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SUMMARY
We present a numerical approach, based on a spectral analysis, for the initiation of the t
unstable slip on a finite fault region. First we focus on one fault model. We study
the relationship between the weakening parameter and the largest positive eigenvalue
of the dynamic spectral problem. Since the numerical approach based on the integral
equations proposed by Dascalu et al. (2000) is appropriate only for small eigenvalues we
use a fini te element method which permits accurate computations for large eigenvalues.
We show the relation between fault length and the first eigenvalue that governs the
duration of initiation duration. The value of the weakening rate cao be evaluated from
the strain field in the elastic medium over a domain of confidence. A specific pattern of
deformation represents the signature of the initiation phase. The spectral analysis and
the numerical methods used for the single fault model remain valid for more complex
fault systems. The interaction between two faults is examined. Finally, we introduce the
conœpt of spectral equivalence between a heterogeneous fault system and a homogeneous \
fault with renormalized friction law. 1
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1 INTRODUCTION a nucleation zone. over which the nucleation process ~cc~rs.
The length of thlS zone can be related to the constitutIve

Earthquake prediction is actually the Holy Grail of seismo- parameters of the friction law. \
logists and the existence of precursory deformation is a big issue. On the basis of these experiments, Campillo & Ionescu 1

Laboratory experiments on friction (Dieterich 1979; Ohnaka (1997) studied the initiation phase (Ida 1972) of an unstable
et al. 1987; Ohnaka & Kuwahara 1990) point out the existence antiplane shear process on an infinite fault under linear slip-
of a phase of slow motion that precedes the propagation phase, weakening friction. They gave an analytical expression of the
leading to the rupture. They pointed out that this preseismic slip, derived from an eigenya!ue analysis. Çonsiderin~ only the
slip should be recognized as a manifestation of the initiation part of the displacement associated with positive eigenvalu~s,
process preceding the dynamic rupture. Throughout this paper, they defined the dominant part wJt, x, y) as follQws:we will refer to this phase as the rupture initiation or initiation. + + '
Ohna~a et al. (1987) showed thro~gh high resolu~io.n fricti~n Wd(t, x, y) =~ exp(:-(XJ!)1" J 001 ~ ~xp:[-~ t f~(f -~)J

expenments, the relevance of the slip dependent frIctIon law m '!t ',-~ p ,-00 ~

the initiation process. They showed the existence of a chara~-
[teristic length scale Lc, the critical slip. The shear stress degrades x cosh(ctJ:;x~)wo(u,~)

from the initial state 'Ci to a residual dynamic level of friction 'Cd "

with the ongoing slip. They also demonstrated the existence of 1 . ( i~C-.; ) ]+ c~ 2 J; smh cty(X~-: ç2 Wl(~, s) audsdç
cy (X~ - ç~
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122 C. Voisin et al

Plocal. We show the existence of the initiation pattern associated if Oti5w(t, x)=O, where i5w(t, x)= 1/2[w(t, x, 0+ )-w(t, x, 0-)]
with each of the segments (locally, the fault system is reduced to is the half of the relative slip and .u(i5w) is the coefficient of
only one fault segment). We also point out the existence of a friction on the fault region. The initial conditions are denoted
global initiation pattern that is associated with the unstable by Wo and Wl, that is,
behaviour of the whole fault system. We compute the dynamic 0
spectral problem and derive the largest eigenvalue of the hetero- w(O, x, y) = wo(x, y) , ~ (0, x, y) = Wl (x, y) . (12)
geneous system. With the help of the relation between ).0 and P ot
computed in the one fault model, we get the corresponding Since it is our intention to study the evolution of the elastic
equivalent weakening parameter Pequivalent. A simple homo- system near an unstable çquilibrium position, we shall suppose
geneous fault with a weakening rate P=Pequivalent will have that ,;=S.us, where .us=.u(x,O) is the static value of the
the saille largest eigenvalue ).0, and therefore the saille general friction coefficient on the fault. We note that taking w as
average behaviour during the initiation. a constant satisfies eqs (8)-(11); hence W=O is a metastable

The global initiation pattern associated with the unstable equilibrium position, and wo, Wl may be considered as a small
behaviour of the whole system is characterized by a wide domain perturbation of the equilibrium. We shall assume that the
over which the ratio - {[Oy<l>o(x, y)] [<I>o(x, y)]} = PequivalenJa. friction law has the form of a piecewise linear function:
Locally, close to the fault, each individual fault segment has
its own domain of confidence over which we can measure the .u(x, i5w) =.us - ~ i5w i5w~Lc, (13)
local weakening rate. The interaction of aIl segments produces Lc

a global pattern of deformation at some distance from the fault .u(i5w) = .u i5w> L (14)system. This collective domain of confidence provides an esti- d C ,

mation of Pequivalent. There is a complete spectral equivalence, where .us and .u,.{.us> .ud) are the static &!!!! dynamic friction
in terms of the initiation process, between a complex fault coefficients, and Lc is the critical ~p. Let us assume in the
system with P = Plocal and a simple homogeneous single fault following that the slip i5w and the slip rate Oti5w are non-
model with P = Pequivalent. negative. Bearing in minci that we deal with a fault plane

and with the evolution of one initial pulse, we may (for sym-
metry reasons) put w(t, x, y)= -w(t, x, -y), hence we con-

2 SPECTRAL APPROACH OF RUPTURE gicler only one half-space y>O in eqs (8) and (12). With these
INITIA TI ON ON A FINI TE FA UL T assumptions, eqs (9)-(11) become

The method presented hereafter is basically the Saille for an w(t, x, 0) = 0, for x f ri, (15)
infinite fault (Campillo & Ionescu 1997) or for a single finite fault
(Oascalu et al. 2000). For convenience we give the principal ~ (t, x, 0) = -cxw(t, x, 0+) if w(t, x, 0) ~Lc, for xe ri'
steps of the spectral method in this section. oy

(16)

2.1 Problem statement
We consider the 20 antiplane shearing on a bounded fault ~ (t,x,O)=-cxLc if w(t, x, 0) >Lc, for xer/, (17)
region r lincluded in the plane y=O in an homogeneous linear y

elastic space. The fault region can be composed of a set of where cx is given by eq. (2). Since the initial perturbation
simple faults on which the contact is described by a slip (wo, wJ of the equilibrium state w=O, is small, we have
dependent friction law. We assume an antiplane configuration, w( t, x, 0 + ) ~ Lc for t e [0, T J for aIl x, where Tc is a critical
that is the displacement field is 0 in directions Ox and Oy time for which the slip on the fault reaches the critical value Lc
and that Uz does flOt depend on z, The displacement is there- at least at one point, that is, sUPx E r r w(T c, x, 0 + ) = Lc. Hence
fore denoted simply by w(t, x, y). The elastic medium has the for a first period [0, Tc], called in what follows the initiation
shear rigidity G, the density p and the shear velocity c = JG/P. period, we deal with a linear initial and boundary value
The nonvanishing shear stress components are (Jzx = ,;:0 + problem (8), (12) and (16).
Goxw(t, x, y) and (Jzy='; + Goyw(t, x, y), and the normal
stress on the fault plane is (Jyy= -S(S>O). The equation of
motion is 2.2 The nondimensional problem and its spectral

:02 expansion
uW è 2aï2 (t, x, y) = V w(t, x, y) (8) ln order to obtain a non dimensional formulation let us
for t > 0 and (x, y) outside of the fault ri, The boundary introduce a the characteristic length i.e. we put

conditions on ri are Xl =: ::, X2 =: ~
a a

(Jzy(t, x, O+} = (Jzy(t, x,O-), xer/, (9)
and we introduce the following nondimensional constant

(JZy(t,x,O)'=.u(i5W(t,X))SSign(~(t,X)), xer/, (10) p=acx=a~. (18)

if Oti5w(t, x) *0 and h ... h .. 1 . . h
Let us use t e saille notatIon r Ilor t e lau t reglon III t ese new

l(Jzy(t, x. 0)1 ~.u(i5w(t, x))S, xe ri, (11) coordinates (i.e. Xl e ri if x e r fi. From eqs (8), (12) and (16)

IÇJ 2002 RAS, GJI 148, 120--131



,
Initiation on a finite fautt system 123

we deduce 2.3 Stability analysis; the static eigenproblem

~ (t, XI, X2) =; V2w(t, XI, X2) (19) One cao easily remark that w=O is a stable position if ).Ô<O

t a (i.e. N = 0). ln this case the dorrlinant part Wd vanishes and the

w(t, XI, 0) = 0, for XI 1/: r f ' (20) system has a stable behaviour. Hence it is important to obtain a

condition on P, that determines the positiveness of the eigen-

~ (t 0) - _fi (t 0) " r (21) values ).2. Since P is nondimensional such a condition depends
0 ,XI, - f'W,XI, , lOf XIE f,

1 h fX2 on y on t e geometry 0 r f (number of fault segments) and

completely characterizes the stability. ln order to perform

w(O, XI, X2) = WO(XI, X2), ~ (0, XI, X2) = WI (XI, X2). (22) a stability analysis let us introduce the eigenvalue problem

lJt corresponding to the static case: find t{>:R x R+ -- Rand P such

Let us consider the following eigenvalue problem con- that f.::: fo+oo cp2(XI, x2)dxldx2= 1 and

nectedtoeqs(19)-(22):find<l>:RxR+--Rand).2suchthat ",2 ( ) 0 ..f+oo r+oo <l>2
( )d d _ 1 d v cp XI,X2 = ; lOf X2 >0, (30)

-00 Jo XI, X2 XI X2- an

V2<1>(XI,X2)=).2<1>(XI,X2) for X2>0, (23) cp(XI,O) =0, for xll/:rf, (31)

<I>(XI,O) =0, for xll/:rf, (24) Ox2cp(XI,0)=-PCP(XI,0) for xlErf. (32)

0 This problem ha.s a. sequence of positive. eigenvalues

a<l>(xI,O}=-P<I>(xI,O) for xlErf. (25)1 O<PO<PI<... wrthhmn~ooPn=+oo.TheelgenvaluesPk

X2 l "~are closely related to those of the dynamic eigenvalue

Since we deal with a syrnmetric operator we have real-valued problem (23)-(25). Indeed, they correspond to the inter-

eigenvalues ).2, i.e. ). is real or purely imaginary. This syrnmetry section points of the increasing curves P -- ).1(p) with the axis

property is specific to the slip dependent friction law used here. ).2 = 0 (i.e. ).1(Pk) =0). The first eigenvalue Po has a major

The solution of eqs (19)-(22) can be generically written signification in the static stability analysis:

(in its spectral expansion) as: ( - J1. )8
d w if a J1.sGL d = P < Po then w=O is stable. (33)

w=w+w, c
Il

where wd is the 'dominant part' and WW is the 'wave part', given

by:

Wd(t, XI, X2) 3 THE FINITE ELEMENT APPROACH

N-I . ln order to use a FEM, the finite fault zone is embedded in

= 2::: [ coSh(CI).nlt/a) W2 + a slnh(cI~7ft/a) w~ ] <l>n(XI, X2), a b~unded elastic. d~m.ain Q=] -L,. ~[x ]0, L[. The infinite

n=O ci;"',! elastic half space lS llmrted by a fictitious boundary aIl over

,f;r, cf! which the displacement is negligible. So that we impose a null

(26) displacement along r d, the part of the boundary of Q which is

WW
( t X X ) not on the fault r f (see Fig. 1). Let us give first the variational

, l, 2 . 2formulation of (23)-(25) : find <1>: Q-- Rand), such that <1> = 0
00 [ sin(cl).nlt/a) 1] on rd and

= 2::: cos(cl).nit/a) w2 +a Wn <l>n(Xl, X2):

n=N \1,r,.jo.;"t;J+"k, i;, f ] "' <1>( ) '" ( )d d fi ] <1>( 0) ( O)dv XI, X2 . v V XI, X2 XI X2 - f' XI., V Xl, XI

0(27) rI

where ().~, <l>J are the associated eigenvalues and eigenfunctions ~~~).2 J <I>(XI, X2)V(Xl, x2)dxldx2,
of eqs (23)-(25), and 0

+00 +00 for aIl functions v E V h (V h is a finite element space of dimension

w2 = ] l <l>n(XI, X2)WO(XI, x2)dxldx2, (28) N: composed of continuous and affine !unctions over each

-00,0 triangle) such that v=O on rd. The domam Q has a polygonal

I
J +oo f +oo boundary r dUr J- Therefore it is possible to cover exactly Q

W n = <l>n(Xl, X2)Wl (Xl, x2)dxI dX2 , (29) with triangles. Q is meshed using Delaunay conditions. The size
-00 0

. . . .. .. of the elements decreases as we get closer to r f, where a strong

the projections of the mltial data on the elgenfunctions. Let N variation of the stress is expected. Let {el, e2, ..., eN} be the

be such that canonical base of V h and let us denote by

).~ > ).i > ... > ).~-I > 0 > ).~ > ... r
Mg = J ei(xI, x2)ej(xI, x2)dxldx2,

The use of the expression of the dominant part wd instead of 0

w leads to a solution in which the perturbation is severely r
smoothed by the finite wavenumber integration. However, Kg = Jo Vei(xI, X2)' Vej(xI, x2)dxldx2,

after a while, the propagative terms become negligible and the

shape of the slip distribution is almost perfectly described by B,. = J cxe.(x O)e.(x O)dx . 1] 1 1, J l, 1
the dominant part. rI

(r;J 2002 RAS, GJII48, 120-131
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r y,~ r
d

rd d

' X,X1

-L r -a - a r L

d r f d

Figure 1. Geometry of the problem. rf=[ -a, a] is the frictional surface. rd is the lictitious boundary. .0.=[ -L, L] x [0, L] is the elastic half
spaœ. x and y are the two coordinates. For symmetry reasons, we consider only y>O values. .0. is meshed with triangular elements using Delaunay
conditions. Note the increase in the number of elements near the fault r f'

'-J

mass, stiffness and boundary matrices. If we put good approximations of the {/>'i}. The resolution ofthis spectral
problem by two independent numerical methods validates both

N N of them.
cf)(XI, X2) = L Fiei(xl, X2) , CP(XI, X2) = L .fie;(xl' X2) Fig. (2) presents the normalized eigenfunction <Po(x, y) corres-

i=1 ;=1 ponding to />'0. The maximum amplitude is attained at the

then the ei envalue roblems (23H25) and (30H32) can be centre of the ~ault. Outside the fault (y>0), t?e amplitude of
.tt .g p <Po decays rapldly. The shape of <Po agrees wlth the unstable

wn en as . evolution of the slip velocity on the fault, as computed by a

(K - B)F = - À2 MF, KI = />,BI. (34) finite difference method.

The stiffness matrix is factorized using a Cholevsky decom-
position. The results are fed to a numerical solver based upon 4 1 1 fi f th k . t th. . . .. n uence 0 e wea enmg parame er on e
an Arnoldl-Lanczos algonthm that provldes good approxl- tmations of the couples (Àt, cf)J. The positive eigenvalues con- spec rum

tribute to the dominant part of the slip evolution. The largest For a finite fault of length 2a, the unstable behaviour is pro-
one, ;.6, governs the essential of the slip evolution and controls moted if the weakening parameter />' = ail > />'0. ln the following,
the duration of the initiation phase. we consider that this condition is always satisfied. The goal is

now to compute the dynamic positive eigenvalues associated
with the unstable behaviour. We focus here on the dependence
of the positive eigenvalues {Ài}i=l,n on the weakening para-

4 THE CASE OF ONE HOMOGENEOUS meter />'. The. cur:es Ào=Ao(/>'), ÀI=A1(/>,) and À2=~2~/>')
are presented ln Flg. 3. As expected, the number of pOSItiveFAULT .
elgenvalues depends on the value of />'. When />'</>'0, there

We consider the case of one homogeneous fault of length 2a is no positive eigenvalue. We have seen that in such a case, the
embedded in an elastic half space .{).=[ -L, L] x [0, L], as fault is stable. When />'0</>'</>'1, we have only one positive
shown in Fig. (1). We have chosen L large enough (L= 10a) to eigenvalue and so on. À~, the largest positive dynamic eigen-
reduce the influence of the fictitious boundary conditions. value plays a significant cole in the unstable behaviour. It is

ln order to verify the accuracy of the FEM we computed the associated with the eigenfunction cf)o(x, y) that corresponds to
static spectral problem. We compare the eigenvalues obtained the fundamental mode of deformation of the system. The curve
by a FEM with 250 points on the fault with the results obtained Ào = Ao(/>') is monotonically increasing. This means that large
by Dascalu et al. (2000) with a more accurate integral equation values of />' lead to very unstable behaviour. The asymptotic
method with a finer grid of 1000 points along the fault. We behaviour of the function Ao when />'-+00 is Ào=/>', also
find that the finite element method employed here provides obtained for an infinite fault. For high weakening rate, a finite

@ 2002 RAS, GJ/ 148, 120-131
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Figure 2. The first nondimensional static eigenfunction 9'o(x, y). The maximum is located at the centre of the fault. The distribution of 9'0 on the fault
is in good agreement with the slip distribution obtained by FDM. We note the rapid decay of 9'0 with X2 the perpendicular coordinate.

fault behaves like an infinite fault. That is, the fault finiteness associated with the dominant part of the unstable evolution.
is not important in the qualitative behaviour of the system. The question is to know whether this assumption is correct, or
Eq. (4) leads ta: not. To clear this point, we compute the slip rate evolution on

an ~ a finite fault, either with a finite difference method or a finite
lc = fi (35~ element method. We consider a linear slip dependent friction:

Consequently, we have: Jl(uj = max{ Jls "-"'&y& U, Jld}
lim lc = 0 (36) c

p-..oo where u is the slip, Jls and Jld the friction coefficients and Lc
Practically, when />' is sufficiently high, we have lc«a. A 'free' the critical slip. We take Jls=0.8, Jld=0.72, Lc=0.17 m. The
initiation process is possible, like on an infinite fault. The saille weakening rate a is given by eq. (2). S = pgz is the normal stress
qualitative behaviour would be expected if a was kept constant computed at a depth of 5000 m, and G = pC2 is the rigidity
and a- + 00. When a is large enough, the relation lc«a is also modulus. The fault half length a is 500 m. We finally get:
satisfied, and the finite fault behaves like a infinite fault. />'=aa= 1.3. According to Dascalu et al. (2000), we expect

only one positive eigenvalue Ào. Fig. (4a) presents the slip rate
evolution on a finite fault, computed by a finite difference

4.2 Accuracy of the spectral approach method over a period of 2 s. The initial perturbation propagates
ln the previous section, we focused on À~, the largest positive on the fault. After a few reflections, another process appears.
eigenvalue. The underlying idea is that ;.J and 1IJ0(x, y) are This is the development of the unstable behaviour, charac-

terized by an exponential growth with time. Fig. (4b) presents
the saille slip rate evolution, computed with the finite element

4.5 spectral method. The agreement between the two methods
is good. The main difference is that the dominant part,
characterized by (À~,lIJo(x, y» does not take into account the
propagative part of the solution. However, the dominant part
gives a correct description of the slip rate distribution. We can
conclude that the dominant part represents essentially the
unstable behaviour of the fault, and that the assumption that
we made is correct. The finite element method allows to
investigate the fault behaviour when />'-/>'0, that is when Ào-O.
For these values, long initiation duration are expected. Fig. (5)
presents the slip evolution on a finite fault with a weakening
parameter />'=/>'0+1;. The computation gives Ào=5.10-4. The
corresponding critical time (initiation duration) is Tc = 2000 s.
For such a value of Tc, the finite difference method is inefficient.

i The slip e~~l~ti?n is so slow that numerical noise dominates
Ilover the InItIatIon process. The model and the numerical

method that we present here is able to produce long initiation
1.5 2 . 3 3.5 4 4.5 duration (more than 30 minutes in this example). The spectral

Figure 3. The functions Ào=Âo(fJ), À.[=Â[(P), À.2=Â2(P) and the analysis that we propose is valid for any Ào>O, even for really
asymptote À. = p. Note that positive eigenvalues are reached when P> Po. small values close to zero. So it is theoretically possible to
The static eigenvalues Pi can be seen in connection with the dynamic produce a very broad range of initiation duration, even with
spectral problem. The Pi are defined as it follows: {Pi/Â,<Pi)=O}. this extremely simple model of a finite fault with linear friction.
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! Figure 4. Comparison of the finite difference (a) and the finite element (b) methods. The parameters are given in the text. We note that the dominant

part wJt. x, y) provides a correct description of the unstable evolution of the slip.

5 FA UL T INTERACTION 5.1 Interaction of two fault segments

Op to DOW, we have considered only a simple homogeneous We consider here the case of a fault zone composed of two
fault. However, it is obvious that faults are heterogeneous, identical frictional segments (each oflength 2a) separated by a
composed of segments that may or may DOt interact. This last rigid barrier of variable size. The goal is to show the reality of
point is of importance in earthquake studies. The interaction of the interaction between the two segments during the eventual
fault segments is a key issue in the prediction of the highest initiation process. We use the numerical approach already
possible magnitude of the next event. ln this section, we study described to investigate the behaviour of the fault system. The
the possible interaction of fault segments during the initiation distance between the two segments is variable. We salve the
process. This problem is completely different from the possible static spectral problem and compute the value of Po for different
interaction of fault segments during the propagation of the spacing between the segments. The results are presented in
rupture front. Fig. (6). As physically expected, the constant Po for the system

decreases as the distance between the two segments decreases,
which proves the interaction between the two segments. OnSlip (m) the contrary, when the distance between the segments increases,

0.18 Po also increases up to the constant of stability of an homo-
0.15 geneous fault. That is the two segments do not interact any-
0.12 more. The maximum distance of interaction is of the order of
0.09 IOa, where a is the half length of a segment.
o.œ
0.00

0 2000

5.2 The case of an heterogeneous fault

Faultlength(m) Time(s) We consider a fault composed of several (Il) segments, aIl
0 identical, with the same weakening rate Plocal, separated by rigid

Figure S. The unstable behaviour of the slip evolution may take time barriers. We aim to s.how ~hat the dynamic be~aviour .of this
to develop as 20-+0. ln this example, the critical time Tc is about 2000 complex fault system IS equlvalent to the dynamlc behavlour of
seconds. The beginning of the slip velocity evolution is so slow that it is a simple homogeneous fault with a weakening rate Pequivalent.
often qualified of 'quasistatic' growth. The static spectral problem associated to this complex geometry

@ 2002 RAS, GJII48, 120-131



1 Initiation on a finite fault system 127

1.2 ,.-., is solved. We get />'0=10.3. The weakening parameter ofeach
1;15 - - ..';1- '"' '-.. --~~ ..:.,.- - - - - - - - ~ - *-' 7.ti- ~:.~.:.-- individual segment has to be greater than />'0 to promote the

i * ** * unstable behaviour of the fault system. We choose />'local =
! 1.1 # 13.08. Then, the dynamic spectral problem is solved for this

1 1.05 * particular geometry.
* Fig. (7) presents the first dynamic eigenfunction <1>& corres-

1 * ponding to the heterogeneous fault system. This eigenfunction

~ * has to be compared to <Po, computed for one fault segment and
0 0.95 presented in Fig. (2). At the first glance, these two functions

0.9 * look very similar. However, <1>& is highly heterogeneous in the
close vicinity of the fault. On the other hand, the global shape

0.95 * (envelope) is similar to <Po, which seems to indicate that the

0,8 * heterogeneous system behaves like an homogeneous one. The
largest eigenvalue is computed to be Â&~4.6 and is associated

0,75 with <1>&. With the help of the curve Âo=Ao(/>') (defined for

0.7 one homogeneous fault segment) presented in Fig. (3), it is
10-' 10-' ;~ 10 10' possible to derive the value of the corresponding weakening

. . f t' 1 T .d . 1 t' 1 parameter:
Figure 6. Interaction 0 two ,au t segments. wo 1 entlca ,au t
segments (of length 2a) are distant from d, variable. The constant of -1 h
stability Po of the system is computed. Note the decreasing of Po as d />' = Ao (;:0)

decreases. The distance of interaction is of the order of 10a. Over this
distance, the universal constant of stability is nearly constant and A homogeneous fault with such a weakening rate will lead
equals the constant of stability of one fault segment (dashed line). to Âo =;!J. We argue that this particular value of />' is the

1 .':. "..

..' .. .' . "

.' .

. ...' .' ." .:. .'" ""'. .:, :'. '..

0.035 , ; ..,' ., '.':.-.' .

.' .
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Figure 7. First dynamic eigenfunction <1>3 of the heterogeneous fault system.
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equivalent weakening rate. That is: (i.e. N=l, ..1.i<O<~«l) or we can neglect the contribution
-1 h of aIl the other eigenfunctions with respect to the first onePeqllivalent = Ao (..1.0) (37) (i.e. O<..1.~-1 < ... <..1.i«~). ln this case

This last hypothesis will be discussed in next section. ~ (t x X ), l, 2
~

[ TT~ sinh(c!'klt/a) 1]~ cosh(cIÀolt/a)wo+a cil,,' WO (i)0(XI,X2),

6 THE INITIA TI ON PA TTERN: . '.
A PO S S 1 B LES 1 G NAT U R E 0 F and the assoclated ratIo gIven by eq. (38) can be deduced as:

INST ABILITY H ( ) = - ax2(i)0(XI, X2) (39)pXI,X2 "" ( ) '
"'0 XI, X2

6.1 Case of one homogeneous fault .
This ratio represents the information about the weakemng

Characterizing the unstable behaviour of a fault will be a step rate of the fault, when it is defined. Actually, Hp is defined
in earthquake prediction. Through eq. (1) we have seen the everywhere onn-rd. On rc (X2=O) we have the r~!ation
simple dependency of the dominant part of the unstable slip Hp= p. Fig. (8) presents the function Hp.(XI' X2) computed in
evolution with respect to the y coordinate in the case of an the static case. We have focused on the behaviour of Hp. close
infinite fault. This can be presented as follows to the fault r c. The minimum value of the function is Po. It is

reached on the fault and on a small domain close to the fault.
ay~(t, x, y) h . R R (38) Note the typical shape of the function, organized in a band of

- = IX everyw ere III x +, . . ( .wli(t, X, y) , the SIze of the fault length. FIg. 9) presents some computatlons

for different weakening rates P for 1.2-5. The general shape of
i.e. during the initiation phase the linear weakening con- Hp is the same for aIl P and then defines an initiation pattern
dition on the fault is transmitted everywhere in the interior of that qualitatively characterizes the unstable behaviour of the
the elastic medium. This property can be a candidate for the fault. The most interesting point is the existence of a domain of
signature of the instable evolution of the finite fault model. Hp over which Hp(x, y) = p. This signifies that the weakening
The question is how to find a similar property in case of a parameter can be measured in the surrounding elastic body. We
finite fault. Let us suppose that we deal with a slow initiation can define now the domain of confidence as the part of the
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Figure 8. Map view of the function Bpo(XI, X2). Note the typical shape of the function in the vicinity of the fault surface r f (emphasized by the
black lines). Note also that the minimum of the function is Po and that this minimum is reached on r f and on a small domain close to the fault.
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Figure 9. Map view of the Bp(Xl, X2) in the vicinity of the fault for different values of the weakening parameter. From left to right and top to bottom:
p = 1.2, 1.5, 3, 5. Note the same shape of the function in the four different cases. The black line emphasizes the limit of the domain of confidence over
which the functionis nearly constant and equals p. The size of this domain is an increasing function of p.

elastic body where the previous property is satisfied: The result is presented in Fig. (10). As already seen, close to
D (P) = {(x x). B (x x) == P} (40) each indi:idual ~ault segm~nt, an i~itiation pattern ~evelops in

cI, 2, PI, 2 the elastlc medIum, assoclated wlth a local domam of con-

The fault surface r fis always included in Dc. The extension fidence over which Plocal can be measured. The striking feature
of the domain of confidence is an increasing function of the of Fig. (10) is the existence of a wide domain over which
weakening rate p. From the relation between ;'0 and P (see Bp(XI' X2) is nearly constant, independent from the individual
Fig. 3) and the measure of P over the domain of confidence, fault segments but closely related to the whole fault system. AlI
it is possible to gel the largest positive eigenvalue. Since the over this domain, we have the following relation:
initiation. durati~~ is in:ersely pr.oportional to ~o, we a~e able ox2I1JO(XI, X2)
to prescnbe a cntlcal lIme, that IS we can predlct the ume of - "' ( ) = Pequivalent

"'0 XI,X2occurrence of the future event.
That is, aIl over this wide domain, it is possible to measure
the collective behaviour of aIl the fault segments, similar to the
behaviour of an homogeneous fault with P = Pequivalent. Some

6.2 Case of an heterogeneous fault strong results arise from these computations:

We consider the case of a fault zone composed of eleven (i) An initiation pattern develops inside the elastic medium
identical frictional segments (described in Section 5.2). We now and is characteristic of the unstable behaviour of the fault
compute the function Bp(XI, X2) for this complex fault system. system.
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Figure 10. Map view of the function Bp(xI. X2) in the vicinity of the fault zone. composed of Il interacting fault segments. Note the local initiation
pattern associated with each of the fault segment, and also the global initiation pattern. The black line limits the global domain of confidence
associated with the unstable behaviour of the whole fault system. AIl over this domain, the function Bp(XI, X2)~Pequivalent.

(ii) The collective behaviour of aIl the segments is transmitted fault. The collective behaviour of interacting fault segments is
in the medium and can be measured over a wide domain. very similar to the homogeneous finite fault behaviour. The

(iii) There is a spectral equivalence between a complex equivalent weakening rate is given by the relation À-o = Ao({>').

heterogeneous fault ({>'locab À-S, <l>S) and an homogeneous fault The equivalence is complete in terms of initiation process,
({>'equivalent = Ao~ 1 (À-S), À-o = À-S, <1>0). that is À-o is the same for the two faults. Therefore, the critical

Th 1 . fi 1. .th h f C . 11 lime (the initiation duration) is the same in bath cases. The
ese resu ts are m peT ect camp lance Wl t ose 0 ampl o. . . .

l. (2001) h d fi . d.f"" t . d . equlvalent homogeneous fault IS a sort of homogernzatIon ofet a. , w 0 use rnte 1 lerence Ime omam com- .. .t t . t d t th f f "" t. f . t . the complex fault. ThIS technIque may be used for dIfferentpu a Ions 0 emons rate e accuracy 0 an e lec Ive nc Ion .. . .
1 d d d f th t . f th t . fi Id . .d th scales of heterogenelty to provlde a correct descrIptIon of theaw e uce rom e proper les 0 e s ram e mSl e e . .

1 t . b d global behavlour of complex, highly heterogeneous fault systems.

eaSlC Dy. H h h ... 1.
h 1 f .

fiowever, t e omogernzatIon Imp Ica tes t e oss 0 m or-

mation on how the rupture process will develop in detail. The
rupture complexity observed bath in laboratory experiments or

7 DIS C U S S ION in str~ng motion inversions will be lost by these homogenization

technIques.
The unstable behaviour of a fault is successfully modelled by The transmission of information about the weakening rate
the dominant part of the slip rate evolution. The model that we the elastic medium offers the possibility to constrain the lime of
develop in this paper is rather simple: a finite homogeneous occurrence of the next event, even without knowing anything
fault under a linear slip dependent friction law, characterized on the fault. The existence of an initiation pattern associated
by the weakening rate IX and ils halflength a through the para- with the unstable behaviour of the fault and the m.easure of the
meter {>'=alX. This model produces long initiation duration, up function Bp(x, y) is sufficient to give a good approximation
to at least 30 minutes, as presented in Fig. (5). Many other of À-o, and therefore to prescribe the critical lime. However
processes may be involved in the initiation process over such a interesting these results may be, they have to be confirmed by
long period of lime. We do not argue that these physical other methods, and moreover they have to be extended to the
mechanisms, such as fluids effects, are not important, we just 3D case. Many other parameters have to be taken in account,
show that a simple fault modelcan pro duce a very broad range such as the fault geometry or the orientation of the fault plane.
of initiation durations with no need for other mechanisms. This study appears like a first attempt to recognize and

We have shawn that the analysis we performed on a characterize a possible signature of the unstable behaviour of a
finite homogeneous fault remains valid for a heterogeneous fault, that is an initiation pattern.
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