
1 
 

Energy partitions among elastic waves  

for dynamic surface loads in a semi-infinite solid 
 

By 
 

Francisco J. Sánchez-Sesma 
(1)

, Richard L. Weaver 
(2)

, Hiroshi Kawase 
(3)

, Shinichi 

Matsushima 
(3)

, Francisco Luzón 
(4)

, and Michel Campillo 
(5) 

 

(1) Inst. Ingeniería, Universidad Nacional Autónoma de México; CU, Coyoacán 04510 DF; Mexico 

(2) Department of Physics, University of Illinois; Urbana, Illinois 61801, USA 

(3) Disaster Prevention Research Institute, Kyoto University; Gokasho, Uji, Kyoto 611-0011, Japan 

(4) Departamento de Física Aplicada; U. de Almería; Cañada de San Urbano s/n; Almería; Spain 

(5) Université Joseph Fourier, B.P. 53, 38041 Grenoble Cedex, France 
 

Bulletin of the Seismological Society of America 
 
 

Accepted for publication, March 2011 
 

Abstract 
 

We examine the energy partitions among elastic waves due to dynamic normal and 

tangential surface loads in a semi-infinite elastic solid. While the results for a dynamic 

normal load on the surface of a half-space with Poisson ratio of 1/4 is a well known result 

by Miller and Pursey (1955), the corresponding results for a dynamic tangential load are 

almost unknown. The partitions for the normal and tangential loads were computed 

independently by Weaver (1985) against Poisson ratio ( 2/10 ) using diffuse field 

concepts within the context of ultrasonic measurements. The connection with the surface 

load point was not explicit, which partially explains why these results did not reach the 

seismological and engineering literature. The characteristics of the elastic radiation of these 

two cases are quite different. For a normal load about 2/3 of energy leave the loaded point 

as Rayleigh surface waves. On the other hand, the tangential load induces a similar amount 

in the form of body shear waves. It is established that the energies injected into the elastic 

half-space by concentrated normal and tangential harmonic surface loads are proportional 

to the imaginary part of the corresponding components of the Green’s tensor when both 

source and receiver coincide. The relationship between the Green’s function and average 

correlations of motions within a diffuse field is clearly established. 
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Introduction 
 

In their pioneering work, Miller and Pursey (1955) computed the power radiated in the 

form of dilatational, shear, and surface waves after a harmonic normal load is applied on 

the free surface of a semi-infinite isotropic solid. Their results where verified with the 

admittance method and are often cited in the literature ranging over a variety of 

applications (see e.g. Richart et al., 1970).  
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The partitions for the normal and tangential loads were computed independently by Weaver 

(1985) against Poisson ratio ( 2/10 ) using diffuse field concepts. He studied the 

participation of the free surface in the general disturbance of a diffusely vibrating elastic 

body and showed that in the vicinity of a free surface a diffuse acoustic field may be 

viewed as the superposition of incoherent, homogeneous plane waves, incident upon the 

surface and including their outgoing reflected consequences. He used the connection 

between diffuse fields and Green’s function, but not all the implications were established 

then. In fact, the connection with the surface point load was not explicit and this partially 

explains why these results did not reach the seismological and engineering literature. Here 

we emphasize the deterministic nature of his results and point out the connection to diffuse 

field concepts. Of course, the citations to Weaver (1985) work in seismology are relatively 

recent and are related with diffuse fields. One last point, Weaver (1985) also verified his 

calculations using an admittance method similar to the one by Miller and Pursey (1955).  

 

The partition of energy within a diffuse field was introduced in dynamic elasticity by 

Weaver (1982) using statistical ideas from room acoustics. Based on this approach, Weaver 

(1985) computed the partitions for the half-space at the free surface. This is worth 

emphasizing - because this in turn implies: (a) that we can measure them in the field (i.e. 

H/V spectral ratios related to energy partitions) if the seismic noise is diffuse, and (b) that 

there is another way to calculate it - like Weaver did in 1985. 

 

In this communication we examine these results under a new perspective. We point out 

how average measurements of ambient vibrations may reveal intrinsic properties of 

systems. Calculations based on the diffuse fields concepts permit to obtain deterministically 

the energy partitions of the energy injected on the elastic half-space by surface loads. The 

canonical results discussed herein can be of interest in several fields.  

 

The Concentrated Surface Loads 
 

Miller and Pursey (1955) calculated the partition from a normal point load in two ways: (1) 

they evaluated the energy radiated into all types of waves at infinity, and (2) evaluating the 

real part of admittance (i.e. the imaginary part of Green functions at the source, in modern 

terms). That these should be equal is just a simple matter of conservation of energy. 

Specifically, they found that the total power radiated by a vertical harmonic load Pe
iωt

 is 

given by Π=1.209ω
2
P

2
/πρα

3
, where ω = circular frequency, ρ = mass density, and α = 

propagation velocity of P waves. Such an amount is partitioned among P, SV and Rayleigh 

waves in 6.89, 25.76 and 67.35 per cent, respectively. They assumed a Poisson ratio ν =1/4 

and verified their results using the admittance method. With today’s perspective, it is clear 

they were looking at the imaginary part of Green function at the loaded point. In what 

follows the load P will be assumed unitary. 

 

Miller and Pursey (1954), Cherry (1962) and Gupta (1965) studied the tangential load but 

the emphasis in their work was restricted to radiation patterns. They pointed out that such a 

source produce an azimuthally variation of both body (P, SV, and SH) and surface waves. 

Cherry (1962) found that the generated Rayleigh waves had amplitudes smaller than those 

for normal load. However, no attempt to compute energies was made.  
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The Relationships of the Green Function and Field Correlations 
 

It has been demonstrated that the Green’s function can be retrieved from averaging cross 

correlations of the recorded motions in a diffuse field. If a 3D diffuse, equipartitioned, 

harmonic displacement vector field ),(xiu  is established within an elastic medium, the 

average cross-correlations of motions at points xA and xB can be written as (e.g. Sánchez-

Sesma et al., 2008): 

 
* -3( , ) ( , ) 2 Im ( , , )FS

i j S iju u E k GA B A Bx x x x                              (1) 

 

In this equation, the Green´s function =),,( ωGij BA xx displacement at Ax in direction i 

produced by a unit harmonic point force, )iexp()( tij Bxx , acting at Bx  in direction j, 

1i = imaginary unit, t = time, =/= βωk shear wave number, =β shear wave 

propagation velocity, and FS

SE = average energy density of shear waves in the full-space 

(FS) which is a measure of the available diffuse illumination. The asterisk * implies the 

complex conjugate and the angular brackets mean average. 

 

If we assume Ax = Bx  we can rewrite Eq. 1 in terms of the total energy density at point 

Ax by means of  

 
2 * 1( ) ( ) ( ) 2 Im ( , )FS

m m S mmE u u E k GA A A A Ax x x x x ,               (2) 

 

where shear modulus. The total energy density is the sum of the energy due to shear, 

dilatational, and surface waves (if any), ( ) ( ) ( ) ( )S P SWE E E Ex x x x . Eq. 2 shows the 

total energy density at a point as proportional to the imaginary part of the trace of the Green 

tensor for coincident receiver and source. The singularities of Green´s functions trace 

components are restricted to the real part. The imaginary parts are finite and regular; each 

one represents the power injected by the unit harmonic load at that point. These quantities 

also reveal energies that are both radiated and coming back to the source as they modify the 

work done by the load. This property may be useful to characterize the system. If the 

summation convention is ignored, the energy density associated to a given direction is 

simply )( AxmE , see Perton et al. (2009). For the homogeneous elastic space we have 

3/)()( AA xx EEm . The relationships among energy densities and its partitions have been 

recently studied by Perton et al. (2009), by Margerin (2009) and by Margerin et al. (2009). 

The connection of the imaginary part of the Green´s function at the source with the optical 

theorem has been explored by Snieder et al. (2009). 

 

Power Radiated by a Harmonic Point Force and Partitions 
 

From Eq. 2 we can write Im[ ( , ; )] ( ) / 6FS FS

jj SG kE Ex x x which is the imaginary part of 

the elastodynamic Green function for full-space when source and receiver coincide. In this 
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case ( ) FS FS FS

P SE E E Ex , which means that energies are independent of position. No 

summation is implied in this result. Therefore, the rate at which work is done by a unit 

harmonic load at any point x , within a full-space, in direction j is the time average of the 

force times the velocity (Weaver, 1985): 

 

3

3

3

2 2
1

24
)];,(Im[

2
)( xx

FS

jj

FS

j G , no sum.                (3) 

 

The one in the parenthesis represents the energy associated to P waves, the term 2α
3
/β

3
 

corresponds to the energy associated to S waves. In fact, 3 3/ 2 /FS FS

S PE E R  which is 

the well known equipartition ratio in 3D (Weaver, 1982).  

 

From the results by Sánchez-Sesma and Campillo (2006) for the full-space one can 

establish the partitions in terms of directions and wave type in terms of the power of a 

single force in full-space: 
 

FS

Wj

FS

j

FS

Wj p ,, )(),0( , no sum.         (4) 

 

where 
FS

Wjp , = partition coefficient in the full-space for direction j and wave type W (either P, 

SV, or SH). Table 1 displays these partitions. The sum of partitions for each direction is 

one, as expected.  To illustrate the meaning of these values, consider a unit horizontal load 

(j = 1 or 2). The power associated to SH waves is 2 3

1, 1,( ) ( / 24 )(1 )FS FS

SH SHR p  

2 3 2 3( / 24 ) (3 / 4) /16 .R  For a Poisson solid ( 3/ ), the partition factor 
FS

SHp ,1 = 7.695x(1+2x5.196)
-1

 implies that more than 68% of the injected energy by a 

horizontal load in a full space corresponds to SH waves. On the other hand, the energy 

associated to SV waves is more than 22%.  

 

Table 1. Values of normalized energy partitions for the full-space: [ ,(1 ) FS
j WR p ] 

Wave type W j = 1 j = 2 j = 3 

P 1 1 1 

SV R/4 R/4 R 

SH 3R/4 3R/4 0 

 

Dealing with diffuse waves at the free surface, Weaver (1985) examined the participation 

of the surface in the general disturbance of a diffusely vibrating elastic body and 

demonstrated that in the vicinity of a free surface a diffuse acoustic field may be regarded 

as a sum of incoherent isotropic homogeneous independent plane waves incident upon the 

surface together with their respective outgoing reflected consequences. Using this idea, 
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Weaver (1985) computed the energy densities for motions at the free surface and obtained 

partition factors in terms of directions and wave types for various Poisson ratios 

( 2/10 ). For horizontal and vertical surface loads we can express these results as: 

 
HSS

Wj

FS

j

HSS

j p ,)(),0( , no sum.         (5) 

 

where HSS

Wjp , = partition coefficient at the half-space surface (HSS) for direction j and wave 

type W (either P, SV, SH, or Rayleigh). From the curves of Fig. 1b, for 4/1 , a Poisson 

solid,  the power associated to the vertical load is then  

 

3

2

3

2

,,,1 209.1)20.066.071.1(
24

)1(
)()(),0(

R
ppp HSS

Pz

HSS

SVz

HSS

Rz

FSHSS

z ,   (6) 

 

which is the value computed by Miller and Pursey (1955). 

 

 
Figure 1. Partition coefficients for direction j (x, or z) and wave type (P, SV, SH, or 

Rayleigh) vs Poisson ratio. Horizontal and vertical partitions are given in a) and b), 

respectively. 

 

Partitions may be grouped to present energy in their various forms. For instance, summing 

over wave types for a given direction we have the energy density associated to such 

direction at the free surface.  This is measured in terms of the available energy density 

away from the free surface. Alternatively, such partitions represent the radiated energy 

among the various types of waves for a dynamic load in the said direction. This is a 

deterministic fact and the focus of this communication. 

 

Energy Partitions and the H/V Spectral Ratio  
 

In Fig. 2a the total partitions for both vertical and horizontal loads are given as functions of 

Poisson ratio. This allows obtaining the theoretical value for the horizontal to vertical ratio 

on the surface of a half-space. Considering that horizontal components are equal we can 

obtain the H/V spectral ratio using Eq. 2 and invoking the partitions by means of 
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HSS

z

HSS

x

HS

HS

p

p

G

G

w

u

V

H 2

);0,0(Im

);0,0(Im2

);0,0(

);0,0(2

33

11

2

2

,     (7) 

 

which is frequency independent and is given in Fig. 2b vs Poisson ratio. A useful 

approximation for these results is 348.0245.1/VH . The H/V ratio is then a 

characteristic property of the medium and it depends on Poisson ratio. If a diffuse field is 

established, such a simple measurement may allow rapid determination of this elastic 

property. For a layered system the theoretical half-space H/V ratio provides asymptotic 

values for high and low frequencies that will depend on the Poisson ratio of the uppermost 

layer and of the basement, respectively (see, Margerin et al., 2009).      

 

    

Figure 2. (a) Total partition coefficients for horizontal and vertical directions (x, or z) 

against Poisson ratio. (b) Theoretical H/V ratios for both diffuse fields and Rayleigh 

waves.  

 

When dealing with microtremors it is frequent to compare H/V with the ellipticity of 

Rayleigh waves, (H/V)Rayleigh , which has clear meaning if the direction of propagation is 

known. Within the diffuse field theory the H/V ratio includes, in addition to Rayleigh 

waves, P, SV and SH waves as well. In order to gauge the differences with the ellipticity of 

Rayleigh waves we depict in Figure 2b the H/V ratio for a diffuse field and the ellipticity 

for Rayleigh waves propagating along a given direction, say x, which can be obtained (e.g. 

Aki and Richards, 1980) from the expression: 

 

 
12

12
)/(

2

2

RayleighVH ,                 (8) 

 

where δ = β/cR  and cR = velocity of Rayleigh waves. The differences are significant and 

show that for the half-space case the diffuse field H/V is far away of the ellipticity of 

Rayleigh waves. In layered systems the resemblance of measured H/V with (H/V)Rayleigh has 

been used for inversion. 
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The extension of these concepts to a multilayered layered medium implies numerical 

treatment. With this in mind, it is convenient to consider the formal solutions by Lamb 

(1904) and Chao (1960) for normal and tangential loads, respectively, in the frequency-

wavenumber domain and check the total partitions. The corresponding analytical 

expressions are given in the Appendix. 

 

From the total partitions (Figure 2a) it is possible to obtain the normalized percentages of 

total energy partitions for both horizontal and vertical load cases. Figure 3 depicts these 

percentages.  

 
Figure 3. Percentages of partitions for (a) horizontal and (b) vertical load cases (x, or z) 

against Poisson ratio. 

 

Discussion and Conclusions 
 

The power emitted by a unit harmonic vertical force acting at the surface of a half-space 

can be computed using standard integral transform techniques. In fact, Weaver (1985) 

verified his results calculating the vertical response at the point of load. This latter method 

does not rely on the concept of diffusely and isotropically incident wave fields. It is a 

deterministic fact. 
 

For the half-space cases there is some amplification due to the free boundary and the 

horizontal and vertical sum are larger than one. For a Poisson solid (ν =1/4) the total vertical 

and horizontal partitions give 1.71+0.66+0.20=2.57 and 1.37+0.41+0.36+0.14=2.28, 

respectively. Thus, the energy density at the free surface is (2x2.28+2.57)/(1+1+1)=2.37 

times the full-space value and the ratio of horizontal to vertical energy densities is 

EH/EV=H
2
/V

2
=2x2.28/2.57≈1.774 and H/V=1.332. For a Poisson ratio ν=1/3 we have 

H/V=1.349. The relative energy densities at the free surface and other ratios are frequency 

independent. Their variations with normalized depth, z/ΛR, where ΛR = wavelength of 

Rayleigh waves, have been reported by Perton et al. (2009) for a Poissonian half-space.  

 

From Figure 1b we can obtain the approximate theoretical values of partitions for an elastic 

half-space with Poisson ratio of 1/4 and a normal load on the surface: 67% for Rayleigh 

waves, 26% for SV waves and only 7% for P waves. We see that almost 2/3 of energy 

leaves the loaded region as Rayleigh waves and of the rest, only a relatively small amount 
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of body waves of P type is collimated with the load. The energy pumped toward depth in 

SV waves has radiation lobes and lateral spread. For a normal load the most significant 

radiation is lateral propagations of Rayleigh waves.   

 

The tangential load case is given in Figure 1a. If Poisson ratio is 1/4, the approximate 

figures for the energy share are 18% to Rayleigh waves, 60% and 16% to SH and SV 

waves, respectively, and only 6% for P waves. Here there is a more complicated spatial 

radiation pattern but the distinctive feature is that 2/3 of the energy leaves the loaded point 

as shear body waves. Particularly important is the radiation toward depth of horizontally 

polarized, SH, shear waves. 

 

These two cases clearly exhibit the distinct character of the radiated energy implicit in 

ImG11 and ImG33 at the surface. This behavior allows us to draw a coherent picture useful 

to deal with layered media partitions. Both the normal and the tangential loads produce 

almost 2/3 of energy in the form of surface and body waves, respectively. While the former 

case gives essentially surface waves that in high frequency ”do not see” deep layers, the 

horizontal load produces body waves that may interact with the layering. These facts have 

some bearing on the interpretation of the diffuse field H/V spectral ratio. But this issue will 

be discussed elsewhere.  
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Appendix. Analytical Formulae in Frequency-Wavenumber Domain 

 

It is possible to write formally, from Lamb (1904) and Chao (1960) solutions, the 

expressions for vertical and horizontal surface displacement at the point of application of a 

harmonic vertical or horizontal unit load, respectively, by means of (see e.g. Kausel, 2006):  

 

dkkrkJ
kF

zkzk
zruz

0

0

222

)(
)(

)iexp(2)iexp()(

2

i
);,( , and           (A1) 

 

dkk
kr

Jz

kr

J
J

kF

zkzk
zrur

0

11
0

222 )iexp(

)(

)iexp()()iexp(2
cos

2

i
);,,( . (A2) 

In these equations shear modulus, k = radial wavenumber, and 222 / k = 

vertical wavenumbers for P and S waves, respectively, , = P, S wave speeds, 1i = 

imaginary unit, 
2222 4)()( kkkF = Rayleigh function, and nn JkrJ )( = Bessel 
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function of the first kind and order n with argument kr, and finally zr  and ,, are the usual 

cylindrical coordinates. 
 

These displacements correspond to elements of the Green tensor and are singular at the 

origin. The singularity is restricted to the real part. Thus we can write the expressions for 

the ImG33(0,0;ω) and ImG11(0,0; ω) at the source in terms of the given integrals in the 

radial wavenumber domain by taking the imaginary part in equations A1 and A2: 
 

kdk
kF

G
0

22

33
)(

/
Re

2

1
);0,0(Im , and                (A3) 

 

dkk
kF

G
0

22

11

1

)(

/
Re

4

1
);0,0(Im .               (A4) 

 

Numerical integration allows verifying the linear variation with frequency of the ImG´s and 

the consistency of calculations. A small imaginary part is added to frequency to avoid the 

Rayleigh pole. The SH part in Chao solution can be computed analytically and shows the 

integration scheme is adequate. From numerical calculations using equations A3 and A4 

the analytical results by Weaver (1985) of Figure 2a for the total contributions. In 

particular, the imaginary part of Green functions at the free surface is formally the product 

of the corresponding total partition at the half-space surface (HSS) and the imaginary part 

of the Green function for a single component at full space: 
 

3

33 3 3

2
Im (0,0; ) 1

12

HSS

zG p , and           (A5) 

 

3

11 3 3

2
Im (0,0; ) 1

12

HSS

xG p .                        (A6) 

 

The minus sign comes from the chosen convention for Fourier transformation.  


