit tends towards the theoretical value. The same result
can be obtained using different arguments such as those of Snieder [7]. An interesting result was obtained using
radiative transfer ideas: the energy ratio of the various wave types reaches a constant value, independent of the
details of the scattering [8]. This stabilization of the elastic energy among the P and S waves has been verified
by numerical simulations [25] and observations [3,4].

The Green function is the wave field that would be observed at one position if an impulsive load is
applied at another [15]. This function, also called the fundamental solution, has been recovered experimen-
tally from the averaging of the cross-correlation of the isotropic elastic wave field generated by either mul-
tiple scattering or by a large number of sources (such as microseisms). An isotropic elastic wave field can
be understood as a uniform distribution of waves approaching the recording points from all possible
directions. It also means that the incident field has equal average intensities in all directions. Approximate
derivations, based on the concept of stationary phase, have been proposed (e.g. [13,30]). Further general-
izations are due to Weaver [31].

Correlation of the seismic codas of 101 distant earthquakes recorded at different stations was done by Cam-
pillo and Paul [9]. In that study they made important comparisons between the recovered and theoretical
Green function. Similar approaches for extracting information from the Earth’s structure were followed by
Shapiro and Campillo [10] and Sabra et al. [11]. They retrieved surface-wave dispersion curves from seismic
noise measurements. A comprehensive discussion regarding the correlations and retrieval of the Green func-
tion in diffuse fields is due to Campillo [12]. He concluded that field–field correlation may lead to obtaining the
deterministic response between two stations based on the actual wave propagation in the Earth.
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The accuracy of the reconstructed Green function depends critically on the duration of the signals pro-
cessed. The cross-correlations should be applied to equipartitioned fields that are in a diffusive regime in which
the net energy flux is null. This takes place after enough time has elapsed to allow multiple scattering (and thus
the diffusion) of the wave field. In recent experimental work with a ballistic ultrasound pulse launched in a
highly heterogeneous rock sample, the emergence of the Green function was observed from correlations
[14]. About nine mean-free times were required.

The canonical case of the homogeneous elastic medium both in 2D and 3D was recently considered [15]. In
that study, isotropic illumination and equipartition of the propagating waves were assumed and it was dem-
onstrated that the Fourier transform of the azimuthal average of the cross-correlation between the vector
motions at two points within an infinite elastic space is proportional to the imaginary part of the exact Green
tensor function between these points. These results exhibit equipartition of the field as necessary and sufficient
to retrieve the exact Green tensor from correlations of the elastic field.

For general inhomogeneous media subjected to a diffuse field, Weaver and Lobkis [16] established a formal
identity between the Green function and correlations of the diffuse field. The Green function that emerges
from the correlations is found to be the complete Green function of the medium, symmetrized in time, having
all reflections, scattered waves and the converted P and S waves as well.

In fact, in a recent study regarding a homogeneous medium with a 2D circular cylindrical elastic inclu-
sion [17] the result for the homogeneous case [15] was extended and the theorem of Weaver and Lobkis
[16] was verified. The cylinder was studied assuming uniform random distributions of plane waves coming
from infinity. The cross-correlation at two points of the fields produced by the generic plane waves was
computed, and then azimuthally averaged [17]. It was shown that the Fourier transform of the average of
the cross-correlation of the vector motion between two points is proportional to the imaginary part of the
Green tensor for these points. Again equipartition of the background field is a necessary and sufficient
condition to retrieve the exact Green function from correlations [17]. As the cylindrical inclusion studied
is embedded in a full space it is clear that the equipartitioned, isotropic illumination (a background radi-
ation) is independent of the scatterer but the local equipartitioned, diffuse regime already includes its
effects and fluctuates in space and frequency.

The study of inhomogeneous media and the half-space problem allows for fluctuations of the energy den-
sities of a diffuse field. The partitioning of energy at the free surface was treated in detail by Weaver [18] who
established explicit partition coefficients for energy densities. In this study we consider the 2D case for a half-
space and a cylindrical cavity as well.

In what follows a correlation type representation theorem for an inhomogeneous region embedded in a
homogeneous space is considered. Assuming homogeneity this integral identity simplifies. It is found that
for uncorrelated boundary sources the resulting field is equipartitioned.

The average autocorrelation of the diffuse displacement field is shown to be proportional to the imaginary
part of the Green function at the source. Therefore, the trace of the imaginary part of the Green tensor at the
source is proportional to the kinetic energy density of the field. Thus, the analytical form of the Green function
may allow the establishment of the theoretical energy density of a diffuse field generated by background equi-
partitioned illumination. These results may be useful in assessing the diffuse nature of seismic ground motion
from a limited set of observation points and in detecting the presence of a target by its signature in the dis-
tribution of diffuse energy.

2. Representation theorem of the correlation type

Consider the harmonic displacement field ui(x,x) produced by a harmonic body force distribution fj(x,x)
within an arbitrary heterogeneous elastic medium. The displacements satisfy the elastic wave equation:
o

oxj
cijkl

oulðx;xÞ
oxk

� �
þ x2quiðx;xÞ ¼ �fiðx;xÞ; ð1Þ
where cijkl is the elastic tensor that may vary over the space, q is the mass density and x is the angular fre-
quency. As usual, the summation convention is used (a repeated index, twice and only twice, means summa-
tion over the range of such index).
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Consider the case of a concentrated harmonic unit force at xA in the m direction. This force can be written
as fi(x,x) � d(x � xA)dim exp(ixt). The index m is added to specify the direction of the concentrated force and
to define the resulting displacements as the Green function. Thus, Eq. (1) becomes:
o

oxj
cijkl

oGlmðx; xA;xÞ
oxk

� �
þ x2qGimðx; xA;xÞ ¼ �dðx� xAÞdim: ð2Þ
The Green function Gim(x,xA,x) is the displacement at x in direction i produced by a unit harmonic point
force acting at xA in direction m.

Multiplying Eq. (1) with Gim(x,xA,x) and Eq. (2) with ui(x,x), and subtracting we have
o

oxj
cijkl

oGlmðx; xAÞ
oxk

� �
uiðx;xÞ �

o

oxj
cijkl

oulðxÞ
oxk

� �
Gimðx; xAÞ ¼ �dð x� xAj jÞumðxÞ þ fiðxÞGimðx; xAÞ: ð3Þ
The dependence on x is understood and is omitted henceforth. Integrating over a volume V bounded by a
surface C, and using the Gauss formula and reciprocity, it follows that:
Z

C
njðxÞ cijkl

oGlmðx; xAÞ
oxk

� �
uiðxÞ � njðxÞ cijkl

oulðxÞ
oxk

� �
Gimðx; xAÞ

� �
dCx

¼ �umðxAÞ þ
Z

V
fiðxÞGimðx; xAÞdV x: ð4Þ
Note that xA is a point inside V. We recognize
tiðxÞ ¼ njðxÞ cijkl
oulðxÞ
oxk

� �
; ð5Þ
as the traction at point x, with normal nj(x), in direction i, associated with displacement field ul(x) while
T imðx; xAÞ ¼ njðxÞ cijkl
oGlmðx; xAÞ

oxk

� �
; ð6Þ
is the traction at point x, with normal nj(x), in direction i produced by the unit harmonic point force acting at
xA in direction m associated with the Green function.

After some rearrangement, Eq. (4) can then be written as
umðxAÞ ¼
Z

C
Gimðx; xAÞtiðxÞ � T imðx; xAÞuiðxÞf gdCx þ

Z
V

fiðxÞGmiðxA; xÞdV x: ð7Þ
This is the classical Betti–Rayleigh reciprocity identity. It is also known as the Somigliana’s representation
theorem. It expresses the relationship between the boundary values of displacements and tractions and inter-
nal displacements.

Now consider for excitation a harmonic body force at the internal point xB in the direction n and assume
that both displacements and tractions are time-reversed. Eq. (7) is symmetrical in time and admits time-
reversed solutions. Time-reversal leads to complex conjugate values in the frequency domain. One can then
write
fiðxÞ � dðx� xBÞdin; ð8Þ
with
uiðxÞ � G�inðx; xBÞ and tiðxÞ � T �inðx; xBÞ: ð9Þ
Substituting Eqs. (8) and (9) in Eq. (7), we can write
Z
C

T imðx; xAÞG�inðx; xBÞ � T �inðx; xBÞGimðx; xAÞ
� �

dCx ¼ �G�mnðxA; xBÞ þ GmnðxA; xBÞ; ð10Þ
which is re-written changing x by n, to represent boundary points on C, by means of
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2i Im½GmnðxA; xBÞ� ¼ �
Z

C
GmiðxA; nÞT �inðn; xBÞ � G�niðxB; nÞT imðn; xAÞ
� �

dCn: ð11Þ
This expression was presented by Wapenaar [19] and van Manen et al. [20] with a somewhat different notation.
The result is implicit in the treatment by Weaver and Lobkis [16]. This identity expresses the imaginary part of
the Green tensor between points xA and xB. In the time domain it gives the Green tensor plus the time-reversed
negative mirror image. Eq. (11) is thus a perfect time-reversal device for an arbitrary inhomogeneous medium
within the boundary C (see [20,22]). The concept has been used extensively by Fink [21] and others (e.g.

[22,23]) regarding a time-reversal mirror in which the time symmetry of wave equation is exploited. On the
other hand, the inverse transformation of the imaginary part of the Fourier transform of a causal function
leads to one half the function minus one half the time-reversal counterpart.

It is worth mentioning that time-reversal, which is frequently invoked in Green function retrieval, is not
fulfilled by the diffusion equation. However, Snieder [24] showed recently that the Green function of the dif-
fusion equation can be retrieved from the response to random forcing.

3. The isotropic illumination or the incoming field

To introduce some concepts, consider first the special case of an inhomogeneous medium, which may be as
extensive as necessary, surrounded by a homogeneous space and that both xA and xB are far away from the
inhomogeneous region and from the boundary C as well (see Fig. 1). A similar approach was taken by Weaver
and Lobkis [16] and it is equivalent to considering only the homogeneous problem and assuming the elastic
field under scrutiny as a background field. Expressions for the homogeneous case that will share the structure
of the inhomogeneous problem are presented.

From the exact expressions in 2D and 3D (see e.g. [15]), the far field asymptotic expressions of the Green
tensors, for both displacements and tractions in a homogeneous, isotropic, elastic medium are given by
GmiðxA; nÞ � f1ðqrAÞnmni þ f2ðkrAÞðdmi � nmniÞ and ð12Þ
T inðn; xBÞ � ixq af1ðqrBÞninn þ bf2ðkrBÞðdin � ninnÞ½ �; ð13Þ
respectively. In these equations rA and rB are the distances between the point n at the boundary C and points
xA and xB. As the distances are very large, we assumed the unit vector nj at the surface C to be equal for both
points. These expressions have an interesting form: the product f1(qrA)nmni is a tensor that represents the lon-
gitudinal part of the motion while f2(krA)(dmi � nmni) accounts for the transverse part. Notice that in Eq. (13)
the tractions at n are formed by the sum of the paraxial radiation boundary conditions for P and S waves,
respectively.

The radial functions f1 and f2 in 2D are cylindrical functions and are given by
f1ðqrAÞ ¼
1

4iqa2
H ð2Þ0 ðqrAÞ and f 2ðkrAÞ ¼

1

4iqb2
H ð2Þ0 ðkrAÞ; ð14Þ
while in 3D these functions have spherical decay and it can be seen that
Fig. 1. Inhomogeneous spot within a homogeneous body.
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f1ðqrAÞ ¼
1

4pqa2rA

expð�iqrAÞ and f 2ðkrAÞ ¼
1

4pqb2rA

expð�ikrAÞ: ð15Þ
Here H ð2Þ0 ð�Þ is the Hankel function of zero order and second kind, q = x/a and k = x/b, the wavenumbers, x
is the angular frequency, a and b are the P and S wave speeds, respectively, q is the mass density and rA is the
distance between n and xA.

Consider the neighborhood of points xA and xB (Fig. 2). Let r ¼j xA � xB j and cj the unit vector in the
direction from xA to xB. Since f1 and f2 correspond to P and S waves, we can express f1(qrB) and f2(krB) in
the far field approximation in the form of plane waves as
f1ðqrBÞ ¼ f1ðqrAÞ expð�iqrcjnjÞ and f 2ðkrBÞ ¼ f2ðkrAÞ expð�ikrcjnjÞ ð16Þ
in both 2D and 3D.
Substituting f1 and f2 of Eq. (14) or (15) in Eq. (11), and considering Eq. (16), we obtain
2i Im½GmnðxA; xBÞ� ¼ �2ixq
Z

C
af A

1 f B�
1 nmnn þ bf A

2 f B�
2 ðdmn � nmnnÞ

� �
dCn; ð17Þ
where f A
1 ¼ f1ðqrAÞ and f A

2 ¼ f2ðkrAÞ.
The asymptotic forms of Hankel’s functions for large arguments and Eq. (16) allow writing

f A
1 f B�

1 � ð2=pÞðqrAÞ
�1 expðiqrcjnjÞ and f A

2 f B�
2 � ð2=pÞðkrAÞ�1 expð ikrcjnjÞ. The surface element can be written

dCn = rAdh = 2prAdh/2p. After some simplification, Eq. (17) can be expressed as
Im½GmnðxA; xBÞ� ¼ �
1

2p

Z 2p

0

1

4q

expðiqrcjnjÞ
a2

nmnn þ
expðikrcjnjÞ

b2
ðdmn � nmnnÞ

� �
dh: ð18Þ
This angular integral has been evaluated before [15]. It is the azimuthal average of the cross-correlation of
displacements um(xA) and un(xB) which can be represented using brackets: humðxAÞu�nðxBÞi. If this average is
produced by the uniform isotropic illumination of plane P and S waves in such a way that their corresponding
spectral densities satisfy P2a2 = S2b2 = 2, we have the exact result
Im½GmnðxA; xBÞ� ¼
�1

8q
fAdmn � Bð2cmcn � dmnÞg; ð19Þ
where A ¼ J0ðqrÞ
a2 þ J0ðkrÞ

b2 and B ¼ J2ðqrÞ
a2 � J2ðkrÞ

b2 are given in terms of Bessel functions of zeroth and second order,
respectively [15]. Therefore, the azimuthal averages of the cross-correlations of vector elastic motions of a dif-
fuse field can formally be written as
humðxAÞu�nðxBÞi ¼ �8q
S2b2

2
� Im½GmnðxA; xBÞ�; ð20Þ
where the brackets mean azimuthal average and S2 the average spectral density of the plane shear waves of the
isotropic background field. It is from this relationship that one can talk of Green function retrieval from cross-
correlations [9–12]. In the canonical elastic case [15] the energies for S and P waves were assumed to fulfill the
ratio a2/b2, which is the theoretical equipartition ratio in 2D. In the sequel, instead, this ratio comes out nat-
Fig. 2. Neighborhood of points xA and xB.



F.J. Sánchez-Sesma et al. / Wave Motion 45 (2008) 641–654 647
urally from the representation theorem of Eq. (11). For completeness, we give here the result for the simple
anti-plane SH case: Im[G22(xA,xB)] = �J0(kr)/4l.

From the results above we see that both xA and xB are arbitrary internal points. They can even be the same
point. In that case, the imaginary part of the Green function is not singular. The singularity of the Green func-
tion at the origin corresponds only to the real part. Indeed, at xA = xB, r = 0 and we have, either from Eqs.
(18) or (19), the expression
Im½GmnðxA; xAÞ� ¼
�1

8q
1

a2
þ 1

b2

� �
dmn; ð21Þ
which exhibits the imaginary part of the Green tensor at the source as a constant isotropic second order tensor.
This means that all directions have the same value. The imaginary part of the Green function can be seen as
directly proportional to the power injected into the medium by the unit harmonic load. Moreover, the paren-
thesis in Eq. (21) breaks up into two terms that strongly suggest the theoretical partition of the elastic energy
density deep in infinite space. We assume this is the case.

Let us consider the identity of Eq. (20) that has been established between the Fourier transform of the azi-
muthal average of the cross-correlation of the vector motion at two points and the imaginary part of the
Green tensor between these points [15]. Making coincident source and receiver, contracting the tensor (i.e. tak-
ing the two indexes to be the same which means summation over the said index. In 2D we have
djj = d11 + d33 = 2) and multiplying with 1

2
qx2 makes clear that the imaginary part of the trace of the Green

tensor is proportional to the kinetic energy density. However, as the total energy is twice the average kinetic
energy, we omit here and hereafter explicit reference to kinetic energy and write
E ¼ qx2humðxAÞu�mðxAÞi
¼ �4lES � Im½GmmðxA; xAÞ�

¼ ES �
b2

a2
þ 1

� �
¼ EP þ ES; ð22Þ
where E is the total energy density, ES = qx2S2 and EP = qx2P2 are the average energy densities of the trans-
verse and longitudinal waves, respectively. Clearly ES/EP = a2/b2 and this is the value predicted by equipar-
tition theory in 2D (see e.g. [6,15]).

This result takes into account only the wave type and the energy partition depends essentially upon wave
length and the dimensions of space. Given the same (large) area L2 the number of modes of P waves is approx-
imately NP ¼ p

4
ðxL

pa Þ
2, which is 1/4 of the ‘‘area’’ of a circle with radius xL/pa in the modal space; see [6]. Thus,

the density of P modes per unit surface at a narrow frequency band Dx centered on the frequency x is simply
(1/2p)x Dx/a2 and, within the diffuse regime, it is proportional to the energy associated with P waves. The
density of S modes is, instead, dependent on 1/b2 and therefore ES/EP = a2/b2.

Equipartition theory also applies to the degrees of freedom and thus, when the isotropy of the tensor dmn of
Eq. (21) is considered, it is clear that for any two directions m and n in infinite space the associated average
energies will be the equal and thus Em/En = 1. In other words, the energy associated with any given direction
(in 2D) will be one half of the available energy density.

In three dimensions the concepts presented here permit expressing Eq. (11) by means of
Im½GmnðxA; xBÞ� ¼
�x

16p2r2
Aq

Z
C

expðiqrcjnjÞ
a3

nmnn þ
expðikrcjnjÞ

b3
ðdmn � nmnnÞ

� �
dCn; ð23Þ
where dCn ¼ r2
A du sin hdh. This equation is in fact an identity [15]. Doing the tensor contraction (e.g. njnj = 1

and djj = 3) and considering r = 0 we have
E ¼ A� Im½GnnðxA; xAÞ� ¼ A� �x
4pq

1

a3
þ 2

b3

� �
¼ EP þ ES; ð24Þ
where A = �2plESk�1. It is clear that in 3D the energy ratio is ES/EP = 2a3/b3. Again, this is agreement with
equipartition theory [6,15]. Eq. (24) is implicit in Weaver’s result [18] (see Eq. (62) in that paper). Regarding
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the degrees of freedom, it is clear that for any three directions m and n in infinite space the average energies will
be equal and thus the energy associated with any given direction will be one third of the total energy density.

This section ends with a general comment and some considerations of energy partitions. The application of
the correlation representation theorem of Eq. (11) for a homogeneous, isotropic, elastic medium shows that
the average correlation of the motion in a diffuse regime is proportional to the imaginary part of the Green
function. This is a consequence of the isotropic illumination of plane waves in such a way that the energy asso-
ciated with P and S waves is equipartitioned.

In a homogeneous infinite space the average energy density E can be distributed in different ways although
the energy budget is fixed. To establish those quantities let us follow Weaver [18] who introduced partition
coefficients. As kinetic and potential energies take one half each we can write KE = E · GKin and PE = E · GPot,
where the partition factors are GKin = GPot = 1/2. On the other hand, if the partition is made taking into
account the degrees of freedom one has Ei = E · Gi and Gi = 1/2 or 1/3 in 2D or 3D, respectively.

Up to now the different types of waves have been considered and have that EP = E · GP and ES = E · GS

where GP = (1 + R2)�1or(1 + 2R3)�1 in 2D or 3D, respectively. Here R = a/b. Regarding the partition factor
for S waves we have GS = R2(1 + R2)�1 or 2R3(1 + 2R3)�1 in 2D or 3D, respectively. Note that in 3D we have
to account for the two possible polarizations: GSH = GSV = R3(1 + 2R3)�1.

4. An inhomogeneous medium embedded in a homogeneous space

As the theorem of Eq. (11) is valid for any surface C, it follows that if the field is diffuse at the envelope, it
will also be diffuse at any point within the heterogeneous medium. We are accepting that diffusion implies that
the net flux of energy is null. Actually, it must be noticed that the stabilization of the P to S energy ratio, and
the validity of the diffusion approximation occur for finite lapse times while perfect equipartition, associated
with isotropy in our case, is reached asymptotically for long lapse times [25].

Consider an elastic inhomogeneous spot of arbitrary shape within a homogeneous envelope. The tractions
at point n on C for a unit point load in the direction n applied at point xB can be written using the paraxial
boundary conditions for both longitudinal and transverse components as
T inðn; xBÞ � �ixq aGjnðn;xBÞnjni þ bGjnðn; xBÞðdji � njniÞ
� 	

ð25Þ
¼ �ixqðanjni þ bðdji � njniÞÞ � GnjðxB; nÞ:
Therefore, Eq. (11) can be written as
Im½GmnðxA; xBÞ� ¼ �xq
Z

C
ðaninj þ bðdij � ninjÞÞ � GmiðxA; nÞG�njðxB; nÞdCn: ð26Þ
Because the inhomogeneous region is far away from the boundary C, the resulting Green tensors, at that
boundary, share the asymptotic properties of functions f1 and f2 as defined in Eqs. (12)–(15).

On the other hand, the elastic field at a point within V can be expressed using a single-layer representation
(this term comes from potential theory and means that the field can be constructed only by Green functions
radiating from the boundary as opposed to the double-layer in which the field is composed of Green function
derivatives. The first term of Somigliana’s identity in Eq. (7) shows the elastic field to be the sum of single- and
double-layer representations. See [26,27] for a discussion and applications to 2D and 3D problems). The field
within V can be represented by the elastic radiation of a force density /i(n) acting along C:
umðxÞ ¼
Z

C
Gmiðx; nÞ/iðnÞdCn: ð27Þ
It is usual to define a diffuse field (see [16,19]) in terms of a given force density such that its average along C is
null; here we represent the average with brackets, thus h/i(n)i = 0, and assume that /i(n) and /j(n) are mutu-
ally uncorrelated. Then we have
h/iðnÞ/�j ð1Þi ¼ F 2dijdðn� 1Þ; ð28Þ
where F2 is the spectral density of the excitation.
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The averaged cross-correlation of motion at points xA and xB is then given by
humðxAÞu�nðxBÞi ¼
Z Z

C
GmiðxA; nÞG�njðxB; 1Þh/iðnÞ/�j ð1ÞidCn dC1: ð29Þ
Therefore,
humðxAÞu�nðxBÞi ¼ F 2

Z
C

GmiðxA; nÞG�niðxB; nÞdCn: ð30Þ
From Eqs. (26) and (30), taking into account Eqs. (12)–(15) it is possible to write
huiðxA;xÞu�j ðxB;xÞi ¼ �4ESk�2 Im½GijðxA;xB;xÞ� and ð31Þ
huiðxA;xÞu�j ðxB;xÞi ¼ �2pESk�3 Im½GijðxA; xB;xÞ�; ð32Þ
for 2D and 3D, respectively. Eqs. (31) and (32) are analytical consequences of the representation theorem (11)
and have been verified recently for the full space [15] and an elastic inclusion embedded in an elastic space [17].

5. Fluctuations of energy densities near boundaries

In what follows we explore the energy density fluctuations at or near boundaries and scatterers. To this end
let us rewrite Eqs. (31) and (32) as in Eq. (22):
EðxAÞ ¼ qx2humðxAÞu�mðxAÞi ¼ �4lES � Im½GmmðxA; xAÞ� and ð33Þ
EðxAÞ ¼ qx2humðxAÞu�mðxAÞi ¼ �2plESk�1 � Im½GmmðxA; xAÞ�; ð34Þ
in 2D and 3D, respectively. In these equations ES = q x2S2 = the energy density of shear waves which is a
measure of the strength of the diffuse illumination. We see that the total energy density at a point is propor-
tional to the imaginary part of the trace of the Green tensor for coincident receiver and source. As we will use
E(x) for the energy density at a point x, let us call E1 the energy density for the infinite space. It is clear that
E1 = EP + ES for elastic waves. A comment on the units used is necessary because Eqs. (33) and (34) are con-
cerned with energies; the product of the shear modulus and Green function in 2D is non dimensional while in
3D the factor k�1 (length) gives the dimensional homogeneity as well.

The free surface problem for a diffusively vibrating elastic body was studied by Weaver [18]. He defined
partition coefficients for the energy densities of surface motions due to P, SH, SV and Rayleigh waves, respec-
tively. In fact, Weaver [18] showed that a diffuse field at the free surface may be regarded as a summation of
incoherent, isotropic and homogeneous independent plane waves incident upon the surface, together with
their respective outgoing reflected consequences including the Rayleigh surface waves as well. Weaver’s coef-
ficients were evaluated for 3D at the free surface against Poisson ratios and have no frequency dependence.

In the next section the 2D half-space and a cylindrical cavity are considered. The fluctuations of energy
densities near the free boundary for incident P, SH, SV and Rayleigh waves are analyzed.

5.1. The 2D half-space: anti-plane SH problem

Consider first the anti-plane SH case and a half-space in 2D. The Green function can be obtained easily by
superimposing the mirror image of the reflection. Thus, we can write
G22ðxA; xBÞ ¼
1

4il
H ð2Þ0 ðkrÞ þ H ð2Þ0 ðkr0Þ
n o

; ð35Þ
where H ð2Þ0 ð�Þ = cylindrical Hankel function of order zero and the second kind = J0(Æ) � iY0(Æ), here J0(Æ) and
Y0(Æ) = Bessel functions of order zero of the first and second kinds. Therefore, the imaginary part of the Green
function is given by
Im½G22ðxA; xBÞ� ¼
�1

4l
ðJ 0ðkrÞ þ J 0ðkr0ÞÞ; ð36Þ
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where r is the distance between source and receiver and r 0 is the distance between the image source and recei-
ver. At the source r = 0 and r 0 = 2z. According to Eq. (33) the energy density is proportional to the imaginary
part of the Green function at the source point. As we have only SH waves we have E1 = ES. Therefore, recall-
ing that J0(0) = 1, one can write
Eðz;xÞ ¼ E1 � ð1þ J 0ð2kzÞÞ: ð37Þ
This expression gives the energy density as a function of both frequency and distance to the free surface. At the
surface the energy density is constant and twice the value of the infinite space. In Fig. 3, we depict the ratio
E(kz)/E1 against kz, a normalized depth because k = 2p/K with K = wavelength of shear waves.

This result shows that for a SH diffuse field in 2D the energy density at the surface is twice the reference
level (E1). In any event, the ratio depicted in Fig. 3 makes clear frequency dependent fluctuations with depth.
5.2. The 2D half-space: in-plane P, SV and Rayleigh waves

Consider the 2D elastic half-space but now with in-plane loading. Expressing the Green function in terms of
standard horizontal wavenumber integrals (see [28]) it is possible to show for the source at depth z0 that
Im½G11ðx;xÞ þ G33ðx; xÞ� ¼
�1

4pqx2

Z 1

�1
Reð�m� k2=c� ke�icz0 A2 þ me�imz0 B2Þdk

þ �1

4qpx2

Z 1

�1
Reð�c� k2=m� ce�icz0 C2 � ke�imz0 D2Þdk; ð38Þ
where x = (0, z0)T, m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=bÞ2 � k2

q
and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=aÞ2 � k2

q
, with Imc < 0. m and c are the vertical wavenum-

bers of S and P waves, respectively, and
A2 ¼ fð4k2mc� ðk2 � m2Þ2ÞA1 � 4kmðk2 � m2ÞB1gF �1ðk;xÞ;
B2 ¼ f4kcðk2 � m2ÞA1 þ ð4k2mc� ðk2 � m2Þ2ÞB1gF �1ðk;xÞ;
A1 ¼ kc�1e�icz0 ; B1 ¼ e�imz0 ;

C2 ¼ fð4k2mc� ðk2 � m2Þ2ÞC1 � 4kmðk2 � m2ÞD1gF �1ðk;xÞ;
D2 ¼ f4kcðk2 � m2ÞC1 þ ð4k2mc� ðk2 � m2Þ2ÞD1gF �1ðk;xÞ;
C1 ¼ �e�icz0 and D1 ¼ km�1e�imz0 ;

9>>>>>>>>>=
>>>>>>>>>;

ð39Þ
where F ðk;xÞ ¼ ðk2 � m2Þ2 þ 4k2mc ¼ Rayleigh function: We computed these integrals numerically (from �x/b
to x/b in order to have real kernels). The contributions from the Rayleigh pole, which are obtained using the
residue at k = kR = x/cR (see [28]), are given by
Fig. 3. Normalized energy density for a diffuse SH wave field in a 2D half-space.
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Im GR
33ðz0; z0Þ

� �
¼ �1

2qx2
Re
�ice�icz0 C2 � ike�imz0 D2

F 0ðkR;xÞ

� �
and ð40Þ

Im GR
11ðz0; z0Þ

� �
¼ 0:
For a Poisson solid (k = l) the energy ratio E(z/KR)/E1 = � 4lES Im[Gmm(z,z)]/E1 is shown in Fig. 4
against the normalized depth z/KR where KR is the wavelength of Rayleigh waves. Note that E1 = ES +
EP = ES · (1 + b2/a2). The contributions from G11 and G33 are pointed out in the plot. They correspond to
the horizontal and vertical degrees of freedom and for increasing depth they tend to 1/2 in agreement with
the equipartition theory.

On the other hand, the free surface influence on energy densities can be obtained from the first part of Eq.
(33) assuming isotropic illumination of P and S waves from the deep half-space (see [15,17]). Energy density
against depth was obtained by cross-correlating equipartitioned plane P and S waves, including their free sur-
face reflections, and Rayleigh waves. The averages for P and S wave energies are calculated using incoming
homogeneous waves with incidence angles from �p/2 to p/2 and the integrals are transformed to the horizon-
tal wavenumber domain using appropriate changes of variable. The details are cumbersome and will be pre-
sented and discussed elsewhere. Fig. 5 depicts the normalized energy densities associated with incident P, S and
Rayleigh waves for a Poisson solid (k = l). The normalized total energy E(z,x)/E1 tends to one, while at
depth the ratio ES/EP stabilizes to the theoretical value a2/b2. At the surface the total energy density is twice
the value for deep space. Oscillations associated with the depth dependence of the S to P wave energy ratios
were also observed by Hennino et al. [4].
5.3. The 2D cylindrical inhomogeneity

The 2D Green function for a medium with a cylindrical inhomogeneity is a canonical problem that has been
studied in the context of the Green function retrieval. If the elastic space is isotropically illuminated with plane
waves, the identity of Eq. (31) is confirmed [17]. The complete analytical solution was developed for the anti-
plane SH case and for the in-plane P–SV waves as well. The energy densities of the isotropic illumination given
by P and SV waves are such that the ratio ES/EP = a2/b2. The Fourier transform of the azimuthal average of
the cross-correlation of the motion between two points within an elastic medium is in that case proportional to
the imaginary part of the exact Green tensor function between these points [17].

For purposes of illustration let us consider the simplest SH case. For a cavity of radius a, the 2D anti-plane
Green function can be expressed using Graf’s addition theorem (see [29]) as the sum of incident and diffracted
waves:
Normalized energy density against normalized depth for a diffuse vector wave field in a 2D half-space, considering the degrees of
m. Continuous line shows the total contribution of the two degrees of freedom (see Eq. (33)) and is represented by Im[G11 + G33].
ot line represents the part of horizontal motion which was computed from Im[G11]. Dotted line depicts the participation of vertical
ements obtained from Im[G33]. The partition factors tend, as the depth increases, to the theoretical value of one half each.
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G22ðx; y; xÞ ¼ v0 þ vd ¼ 1

4il
H ð2Þ0 ðkRÞ þ

X1
n¼0

enAnH ð2Þn ðkdÞH ð2Þn ðkrÞ cos nh

( )
; ð41Þ
where H ð2Þn ð�Þ = Hankel function of the second kind and order n, k = x/b = shear wavenumber,
R = jx � yj = distance between source and receiver (see Fig. 6), d = distance of y to the center of cavity, r

and h = cylindrical coordinates and en = Neumann factor (=1 if n = 0 or =2, otherwise).
The coefficients An of the expansion of the diffracted field are obtained from the boundary conditions of a

traction-free boundary at r = a; this gives
An ¼ �
J 0nðkaÞ

H ð2Þ
0

n ðkaÞ
: ð42Þ
As in Eq. (35), the energy density as function of frequency, distance d to the center of the cavity and its radius
a is
E ¼ E1 � 1þ
X1
n¼0

en
J 0

2

n ðkaÞðJ 2
nðkdÞ � Y 2

nðkdÞÞ þ 2J 0nðkaÞY 0nðkaÞJ nðkdÞY nðkdÞ
J 0

2

n ðkaÞ þ Y 0
2

n ðkaÞ

" # !
ð43Þ
In Fig. 7, the ratio E(d,x,a)/E1 is depicted against the normalized (radial) distance to the cavity edge k(d � a)
for various values of the ratio K/a = 2p/ka of the shear wavelength and cavity radius a in order to observe the
relative effect of the size of the cavity. In fact, the various lines correspond to K/a = 2p/ka = 20, 5 and 0.25,
Cylindrical cavity of radius a within the infinite space E. The line SH source is applied at y while the receiver is at x (r, h in polar
nates). The distance between source and receiver is R.

Normalized energy density, for a diffuse vector wave field in a 2D half-space, expressed with regard to incoming wave types.
uous line shows the total S, P and Rayleigh wave contributions. Dotted line represents the contribution of incoming plane S waves
reflections, while dashed line exhibits the additional contribution due to the incoming P waves and its reflections. The energy
level of the dashed line is in fact due to incident and reflected plane waves. The part of Rayleigh waves is, as expected, limited

a strip near the surface and practically disappears for a depth equal to the Rayleigh wavelength.



Fig. 7. Normalized energy density for a diffuse SH wave field in a 2D half-space containing a cavity with radius a. The various lines
correspond to K/a = 2p/ka = 20, 5 and 0.25, respectively, the value 0.0 is plotted with dashed line and represents the half-space result as
shown in Fig. 3.
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respectively. For wavelengths shorter than about one fourth the radius a, the fluctuations are practically
equivalent to those of the half-space. In the figure, the zero value of this ratio is plotted with a dashed line
and represents the half-space.
6. Conclusions

Assuming the homogeneous elastic case and a set of uncorrelated boundary sources, a correlation type rep-
resentation theorem allowed us to find that the resulting elastic field radiated by the far away boundary is equi-
partitioned. This implies that in infinite space the ratio of P to S energies stabilizes to a constant value. If a
homogeneous envelope is considered, the representation theorem allows the verification of the well known
result that by averaging correlations of motion produced by a diffuse field (such as that of coda waves) it is
possible to retrieve the Green function which is of interest for traditional imaging.

In both the homogeneous and heterogeneous cases, the equipartition of the background field is a necessary
and sufficient condition to retrieve the exact Green function from correlations. We show that the trace of the
imaginary part of the Green function tensor at the source is proportional to the energy density. Thus, the
Green function availability may allow the establishing of the theoretical energy density of a diffuse field gen-
erated by a background equipartitioned field. This may be useful to assess the diffuse nature of seismic ground
motion (from a limited set of observation points).

The cases of a full homogeneous elastic space, a space with an elastic cylindrical cavity and a half-space
were studied. Energy densities of both P and S waves and their ratios were found to exhibit fluctuations in
space and frequency that are due to nearby edges and/or scatterers. These fluctuations may be useful for
exploration purposes. The analysis of the spatial and frequency variations may help to detect underground
features. Such a method would not rely on specific sources but would take advantage of the apparently ran-
dom nature of diffuse fields.
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