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Abstract A stabilized finite element (B, q) formulation is developed to solve the kinematic dynamo problem.
As a test case, we solve the induction equation for a given solid body helical flow, embedded in a cylindrical
conducting shell. This problem corresponds to the well-known Ponomarenko dynamo. It has the interesting
property to have an exact dispersion relation giving the magnetic growth rate as a function of the flow properties.
Therefore, it is a good benchmark to test our kinematic dynamo code. We calculated the dynamo threshold and
plotted the geometry of the generated magnetic field. We also evaluated the residual error due to our stabilized
formulation.
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1 Introduction

The dynamo effect is a magnetic instability produced by the motion of an electrically conducting fluid [1].
This process is responsible for the existence of the magnetic field in most of the astrophysical objects like
planets, stars or galaxies. The geodynamo (in the Earth’s liquid core) and the solar dynamo (in the Sun’s
convection zone) are two examples for which the observations are the most documented [2]. Such a dynamo
action has also been investigated in Fast Breeder Reactors [3,4], because of their large dimensions and the
high-electrical conductivity of the liquid sodium that they contain. Liquid sodium is also the standard fluid
used in the experimental devices aiming at dynamo action or related effects [5].

The numerical counterpart of observations and experiments has led to the development of various codes
including those with finite element formulations [6,7]. In previous studies [8,9], we focused on computation
of the hydrodynamics in the presence of a strong magnetic field, but at small magnetic Reynolds number Rem.
Here, we present the calculation of the magnetic field for a given flow at Rem larger than unity. We use a model
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based on a stabilized (B, q) finite element formulation. The main idea is to introduce a scalar quantity q , which,
by analogy to the pressure in the incompressible Navier–Stokes equations, acts as a Lagrange multiplier for
the magnetic divergence-free constraint. To test our formulation we consider a flow with helical geometry, the
so-called Ponomarenko flow [10], which is known to be a dynamo.

The geometry of the Ponomarenko flow corresponds to a cylindrical solid-body helical velocity (r ≤ R1)
embedded in a stagnant medium (r ≥ R1), both parts being electro-conducting. In the original study [10],
the geometry is infinite in both directions radial and axial. A magnetic field is generated only if the velocity
exceeds some threshold value. It takes the form of a magnetic wave propagating along the axial direction.
Given a magnetic wave number k and a magnetic azimuthal mode m, the velocity threshold is shown to depend
on the flow geometry and on the magnetic diffusivities of the moving and stagnant parts. Taking a velocity
geometry given by u = (0, rω, χωR1) (in cylindrical coordinates r, θ, z) and equal diffusivities, the minimum
dynamo threshold is obtained for χ = 1.3, k = 0.39/R1 and m = 1. This value has been confirmed by
various methods [11–13]. We shall test our finite element formulation for this set of parameters. The case of a
time-dependent Ponomarenko flow has also been studied [14–16], but will not be considered here.

Because of its rather low value of the dynamo threshold , the Ponomarenko dynamo has been the object
of two experimental realizations, one in Riga [17,18] and one in Perm [19,20]. Only the first one has been
successful so far, the second one still being under construction. In the Riga device, a counter flow has been
added around the inner helical flow in order to obtain an absolute dynamo instability and to keep this way the
magnetic field in the device. The corresponding dynamo threshold was found to be slightly higher than the one
for the convective instability. In the Perm device, the liquid sodium will circulate in a torus, without counter
flow. In this case the expected dynamo will be a traveling wave corresponding to a convective instability. In
this paper we shall consider the convective instability of the Ponomarenko dynamo for it is easier to implement
than the absolute one and also because it is highly documented. A recent approach based on finite volume has
successfully reproduced the absolute instability of the Riga dynamo in both kinematic and dynamical regimes
[21–23]. In comparison, our results are more preliminary as we only consider here the kinematic dynamo
regime. However, there is no restriction for applying it to the coupled problem.

Finally, it is worth mentioning that the Ponomarenko dynamo has been discussed [24] as a relevant mech-
anism at the origin of a helical magnetic wave in astrophysical jets as the one measured recently in the center
of our Galaxy [25].

2 The (B,q) formulation

The induction equation and the divergence-free constraint are derived from the Maxwell equations in which
the displacement currents have been neglected (liquid metal). They are written as

∂B
∂t

− ∇ × (u × B) + η∇ × ∇ × B = 0, ∇ · B = 0, (1)

where the magnetic diffusivity is η = 1/σµ, σ and µ being the electric conductivity and the magnetic perme-
ability. By analogy to pressure in the incompressible Navier–Stokes equations, we introduce a scalar quantity
q which is a Lagrange multiplier for the magnetic divergence-free constraint. It corresponds to adding the
term ∇q on the left hand side of the induction equation [8,9]. Using the Galerkin variational formulation, both
equations in (1) are multiplied by the weighting functions B∗

h and q∗
h , the subscript h denoting a finite element

approximation. Then integrating over all the domain �, with boundary � and where n denotes the unit vector
normal to �, the resulting variational problem becomes∫

�

[
B∗

h · ∂Bh

∂t
+ η ∇B∗

h · ∇Bh − B∗
h · ∇ × (u × Bh)

]
d�

+
∫

�

[
B∗

h · ∇qh − η(∇ · Bh) (∇ · B∗
h) + q∗

h (∇ · Bh)
]

d�

−
∫

�

η
[
(n · ∇Bh) · B∗

h − (n · B∗
h) (∇ · Bh)

]
d�

+
∫

�

[
α1∇qh · ∇q∗

h + α2(∇ · Bh)(∇ · B∗
h)

]
d� = 0. (2)
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where the diffusion terms have been integrated by parts. In (2) and throughout the paper, we consider a partition
of the domain � into elements where piecewise continuous approximations for the independent variables are
employed. Tetrahedral elements are chosen in order to be able to mesh any complex geometry.

The originality of our formulation relies on the last two integral terms in (2), which are introduced to
stabilize the solution, that is, to avoid appearance of spurious modes (i.e. oscillating solutions). The stabilizing
parameter α1 is a function of the mesh size h and local magnetic Reynolds number

(
Remh = ||u||h

η

)

and is given by

α1 = ε1h2 Remh√
Rem2

h + 4
.

The parameter α2 is given by

α2 = ε2
||u||h

2
.

The issues of magnetic divergence-free constraint and the convergence with mesh size have already been
discussed in [8]. Here we shall study the effect of these two artificial terms on the dynamo threshold and
on the divergence-free constraint. Since the Galerkin formulation has been stabilized, provided that we use
appropriate values for (ε1, ε2), equal-order linear approximations over tetrahedral elements are used for all
variables.

For simplicity we use Dirichlet boundary conditions, the contour integrals in (2) then being dropped. In
addition, since the velocity field may not always be continuous in the computational domain, the convection
terms in (2) are also integrated by parts. Finally, we obtain a linear system to solve. We use a second-order
finite difference scheme. At each time step, the linear system is solved by an iterative GMRES solver and
preconditioned by using the ILUT method [9].

3 Numerical results

3.1 Dynamo onset

For our numerical simulations we take χ = 1.3, a domain of height H = 2π/k = 16.11R1, with periodic
boundary conditions in z = 0 and z = H . We consider a radius domain R2 = 10R1 assuming that it is
sufficiently large for being compared with the original case for which R2 is infinite. We use a mesh which is
highly refined close to the infinite shear at r = R1 (Fig. 2c). We take an initial condition for the magnetic field
of the form

B = (P(r) cos θ, −(P(r) + r P ′(r)) sin θ, P(r) cos θ), with P(r) = (r − R2)
2. (3)

This field, independent of z, has already a m = 1 azimuthal dependence and is divergence-free.
In order to obtain a time-accurate solution, we adopt the usual G M RE S iterations convergence criteria

that the residual norm must be reduced at least by a factor 10−5. For the I LU T preconditioner we use the
following parameters: nlev = 5 and droptol = 5 · 10−4 (for more details see [26]). We use a mesh containing
33,297 nodes and 158,700 tetrahedrons.

In Fig. 1 the magnetic energy is plotted versus time for several values of the magnetic Reynolds number
Rem. Following [11], this dimensionless number is defined as

Rem = R1umax

η
= R2

1ω

η

√
1 + χ2. (4)

The dimensionless time is expressed in terms of convective timescale R1/umax. After a transient state for
t ≤ 10 during which magnetic energy decreases, we observe an exponential damping for Rem ≤ 18 and an
exponential growth for Rem ≥ 18.1 implying that the dynamo threshold is in between. The difference with the
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Fig. 1 Magnetic energy versus time for several values of Rem indicated by the labels

value 17.7 given in [11] is less than 2.2%. We note that the exponential magnetic energy damping or increase
is a direct consequence of the linearity of the induction equation (1). As noted earlier, such an exponential
increase is only half of the story as we do not solve here the Navier–Stokes equations with the Lorentz forces.
Solving both equations, induction and Navier–Stokes, the kinematic dynamo regime would last only for some
time, followed by a saturation of the magnetic energy [22,23].

In Fig. 2 the iso-values of Bz in a (a) radial vertical plane and (b) horizontal plane, show that the generated
magnetic field has an azimuthal mode m = 1. In (c) we clearly see that the magnetic energy is concentrated
in a layer at r = R1, according to the theory [27,28]. In (d) we see that the geometry of the magnetic field has
the shape of a double helix. Finally, we found (not shown) that the magnetic field is convected as a wave with
a phase velocity in agreement with the one given in [11].

3.2 Effect of numerical stabilization

We tested different values for the couple (ε1, ε2), with ε1 ∈ {0.1, 1} and ε2 ∈ {0, 0.1, 1}. The residual norm that
we obtain is rapidly much lower than 10−5 (Fig. 3, left), thus satisfying the convergence criteria for GMRES.
Among the different values of (ε1, ε2) that we tested, it turns out that the one (ε1, ε2) = (1, 1) corresponds to
the one giving the most accurate dynamo threshold. It is also the set of stabilization parameters which is most
often used in other cases.

As mentioned earlier, the scalar q in (2) acts as a Lagrange multiplier for the magnetic divergence-free
constraint. Not satisfying this constraint would lead to an inaccurate numerical solution. So it is interesting to
study how it is affected by stabilization. We calculated 1

�

∫
�

(∇ · B)2d� at different times (see Fig. 3, right).
It keeps decreasing along time, suggesting that it is well satisfied. Again the couple (ε1, ε2) = (1, 1) gives the
best results.

3.3 Energy balance

Let us introduce the magnetic energy E , the work of the Lorentz forces L, the Joule dissipation J , and the
Poynting flux P defined, respectively, as

E =
∫

�

B2

2µ
d�, L = −

∫

�

(j × B) · u d�, with j = ∇ × B/µ,

(5)

J =
∫

�

j2

σ
d�, P =

∮

�

(
E × B

µ

)
· nd� with E = η∇ × B − u × B.
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Fig. 2 Iso-values of Bz in a (a) radial vertical plane, (b) horizontal plane. Iso-values of the magnetic energy in a radial vertical
plane (c). Three-dimensional iso-surfaces (d) of magnetic energy

We find that for each value of Rem, the growth rate γ of the magnetic energy, corresponding to the slopes of
the curves plotted in Fig. 1, satisfies

γ = ∂ ln E/∂t = (L − J − P)/E, (6)

in agreement with the energetic balance of the induction equation (1). As a consequence, we understand that
dynamo action occurs when the work of the Lorentz forces exceeds the sum of the Joule dissipation and the
Poynting flux. By definition we have J ≥ 0. In addition, we find that P ≥ 0 with P/L ≈ P/J ≈ 4.5 ·10−3 as
shown in Fig. 4. This value is rather low though it is not zero. In the original problem [11] to which we compare
our results, R2 is set to infinity implying that P = 0. Therefore, it seems that the accuracy of our results is
related to the size of the outer domain to which the Dirichlet boundary conditions are applied. Considering
other values of the ratio R2/R1, we found that the dynamo threshold is indeed increased for smaller values of
R2/R1.
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Fig. 3 Residual norm (left) and divergence norm (right) for χ = 1.3 and Rem = 25 for different values of (ε1, ε2) indicated in
labels

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0  50  100  150  200  250  300  350  400  450

time

Fig. 4 Time evolution of the ratio P/L for Rem = 25

4 Conclusion

In this work, we developed a stabilized (B, q) finite element formulation for the kinematic dynamo problem.
An additional function q is introduced in the weak form of the induction equation in order to act by analogy to
the pressure in the Navier–Stokes equations, as a Lagrange multiplier for the magnetic divergence-free con-
straint. We tested our formulation against the Ponomarenko flow. The results show that the additional artificial
terms due to the stabilization do not affect the value of the dynamo threshold. The generated magnetic field
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corresponds to the one expected by the theory with a concentration of magnetic energy at the cylindrical shear
layer, an azimuthal mode m = 1, and a non-zero phase velocity. As a continuation of this work, we plan to
study the dynamical case in which the magnetic- and flow fields are solved in a coupled way.
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