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Abstract-In order to draw geological structures such as faults, interpolation is generally needed between scattered 
data. The use of an approximation criterion integrating the kinematic properties of the faults helps to document the 
fault surfaces by adding a compatibility criterion to the data set. Assuming that two jointed blocks of rocks slipping 
on each other generate a thread surface, an approximation method has been developed which integrates a thread 
criterion. This approximation method is used to solve an inverse problem with least-squares criteria including 
proximity to data points, smoothness and thread criteria. The aim is to find a smooth surface which is as close as 
possible to a thread and as close as possible to the observed data set. Applications to two corrugated fault surfaces 
with a dense data set. located in the Western Alps (France) and in the Transverse Ranges (California), confirm the 
validity of the thread assumption. Despite their difference in mean corrugation wavelength (5 m and 10 km 
respectively), in the type of fault (strike-slip and thrust fault respectively), and in the nature of the faulted rocks 
(limestones and sandstones respectively), very similar results are obtained. In both cases the observed data fit well 
with a thread surface and the computed fault displacement fits well with the measured displacement on the fault 
(striae, seismic focal mechanism, geodetic data, restoration). The conclusion is that treating a fault as a thread is a 
valid physical description which gives the slip direction independently of other kinematic indicators. The advantage 
of using a thread criterion in addition to classical proximity and smoothness criteria is that this physical insight 
allows information from areas where data are relatively dense to help constrain areas where data are relatively 
sparse, these last areas being those that are usually not well constrained by proximity and smoothness criteria. 
Copyright 0 1996 Elsevier Science Ltd 

INTRODUCTION 

When geological structures are drawn, the available data 
are generally so scattered that interpolation, or approx- 
imation, is needed between the observations. 

Application of some simple rules including the restora- 
tion of structures (to their initial undeformed state) and 
the preservation of the rock volume before and after the 
deformation, adds some constraints to the geometry of 
the structures (Chamberlin 1910, Goguel 1952). For this 
purpose, balanced cross-section techniques have shown 
their efficiency within the plane strain basic assumption 
(Dahlstrom 1969, Hossack 1979, Suppe 1983). 

For three-dimensional deformation several approaches 
have been used: 

(a) Assuming simple fault and fold kinematics, for 
example when all the slip vectors for faults (Barr 1985) or 
flexural-slip folds (McCoss 1988), have parallel projec- 
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(c) Restoration methods by best fitting of rigid blocks, 
(Cobbold 1979, Rouby et al. 1993) or by unfolding the 
folded structures, thus searching for the best fit between 
the unfolded blocks (Gratier et al. 1991, Gratier & 
Guillier 1993) can be used to test (by a trial and error 
approach) the geometrical compatibility of folded and 
faulted structures. However, this type of method only 
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tions, three-dimensional restoration is possible. How- 
ever, in this case the simplicity of the kinematics limits the 
application of the method. 

(b) Assuming constant bed-length for the folded 
strata, several authors, such as Bennis et al. (1991), 
Lisle (1992) and LCger et al. (1995) proposed the use 
of appropriate geometrical properties: unfolding the 
developable surface without internal deformation 
means that the total curvature at any point of the 
surface (product of the two principal curvatures) is zero. 
This is efficient to test the geometry of folded strata. 
However, when considering folded and faulted strata, 
the geometry of the faults must be compatible with the 
geometry of the folded structures, and faults are not 
presumed to be developable surfaces. 
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tests the compatibility between the initial and the final 
state of the structures. With a constant bed length 
assumption, the geometry of pieces of strata (limited by 
faults) is tested by the compatibility of the geometry of 
hanging wall and foot wall traces on the faults, but such 
balanced finite geometries of folds and faults say nothing 
about the kinematics of the structures. When several 
layers are available, the kinematics are more constrained 
but are never fully integrated. 

(d) In order to test the compatibility between folds and 
faults, Kerr et al. (1993) used inverse modelling where the 
geometry of two or more deformed layers is used to 
derive both the geometry of the main fault surface and 
the direction of extension. The assumption is that the 
deformation of the hanging wall is assumed to be an 
inclined shear deformation (with constant volume). 
Subject to the validity of this ‘strong’ kinematic assump- 
tion (which for example implies elongated strata), the 
finite geometry of the fault is known. 

Following the idea that the use of an approximation 
criterion integrating the kinematic properties of the faults 
helps to document the fault surfaces (by adding a 
compatibility criterion to the data set), a new approach 
is proposed which is to solve an inverse problem when 
faults are assumed to be thread surfaces between jointed 
solid blocks. Thread surfaces have the characteristic 
property of being tangent to a non-zero twistor vector 
field, the field lines of this twistor being helices which may 
be compared with geological striae. The problem is 
illustrated in Fig. l(a) showing that two jointed solid 
blocks slipping on each other generate a thread. Thread 
surfaces are the only surfaces allowing large displacement 
of two solid blocks which remain in contact during 
faulting. The most general example is the thread surface 
allowing movement between bolt and nut. However, in 
natural conditions, it is the slipping of one block against 
the other which generates the thread surface. In fact, 
most of the time, one of the blocks is more rigid than the 
other and the fault surface is located between one 
(relatively) rigid block and a gouge. It is important to 
emphasize that after a relatively large displacement, 
parallel to the fault, the fault surface must be smooth in 
the direction of slip (since the surface has been formed by 
the slipping) but the slip does not constrain the shape of 
the surface normal to the slip direction. Limitation of the 
thread assumption occurs if the fault geometry is 
modified by deformation (folding) either after the fault 
became inactive or during the time the fault is active. As 
the surrounding rocks must register such a deformation, 
careful structural analysis is always needed in the vicinity 
of the fault to estimate the kinematics of the deformation. 

(d) 

Fig. 1. (a) Two solid blocks slipping on each other generate a thread 
surface. The dashed lines represent the striae. Mis a point on the thread 
surface. T(M) is the value of the twistor vector field at M. Cl is the 
rotation vector of the twistor field. (b) The thread surface allows 
movement between bolt and nut. Examples of thread surfaces: (c) 
cylindrical surfaces (with straight striae), (d) surfaces of revolution 

(striae describe circles), (e) general case of a thread. 

method is useful for constructing a fault surface from a 
set of scattered data points (fault position in boreholes, 
pickings on a seismic profile). 

In order to test the effect of a thread criterion when 
interpolating scattered fault data, two types of approach 
have been compared (Thibaut 1994). 

Natural fault surfaces are not perfect thread surfaces, 
firstly because of possible internal deformation of the 
blocks near the fault, and secondly because of the 
uncertainties of the data set. The best way to take into 
account these uncertainties is to use inverse methods with 
least-squares criteria. The aim of such a method is to find 
a smooth surface which is as close as possible to a thread 
and as close as possible to the observed data set. The 

1. Starting from a geometrical approximation (which 
gives an intrinsic representation of the surface by 
minimizing criteria based on curvature and proximity to 
data points) a thread criterion is added and the two 
results (with and without a thread criterion) are 
compared in order to test the effect of the thread 
assumption. In this case the twistor is derived from the 
calculation and may be compared with geological striae. 

2. Still starting from the same geometrical approxima- 
tion, a thread criterion is added plus a given twistor 
(deduced from natural striae measurements, or from 
other information on the slip direction, such as seismic 
focal mechanisms). In this case, the results with and 
without a given twistor (in fact, with or without given slip 
direction) are compared. 
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Several questions arise from such an approach: 

(a) can fault surfaces be considered as thread surfaces 
(in area of dense data)? 

(b) does the use of a thread criterion improve the 
approximation of a fault surface (in areas with few data)? 

(c) does the knowledge of the twistor (striae) help the 
approximation? 

In the first instance, the inverse method is presented. 
Next an application to two different examples is pre- 
sented: a decametric fault surface in the Western Alps 
(France) and a decakilometric fault surface in the 
Transverse Ranges, California (U.S.A.). 

METHOD 

The first problem is to represent a fault as a surface. 
Explicit representation associates a z = f(x,y) coordinate 
(depth) to horizontal coordinates (xJ). However, vertical 
surfaces cannot be accurately described with such an 
explicit representation. Another way is to use parametric 
representation which means that each Cartesian coordi- 
nate (x, y, z) of the surface is associated with a couple 
(u,v) of curvilinear coordinates: x = f (u,v), y =’ g (u,v), 
z = h (u,v). For numerical reasons these functions (f, g, h) 
must be discretized. Consequently, in order to ensure the 
smoothness of the surface, B-spline tensor products 
(third degree polynoms) were used to describe the surface 
(Schumaker 198 1, Bartels et al. 1987). 

Starting from an initial model of the surface, the 
inverse method involves making successive iterations in 
order to find the model of the fault surface which is as 
close as possible to the observed data. Each geometrical 
property (smoothness, thread) and geological informa- 
tion (location of fault points) is associated with a least- 
squares criterion which measures the discrepancy 
between computed data (model) and observed data 
(Tarantola 1987). The weighted sum (Q) of all the least- 
squares criteria is minimized with the Gauss-Newton 
algorithm. Starting from an initial model, the Q function 
is decreased at each iteration. The solution model is the 
model for which the derivative of Q (de) vanishes. The 
detailed mathematical method is described in LCger et al. 
(in press). Only a simplified description is given here for 
the geological application of the method. 

Q=w,Q,+wcQ,+wtQl+waQ,+wnQn. (1) 

The various least-squares criteria (Q,,, Qc, Qt, Qa, Q,J 
and weighting factors (W,, W,, Wt, W,, W,) are defined 
as follows: each least-squares criterion measures the 
discrepancy between computed data (with subscript c) 
and observed or known data (with subscript 0). 

Q,, measures the distance between each observed data 
item (P,‘) and its homologue computed in the model fault 
surface (P,‘). Qp is a discrete sum because the data set is 
finite. 

Q,, = c IP; - P;l’. 
i 

(2) 

Qc measures the smoothness (or the regularity) of the 
surface. A surface is considered to meet the smoothness 
criterion if principal curvatures C,i and Cc2 are as close as 
possible to zero at any point. C,i and Co2 are the 
observed curvatures assumed to be equal to zero. Since 
the criterion based on principal curvatures is defined as 
an integral instead of a discrete sum, 

Qc = &-, - Cd2 + (Cc2 - Gd21ds 
n (3) 

with ds as the integration element of the surface. 
Q, represents the thread criterion. A thread surface is a 

regular surface tangent to a non-zero twistor. A twistor is 
a vector field with particular kinematic properties 
(Rougte 1982). 

T(M) = T(0) + R A OM. (4) 

T(M) is the value of the twistor vector field at any point M 
of the surface, OM denotes the vector linking point 0 to 
point M, Sz is a fixed vector which generates the axis of the 
thread, T(0) is a constant vector at a fixed point 0. In 
fact, T(O) represents the translation component of the 
twistor, and D a rotation component for the twistor. As a 
typical example, a bolt and nut are in contact via a 
surface which is a thread. In this case (Fig. lb), thread 
lines are helix lines (the field lines of the twistor). 
Particular instances of threads are cylindrical surfaces 
(helices degenerate into straight lines since their pitch 
becomes infinite, Fig. lc), surfaces of revolution (helices 
become circles since their pitch is zero, Fig. Id). Figure 
l(e) illustrates the general case of a thread. Generating a 
thread surface by moving a curve along a non-zero 
twistor nowhere tangent to the curve may give a self- 
intersecting surface. In the following, however, we 
consider sufficiently small patches of threads that are 
non-self-intersecting surfaces. Because of this definition 
of a thread surface, the basic idea of a thread criterion 
consists of the minimization of the angle between the 
tangent plane and the twistor. Therefore, an objective 
function Ql is defined as follows 

Qt = &I~ N(M))2ds. (5) 

Since T(M) is normalized, the dot product (T(M), 
N(M)) represents the cosine of the angle between twistor 
T(M) at point M and plane T,,$ tangent at M to 
calculated surface S, with N(M) being the unit vector 
normal to T,S. Therefore, minimizing Q, makes the 
surface and the twistor as tangential as possible, and 
hence the surface becomes as near as possible to a thread. 
The effects of this criterion on various theoretical 
examples are detailed in Leger et al. (in press). 

Twistor T is a priori an auxiliary unknown which is 
determined at the same time as the surface. Sometimes, 
however, a particular twistor can be chosen on the basis 
of available geological information. For instance, if the 
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relative displacement of two blocks is known to be 
everywhere parallel to some unit vector T, the thread 
criterion simply makes the surface almost cylindrical with 
generatrices parallel to T. 

The objective functions Qa and Qn have no geological 
meaning but are necessary for the inverse method (see 
Leger et al in press, for details). 

Qa is designed to solve the following problem. Since a 
given surface may be described by many parameteriza- 
tions (a parameterization @ maps some curvilinear 
coordinates (u,v) to Cartesian coordinates (x,v,z), (x,y,z) 
= CD (u,v)), the inverse problem may have many solutions 
in terms of parameterizations, even if it has only one 
solution in terms of surfaces. Therefore, an ‘additional’ 
criterion is introduced, which automatically selects the 
smoothest parameterization of a surface. This technique is 
presented in Rakotoarisoa (1992) and LCger et al. (1995). 

Qn solves the following problem. The thread criterion 
is perfectly met for any surface if twistor T is zero (vector 
T(M) is zero at any point M). This violates the definition 
of threads since the twistor should not be zero. Therefore, 
a ‘normalization’ criterion is introduced which makes the 
RMS (root mean square) norm of Tover the surface close 
to one. Consequently, dot product (T(M), N(M)) may 
be interpreted as an angle in a RMS sense since the norm 
of N(M) equals one. The expression of Qn is 

It is worth emphasizing that only the first three criteria 
(Q,,, Qc, Ql) have a geological meaning and a real effect on 
the solution. 

With these last two criteria, the minimization of the 
overall weighted objective function Q is possible. How- 
ever, weighted factors (W,, W,, Wt, W,, W,) are 
introduced in the Q calculation. This is done to give a 
degree of confidence to each criterion: proximity to the 
points, smoothness and thread. Greater or lesser impor- 
tance may be given to each criterion with more or less 
weight. For example, for well data the location is very 
accurate and the weight for the proximity criterion may 
be very large. On the contrary, for seismic data (which are 
not so accurately located) this weight for the proximity 
criterion must be lowered. 

For each geological application several tests have been 
run in order to compare different solution models with 
the following assumptions. 

- Fault model without thread criterion: only the sum 
of the proximity (Q,,), smoothness (Qc) and additional 
(Q(,) criterion has been minimized. 

- Fault model with thread criterion and unknown 
twistor: the whole Q function has been minimized. 

- Fault model with thread criterion and known 
twistor: the sum of the proximity (Q,,) smoothness (Qc), 
thread (Q,) and additional (Qa) criteria has been 
minimized (since the twistor is known the Qn function is 
not needed here). In this case the twistor is known from 
natural striae or seismic focal mechanisms. 

In order to test the geological assumptions and to 
estimate the results of these comparisons, several residual 
criteria have been used. 

The RMS distance is defined as the root mean square 
value of the distance between each data point (MO) and its 
homologous data (M,) on fault model 

RMS distance = (p1w~ - wJ)2m (7) 

where N is the number of data points and PI denotes the 
normal projection to the surface. 

To estimate how the fault model is close to a thread, an 
RMS angle is defined as follows. 

RMS angle = ,/~dr/~d.r (8) 

where (T(M), N(M)) is the scalar product of the two 
vectors T(M) (twistor value at point M of the surface) 
and N(M) (the normal vector at point M of the surface). 
This RMS angle expresses how the twistor is tangent to 
the surface (or more exactly how it is perpendicular to the 
vector normal to this surface). As above, ds is the surface 
element. 

APPLICATION TO THE STRIKE-SLIP CLERY 
FAULT (VERCORS, FRANCE) 

The Cl&y fault (Fig. 2) is a dextral strike-slip fault 
through the whole South Vercors massif (Robert 1976). 
The fault displacement is associated with the Alpine 
deformation (Gratier et al. 1989). The total horizontal 
offset on the Cl&y fault and some other neighbouring 
parallel faults was first estimated to be about 3-4 km 
(Arnaud 1981) with the measurement of the offset of 
sedimentary units (southern limit of detrital limestones of 
the lower Barr&mien). This value can be confirmed by 
measuring the difference in finite displacement between 
two cross-sections parallel to the fault (one north, the 
other south of the fault zone, Fig. 2b). Assuming a total 
duration of about 10 m.y. for this deformation, the mean 
slipping rate of the fault zone is about 0.4 mm/year. Small 
earthquakes are registered along this fault zone and along 
its north-east prolongation through the Belledonne 
massif. In detail, the fault zone is composed of several 
approximately parallel surfaces. Only one part of a single 
surface was measured. It is thus not easy to determine the 
true displacement on this particular fault element. The 
mechanism of sliding is mainly cataclastic sliding in 
contact with a gouge. The fault surface located in massive 
limestones is smooth, polished and reflective and this may 
indicate seismic sliding. Locally, aseismic creep markers 
(pressure solution cleavage) indicate that the whole 
displacement was partitioned between seismic and 
aseismic deformation. However, this process did not 
lead to significant mass transfer out of the studied fault 
surface. 
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Faults 

!I Mesozoic 

(a) 
Fig. 2. (a) Structural map of the Chaines Subalpines near the transition between Vercors and Diois: fold axes of different ages 
(PyrineoProvencal and Alpine) and main thrust and strike-slip faults (after Gratier et al. 1989). (b) Cross-sections parallel to 
the Cl&y fault zone. The shaded area is the basement. The thick lines are a reference folded layer (mid-Cretaceous). The total 
shortening parallel to the fault is different in the block north of the fault (4.5%) and in the block south of the fault (17%) 

indicating a relative displacement of about 3.5 km. 

Data set: topographical survey 

An element of the fault was surveyed with a theodolite 
and infrared distancemeter. One hundred and eight 
points of the fault surface were measured, the fault 
surface being defined as the surface with clear striae. 
The survey was linked to the national survey datum 
(IGN). Figure 3 gives a schematic view of the fault, Fig. 4 
is the elevation of the fault along they direction (see Fig. 
3). These y values are the horizontal distance from a xz 
vertical reference plane parallel to the fault (strike 045”). 
The x axis is horizontal and parallel to the fault. The z 
axis is vertical and its origin is the 1860 m level (see legend 
of Fig. 4). The internal accuracy of the data set 
(concerning local coordinates xyz ) is about 3 cm. 

On the schematic diagram in Fig. 3, two types of 
surface are distinguished: shaded areas are fault surfaces 
(surfaces with clear striae) and white areas are outcrops 

lm _ 

Fig. 3. Schematic diagram of the Cl&y fault indicating the two surfaces 
studied (A and B). The shaded areas are the part of the outcrop which 
may be considered to be the fault surface (with striae). Area A 
corresponds to the left part of Fig. 4 (vertical axis numbers 2 to 6), 
area B corresponds to the right part of Fig. 4 (vertical axis numbers 6 to 
12). The white area is the outcropping part which may have been 

partially destroyed by erosion. 

which are not identified as fault surfaces. All fault surface 
outcrops are separated into two different fault surfaces: 
surfaces A and B. Only the surface A is discussed in detail 
here. Surface B is nearly flat and consequently tangent to 
several different twistors. Planes, spheres and cylinders of 
revolution have the common property to be tangent to 
several non-zero and non-parallel twistors. 

Results 

A preliminary model was run without imposing the 
striae. The results are given in Figs. 5 and 6. In Fig. 5, the 
contoured values are the y-values, whereas the vertical 
and horizontal axes are respectively the z and x axes (see 
Figs. 3 and 4). Crosses indicate the location of the 
surveyed data points. Figure 5(a) shows the fault model 
obtained without the thread criterion. Figure 5(b) shows 
the fault model obtained with the thread criterion, the 
surface and the twistor being simultaneously optimized. 
Comparison of Figs. 5(a) and (b) show that the difference 
between the two surfaces is rather small where the data 
points are dense. Figures 6(a) and (b) give the distance in 
cm between the calculated surface and the data points 
(trapezoidal boxes). Figure 6(b) shows in contours 
(labelled with rectangular boxes) the angle in degrees 
between the calculated surface and the associated 
optimal twistor. Figure 6(a) shows in contours the angle 
between the same twistor and the calculated surface 
displayed in Fig. 5(a). The RMS distance between the 
surface and the data points is 1.3 cm without the thread 
criterion and increases to 2.3 cm with the thread criterion, 
but both values are below the measurement uncertainties 
(3 cm). The RMS angle, which expresses the discrepancy 
from a perfect thread surface, is much lower with the 
thread criterion than without this criterion (Figs. 6a & b). 
With the thread criterion, and for the whole surface, the 
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Rock ahead the wall 

Fig. 4. Elevation of the fault surface surveyed with theodolite and infrared distancemeter, see Fig. 3. The y-values (digits on 
the map) are the horizontal distances from an xz vertical reference plane parallel to the mean fault plane (045”). The x axis is 
horizontal and parallel to the fault; along this x axis the unit element of the grid is 1 m in length. The origin of the vertical c axis 
is the 1860 m level. More precisely, the coordinates x, y, I - ofthe marked points are related to Lambert coordinates XL, YL, ZL 
(zone III, France) according to the following equations: x = (A + B)/l.414, y = (-A + B)/ 1.414, ; = ZL - 1860, with A = 

XL - 851171, B = YL - 3287367. ClCry fault, Chaines Subalpines (Vercors), French Alps. 

RMS angle value between the twistor and the tangential natural fault surface. In the zone with local lack of data 
plane of the surface is about 1” instead of 8” without the the introduction of the thread criterion modifies the 
thread criterion. It is interesting to note that this very low surface geometry (see the change in contour lines near the 
residual angle is obtained without a significant increase in lower-left part of the surface, Figs. 5a and b). Without the 
the RMS distance, indicating that the modelled surface of thread criterion, the effect of the QC minimization is to 
the fault is very close to a perfect thread surface. This minimize the curvature. On the contrary, the thread 
validates the assumption of a thread surface to model this criterion tends to document the whole surface using the 
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Fig. 5. Approximation of one of the Clery fault surfaces (referenced as (A) in Fig. 3) with the inverse method including 
various least-squares criteria. (a) Approximation with proximity to data points and smoothness criteria. (b) Approximation 
with proximity to data points, smoothness and thread criteria. (c) Approximation with proximity to data points, smoothness, 
thread criteria and imposed striae. The contoured values are the y-values given in Figs, 3 and 4, the vertical and horizontal axes 
are respectively the r and .x axes of Figs. 3 and 4. Crosses indicate the location of the surveyed data points on the fault surface. 

Dashed lines show the calculated twistor vector field. 
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Fig. 6. RMS angle and distance for the approximation models of Fig. 5. The contour map indicates the distribution of the 
residual angle (digits in degrees in thick rectangular boxes) between the observed data and the fault surface model. The digits in 
the trapezoidal boxes indicate the distance (in centimetres along they direction, see Figs. 3 and 4) between the observed data 
points and their equivalent in the fault surface model (the location of the points is indicated by the acute angle of the boxes). 

Figures 6(a%) correspond respectively to the fault surfaces of Figs. 5(a-c). 

geometrical characteristics of the well documented zone 
(zone with dense data). 

For the fault model with thread criterion, the char- 
acteristics of the optimal twistor are such that the 
distance between each thread is 75 m. This large value 
compared to the size of the fault indicates that the slip is 
essentially a horizontal translation, with a very small 
rotation component. This is characteristic of strike-slip 
movement (which is by definition a true translation with 
zero rotation). The dashed lines in Fig. 5(b) represent the 
field lines of the twistor on the surface. These lines 
correspond to computed striae. These computed striae 
are well matched with the observed striae; the computed 
pitch is 10” whereas the observed pitch ranges from 9 to 
11”. 

As discussed above, the inverse problem may also be 
solved by fixing the coordinates of the twistor from the 
observed striae. When doing this (Figs. 5c and 6c) the 
result is not very different from the fault model obtained 
with an unknown twistor (Figs. 5b and 6b). However, it 
may be noted that when kinematic indicators (slip 
direction) are imposed (Fig. 6c), the RMS distances are 
better (1.7 cm), but the RMS angle values worse, than 
without such a constraint (Fig. 6b). Explanation may be 
expressed as follows: without an imposed slip direction, 
the modelled surface is as parallel as possible to the fault 
surface (but not necessarily near the surface), whereas the 
effect of an imposed slip direction leads to some local 
discrepancy in RMS angle but to a better mean proximity 
to the data. 

The results for the fault B (see Fig. 3) are not discussed 
in detail here. The main results may be summarized as 
follows. Since this fault surface B is almost flat it is very 
close to the particular case of a flat surface with 
undetermined twistor direction. In this case, the use of 
the thread criterion does not significantly improve the 

geometry of the fault model and the computed striae may 
not be related to the observed striae. However, for such 
an almost-flat surface, the RMS distance and RMS angle 
values are very near to those obtained with an unknown 
twistor (Fig. 7b) if the striae measurements are imposed 
via twistor components, (see Fig. 7a). 

Discussion 

When using the thread criterion in the zone with dense 
data, very low RMS distance and RMS angle values are 
obtained. This indicates that the fault can be considered 
to be a thread surface. Two other results confirm this 
assumption: (i) when using thread criteria without a given 
twistor, the computed sliding displacement direction is 
very close to the measured striae and (ii) when using striae 
as fixed twistor coordinates, the fault model remains very 
close to the observed data. 

In the zone with lack of data, the use of the thread 
criterion propagates information from the well docu- 
mented areas (zones with dense data) to the poorly 
constrained areas and helps to establish the fault 
geometry in the latter. However, these results are 
obtained with a corrugated fault geometry. In the 
particular case of a near-flat surface, the use of the sliding 
direction as a fixed twistor is needed in order to get round 
the indetermination of the thread criterion associated 
with this type of surface. 

APPLICATION TO THE SAN CAYETANO 
THRUST FAULT (CALIFORNIA) 

The San Cayetano fault (Fig. 8a) is one of the major 
north-dipping thrusts in the northern part of the Ventura 
basin in the Transverse Ranges of California (Yeats 1983, 
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Fig. 7. (a) Approximation to one of the ClCry fault surfaces (referenced 
as B in Fig. 3) with the inverse method including approximation with 
proximity to data points, smoothness, thread criteria and the direction 
of striae measured on the outcrop. (b) RMS angle and distance for the 
approximation models in (a). The contour map indicates the distribu- 
tion of the residual angles (digits in degrees in thick rectangular boxes) 
between the observed data and the fault surface model. The digits in the 
trapezoidal boxes indicate the distance (in cm along they direction, see 
Figs. 3 and 4) between the observed data points and their equivalent in 
the fault surface models (the location of the points is indicated by the 
acute angle of the boxes). Crosses indicate the location of the surveyed 
data points on the fault surface. Dashed lines show the calculated 

twistor vector field. 

Rockwell 1988, Cemen 1989, Hupfile 1991). This very 
recent thrust fault (0.5 Ma according to Yeats et al. 1994) 
accommodates the displacement of relatively rigid north- 
ern blocks (sandstone and shales) on to thick Quaternary 
and Pliocene sediment (Fig. 8b). Geological evidence, 
such as fold trend variations (110” to 070”) affecting 

recent sediments (less than 5 Ma), attests to a general 
160” to 020” crustal shortening direction (Yeats et al. 
1994). Earthquakes have occurred in the vicinity of the 
San Cayetano thrust, e.g. 1971 San Fernando earthquake 
along the north dipping Santa Susana fault (or some 
parallel fault). More recently, the south-dipping thrust 
fault (North Ridge fault) was active near the southern 
limit of the Ventura Basin. However, the deformation of 
the Ventura and neighbouring basins (Los Angeles, 
Santa Barbara Channel) is rather complex, with the 
possible effect of two block rotations revealed by 
paleomagnetism measurements (Luyendyk 199 l), focal 
mechanism analysis (Jackson & Molnar 1990) and 
restoration of folded and faulted structures (Gratier 
1993) revealing clockwise rotation of the whole Trans- 
verse Ranges and anticlockwise rotation of the eastern 
limit of the Transverse Ranges and Los Angeles basin. 
Since strike-slip movement is required in some models 
associated with the clockwise rotation, one regional 
question about the San Cayetano fault is whether this 
fault presents any evidence of horizontal displacement. 

Data set: well data and outcrops 

The Ventura basin contains oil-bearing formations, 
and hundreds of wells have been drilled through these 
formations. Of these wells, dozens penetrate the San 
Cayetano fault which is one of the best known faults. The 
opportunity was therefore taken to test the effect of the 
thread criterion on this fault. The available data were 
summarized by Hester & Truex (1977). In their report, 
the authors gave both the data (location of the wells and 
several cross-sections) and a unique fault surface 
obtained after interpolation of the entire data set (Fig. 
9). However, since some authors (T. Hopps pers. comm.) 
propose that several fault surfaces may constitute the so- 
called San Cayetano fault, it was decided to treat the 
western and the eastern parts of the data set separately, 
Sespe creek being the separation line (see Fig. 9). The 
eastern part will be concentrated on here. 

s N 

,*-T0psqe(30m.Y.) 

) Faulta 

(b) 
Fig. 8. Structural map ofthe Ventura basin (after Hupfile 1991) and cross-section through the San Cayetano thrust fault (after 
Yeats 1983). The thick line on the cross-section marks a horizon dated as 1 Ma old near Ventura and correlates east of this 

region. The projection of this horizon north of San Cayetano is highly speculative (Yeats 1983). 
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Fig. 9. Structure contour map of the San Cayetano fault surface from Hester & Truex (1977) with the location of wells 
(contour interval = 2000 ft) and the location of their original cross-sections (straight lines). The whole surface is partitioned 

between eastern (Figs. IO and 11) and western parts (Fig.13) separated by Sespe Creek. 

Results 

The eastern part of the area comprises 13 wells and 5 
outcrops which give the observed data set (18 observed 
data points) for the geometry of the fault surface. 

A preliminary model was run without imposing any 
direction of displacement. The results are given in Figs. 10 
and Il. In Fig. 10, the contoured values are the vertical 
elevation in km relative to a reference level at - 3000 m; 
the vertical and horizontal axes are respectively the north 
and east directions. Crosses indicate the locations of the 
well and outcrop data for the fault surface. Figure 10(a) 
gives the results of the approximation without the thread 
criterion, whereas Fig. 10(b) gives the approximation with 
the thread criterion and an unknown twistor. Figures 
11 (a) and (b) give the RMS distance and angle values: the 
RMS distance values are given for each observed data 
point (trapezoidal boxes) whereas the RMS angles are 
given as contour maps (digits in thick rectangular boxes). 
As in the preceeding example, the two modelled surfaces 
are very close in the area of dense data whereas they differ 
in areas with sparse data. The RMS distance and angle 
values for the entire surface are almost the same for the 
two models (RMS distances 5.3 and 5.7 m, respectively 
without and with the thread criterion). With respect to the 
mean wavelength of the fault corrugation (about 10 km, 
see Fig. 10) the relative mean discrepancy is of the order of 
0.05%. This shows that, in well documented areas, the 
fault surface is close to a thread surface. 

In Fig. 10(b), the dashed lines indicate the computed 
striae direction. The mean orientation of these computed 
striae is 165”. This value is within the given range of the 
regional contraction direction (see discussion). A second 
type of model was run by imposing the twistor coordinate 
value. Since the characteristics of the striae at depth are 
obviously not known, the displacement direction was 
taken from the focal mechanisms of the neighbouring 
seismic thrust fault as 015” (Jackson & Molnar 1990). 
With this twistor value the modelled fault surface is given 
in Fig. 10(c). The fault surface is not very different from 
the previous one, the RMS distance for the whole surface 
being slightly higher at 10 m instead of 5.7 m, see Fig. 
1 l(c). This shows that, for this fault, the use of the thread 
criterion (with and without the twistor orientation) can 
only constrain the direction of displacement within an 
uncertainty of 10-20”. However, the displacement must 
Sb ,&9-C 

be associated with a thrust fault. Consequently, it also 
seems very unlikely that large strike-slip movements 
recently occurred on such a corrugated thrust fault. 
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Fig. 10. Approximation of the eastern part of the San Cayetano fault 
surface (see Fig. 9) with the inverse method including various least- 
squares criteria. (a) Approximation with proximity to data points and 
smoothness criteria. (b) Approximation with proximity to data points, 
smoothness and thread criteria. (c) Approximation with proximity to 
data points, smoothness, thread criteria and imposed striae. The 
contoured values are the vertical elevation in km relative to a reference 
level at - 3000 m. The vertical and horizontal axes are respectively the 
north and east directions. Crosses indicate the location of the data on 
the fault surface: wells and outcrops. Dashed lines show the calculated 

twistor vector field. 
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Fig. 1 I. RMS angle and distance for the approximation models of Fig. 
10. The contour map indicates the distribution of the residual angles 
(digits in degrees in rectangular thick boxes) between the observed data 
and the fault surface model. The digits in the trapezoidal boxes indicate 
the distance (in m along the vertical elevation) between the observed 
data points and their equivalent in the fault surface models (the location 
of the points is indicated by the acute angle of the boxes); (a)-(c) 

correspond respectively to the fault surfaces of Figs. lO(a-c). 

In order to test the effect of the thread criterion more 
accurately, blind tests were carried out. This common 
statistical method consists of successively removing one 
data item from the whole data set. The aim is to test the 
stability of the method when using the thread criterion. 
Only the 13 well data items were used for this calculation. 
Thus, 13 successive approximations were made with and 
without the thread criterion. For each of these approx- 
imations, the RMS distance between the observed and 
the computed data were estimated for the entire surface 
(for the 12 wells). The effect of each well is different (Fig. 
12). When considering deviations of more than 1 m, the 
use of the thread criterion had a negative effect with only 
two wells (4 and 5). The thread criterion had a positive 
effect for five wells (1, 8, 9, 10 and 11). It is important to 
note the positive effect of the thread criterion for the wells 
which are near the boundaries of the studied area (1, 8 
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1 47.69 42.67 
2 7.38 7.05 
3 2.35 3.05 
4 4.05 8.11 
5 1.40 3.27 
6 3.50 3.33 
7 1.25 1.57 

0 13.81 11.36 
9 9.13 5.77 
10 0.82 6.23 
11 14.21 7.66 
12 2.03 1.45 
13 2.26 1.85 

W 
Fig. 12. Approximation of the eastern part of the San Cayetano fault 
surface. Blind tests on the 13 well data points. (a) Location and numbers 
of the wells used in the blind test. (b) Table of the results of these blind 
tests. A = number of the wells removed at each run, see (a); B = RMS 
distance (in m) between the observed data points and their equivalent in 
the fault models (for the entire surface = 12 wells) with proximity to 
data points and smoothness criteria; C = RMS distance (in m) between 
the observed data points and their equivalent in the fault models (for the 
entire surface = 12 wells) with proximity to data points, smoothness 

and thread criteria. 

and 11). For the entire surface, the effect of the thread 
criterion is to decrease the mean distance between model 
and observation from 9 metres to 8 m (the fitting is 
improved by about 12%). 

For the western part of the San Cayetano, only one 
result is given here (Fig. 13). In this part of the fault, a 
contour map of the fault surface was obtained by Hester 
& Truex (1977) with only three wells (located along the 
same elevation) and some cross-sections. When using 
random points taken from this map to determine the fault 
model, it was found that this fault is not far from a thread 
surface (Figs. 13 a & b), with a higher RMS distance (20- 
30 m) than for the eastern part. The value of the the 
computed striae direction is about 150”, slightly different 
from the eastern part of the fault (165”). However, the 
lack of data in this example could explain this uncer- 
tainty. This is shown when using the thread criterion with 
the same fixed twistor as for the eastern surface (OlSO, 
Fig. 13~). In this case, the RMS distance value did not 
significantly change. This example underlines the need 
for other wells to test this western part of the San 
Cayetano fault surface as a thread surface. 
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Fig. 13. Approximation of the western part of the San Cayetano fault 
surface (see Fig. 9) with the inverse method including various least- 
squares criteria. (a) Approximation with proximity to data points, 
smoothness. thread criteria. (b) Approximation with proximity to data 
points, smoothness, thread criteria and the direction of displacement 
estimated from seismic focal mechanisms. Dashed lines show the 
calculated twistor vector field. (c) RMS angle and distance for the 
approximation models of the Fig. 13(b). The contour map indicates the 
distribution of the residual angles (digits in degrees in rectangular thick 
boxes) between the observed data and the fault surface model. The digits 
in the trapezoidal boxes indicate the distance (in m) between the 
observed data points and their equivalent in the fault surface models 
(the location of the points is indicated by the acute angle of the boxes). 

Discussion 

Some results concerning the San Cayetano thrust fault 
are very similar to those of the Vercors strike-slip fault, 
and are summarized in the conclusion as follows: with 
dense data sets, thrust faults like the San Cayetano fault 
are very nearly thread surfaces. Other results come from 
the use of particular techniques. Blind tests on the well 
data set show that RMS distances are lower with the 
thread criterion than without the thread criterion 
particularly for wells near the boundaries of the studied 
area. When using the thread criterion, the computed 
striae direction is found to be 165”. Slip directions in this 
region are known from three types of data: seismic focal 
mechanisms of neighbouring thrust faults indicate a OlO- 
020” direction (Jackson & Molnar 1990), space geodetic 
measurements indicate a 160-170” direction (Feigl et al. 
1993) and computational restoration of folded and 
faulted strata (Gratier 1995) gives a 000-010” direction. 
When using the thread criterion with fixed twistor 
components (OlY), the fault surface remains a possible 
thread surface. These results show that the San Cayetano 
fault has a main thrust displacement. The possible 
shortening direction associated with this thrust displace- 
ment is compatible with the shortening direction of the 
Transverse Ranges given in the literature (160” to 200”). 

CONCLUSIONS 

In order to obtain the best possible fault geometry 
approximation, an inverse method has been developed to 
study the effect of several criteria: proximity to data 
points, smoothness and thread criteria. This latter 
criterion is based on the assumption that large relative 
displacements of jointed solid blocks define a thread 
surface. Most often, one of the blocks is more rigid than 
the other and this induces small to large corrugations. 

In order to test the effect of the various criteria, several 
models were made either using only the proximity to data 
points and the smoothness criteria or including the 
thread criterion. When using the thread criterion there 
are two possibilities: either compute the striation on the 
fault (which can be compared with natural markers of 
this displacement such as striae or focal mechanisms); or 
use information from natural markers as approximation 
parameters. Root mean square values (RMS, both in 
distance and angle) are used to estimate the discrepancy 
between observed (geological) data and computed data. 

Two corrugated faults with dense data points have 
been used as examples. Despite differences between the 
two: (i) in the mean wavelength value of the corrugation 
(5 m and 10 km respectively), (ii) in the type of fault 
(strike-slip and thrust fault respectively) and (iii) in the 
nature of the faulted rocks (limestone and sandstone/ 
shale formations respectively), very similar results are 
obtained. In both cases, the observed data fit very well 
with a thread surface. In both cases, the discrepancy 
(RMS distance) between fault model and observed data 
remains lower than the accuracy of the data. In both 
cases, the use of the thread criterion allows the entire 
surface to be controlled by the geometric characteristics 
of the best documented zone. When using the thread 
criterion in order to estimate the direction of fault 
displacement the results fit well with the displacement 
direction (estimated either with direct measurements of 
the fault striae or by comparison with seismic focal 
mechanisms, geodetic data or computational restora- 
tion). 

With a flat surface, the use of the sliding direction as a 
fixed twistor is needed in order to get round the 
indetermination of the thread criterion associated with 
this type of surface. 

From a general point of view the assumption that 
jointed solid blocks slipping against each other define a 
thread surface between them is well supported. These 
properties can thus be used in the proposed inverse 
method to best define the geometry of faults when these 
faults are only described by scattered data. 
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