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Abstract

The sea ice cover, which insulates the ocean from the atmosphere, plays a fundamental role in the Earth’s climate system. This
cover deforms and fractures under the action of winds, ocean currents and thermal stresses. Along with thermodynamics, this
deformation and fracturing largely controls the amount of open water within the ice cover and the distribution of ice thickness,
two parameters of high climatic importance, especially duraiigaind winter (no melting). Here we present a scaling analysis
of sea ice deformation and fracturing that allows us to characterize the heterogeneity of fracture patterns and of deformation
fields, as well as the intermittency of stress records. We discuss the consequences of these scaling properties, particularly for
sea ice modelling in global climate models. We show how multifractal scaling laws can be extrapolated to small scales to
learn about the nature of the mechanisms that accommodate the deformation. We stress that these scaling properties preclude
the use of homogenisation techniques (i.e. the use of mean values) to link different scales, and we discuss how these detailed
observations should be used to cmaim sea ice dynamics modellifi@. cite this article: J. Weiss, D. Marsan, C. R. Physique
5 (2004).
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Résumé

Propriétés d’échelle de la déformation et de la fracturation de la banquise. La banquise, en isolant 'océan de I'atmo-
sphére, joue un réle fondamental dans le climat terrestre. Elle se déforme et se fracture sous I'action des vents, des courants
océaniques et des contraintes thermiques. En sus des processus thermodynamiques, cette fracturation contrdle en grande partie
la proportion d’eau libre et la distribution des épaisseurs de glace, deux parametres trés importants du point de vue climatique,
particulierement pendant I'automne et I'hiver en I'absence de fonte. Nous présentons ici une analyse des propriétés d’échelle
de la banquise qui permet de caractériser I'hétérogénéité des réseaux de fracture et des champs de déformation, ainsi que I'in-
termittence des fluctuations de contrai®us discutons les conséques de ces propriétés d’échelle, en particulier pour la
modélisation de la banquise dans les modéles climatiques. idoogons comment les lois d’éelie multifractales peuvent
étre extrapolées vers les petites échelles pour détermindul@mes mécanismes physiques accommodant la déformation de la
banquise. Nous soulignons le fait que ces lois d’échelle invalidgiisation de techniques iomogénéisation pour modéliser
les changements d’échelle, et nous disas comment ces observations peuverd étitiséespour contraindre des modeles de
dynamique de la banquisBour citer cet article: J. Weiss, D. Marsan, C. R. Physique 5 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

* Corresponding author.
E-mail addressweiss@Igge.obs.ujfrgnoble.fr (J. Weiss).

1631-0705/$ — see front mattét 2004 Académie des sciences. PublishgdElsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.09.005



736 J. Weiss, D. Marsan / C. R. Physique 5 (2004) 735-751

Keywords:Sea ice cover; Deformation; Fracture; Intermittency; Multifractal; Climate

Mots-clés :Banquise ; Déformation ; Fracture témmittence ; Multifractal ; Climat

1. Introduction

Sea ice is a fundamental and fascinating component of polar regions. During winter, the sea ice cover extends over 14
108 km? of the Arctic ocean and surrounding seas and up t& 20° km? around Antarctica. The variability of the sea ice
extent between winter and summer is much larger in the southern hemisphere (Iesytn@ﬁ Km? of sea ice during the
austral summer) than in the Arctic where multiyear ice is important Q.D6 kmz). When considered as a geophysical object,
the Arctic sea ice cover is of the scale of tectonic plates.

Through complex interactions with the oceans and the atmosphere, sea ice, and particularly its extension and thickness, is
a key parameter in the Earth’s climate system. Sea ice insulates the ocean from the atmosphere. The fracturing and divergent
deformation of the ice cover decrease the albedo and allove stoortwave absorption by the ocean, thereby shrinking the
ice cover during summer, thus reducing its strength and possibly increasing the fracturing — a positive feedback loop (Moritz
et al. [1]; Zhang et al. [2]). On the other hand, sea ice fracturing during winter enhances the production of new ice, and thereby
modifies the heat and salinity budgets in polar regions (Maykut [3]). Within a context of global warming, these complex in-
teractions between the ocean, sea ice and the atmosphere could be critical (Morison et al. [4]). Observations reveal that the
Arctic sea ice cover already shrank during the last decadels,ibbaeérms of average thickness (Kerr [5]; Rothrock et al. [6])
or of geographical extension (Comiso [7]; Morison et al. [4]). These trends are expected to increase during the 21st century
with strong climatic, environmental or economical consequences (Kerr [8]). Therefore, better characterization of sea ice defor-
mation and fracturing, which is needed for better modellingeappas an important scientific challenge for the next decades:
how the ice cover evolves through time in response to meteorological and mechanical forcing, and how this in turn affects
the Earth’s climate, are still open questions. Climate models try to model these complex interactions (see, e.g., Fichelet and
Morales Maqueda [9]). The sea ice modules of climate models necessarily simplify the ice dynamics, and particularly its spatial
variability (see later). They are inspirém more specific, but more detailed sea @ynamic models (see, e.g., Hibler [10]).

Beyond the climatic concerns, the sea ice cover is also a model geophysical object for studying deformation and fracture:

(i) The large aspect ratio of lateral extent to thicknesSL()6 for the Arctic basin) allows the monitoring of the deformation

of the ice cover from surface measurements; one can asthsngrocess to be well approximated as a 2D plane stress
mechanical problem at scales larger than few tens of m, i.e. at scales significantly larger than the ice cover thickness.

(i) The physical and mechanical properties of saline ice are well documented at the laboratory scale (Cole [11]; Schulson [12])
and can be considered relatively homogeneous, at least compared to the structural heterogeneity of the Earth’s upper crust.

(iif) Compared to the Earth’s crust, sea ice motion and deformation occur at much shorter time scales, with ‘typical’ strain rates
around 10°% s~1 (although the concept of a ‘typical’ strain rate for a strongly heterogeneous velocity field is a matter of
caution; see later). This enhances the signal/noise ratio and allows the sampling of the significant deformation mechanisms
in a shorter time.

(iv) The absence of ground cover and thalisy of imaging radar to penetrate clouds and #eess greatly facilitates the
observation of deformation and fracturing.

For these various reasons, the available documentation on deformation and fracturing of the sea ice cover, especially in
the Arctic, has no counterpart in geophysics. As an example, the available data on Earth’'s crust deformation obtained by
interferometry or GPS are still much too sparse to allow thaildel scaling analyses of how shear zones accommodate the
tectonic driving. We note that most of these data refer to the Arctic basin, the documentation about the sea ice cover around
Antarctica being scarce (Geiger et al. [13]). Moreover, as tiaratic sea ice is mostly seasonal and unconstrained by land
towards the north, its deformation features differ from arctic sea ice. Consequently, the present article focuses mainly on the
Arctic.

As shown in this paper, deformation and fracturing procesdgethe sea ice cover are characterized by a strong spatial
heterogeneity as well as intermittency:

(i) in space, most of the deformation is accommodated by leads, delimiting quasi-rigid floes (see for example Fig. 1(a));
(i) in time, very large fluctuations in stress are observed, that correspond to strongly episodic sequences of fracturing and
deformation (see for example Fig. 2).
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Fig. 1. (a) SPOT satellite grey-scale image of the sea ice cover taken the 6 April 1996, centred arotiht!, N8Q08 33 and covering
59 x 59 kn? with a resolution of 14.4 m/pixel. (b) Grey-scale histogram @ itmage plotted on (a). The dotted line represents the average
value (v) = 176. (c) Binary version of (a), using a threshelg = 160. (d) Binary version of (a), using a threshelg = 140.

Mean values of deformation, either in space or time, contain therefore very little information on the actual process that controls

the evolution of the ice cover. In this respect, sea ice is similar to the Earth’s crust that is also characterized by a strongly

localized (faults) and intermittent (ehguakes) deformation. As explained beldhis heterogeneity is observed over a very

large scale range from the scale of the ice cover’s thickness (m) to the scale of the Arctic b'éa;hj,(ﬂxhereas intermittency

is observed at least within the time scale 1 hour—1 year (Lewis and Richter-Menge [14]). Within those scale intervals, the

deformation is observed not to favor any privileged scale tlatlvmark a transition betweenffdirent physical mechanisms

acting in a scale-dependent way. (Note, however, that an opposite view can be found in McNutt and Overland [15]; Overland

et al. [16].) Consequently, an essential, and still mainly open question in sea ice mechanics and modelling is to establish the
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Fig. 2. Ice ‘shear stres® — o7 recorded from 14 October 1997 to 2 April 1998 at theddedre bottom sensor during the SHEBA program.
o1 andoy are the 1st and 2nd principal stresses, respectively.

links between different scales (Schulson [12]; Schulson and Hibler [17]). This motivates our research on the scaling properties
of deformation and fracture of sea ice.

This paper is organized as follows. Section 2 describes briefly the driving forces responsible for deformation and fracture
of the ice cover as well as the boundary conditions. Section 3 meserapid overview of thecaling analyses presented in
the sea ice literature and focuses on some new and particularly enlightening analyses. Section 4 discusses the consequences of
these scaling properties, particularly for sea ice modelling in climate models. We show how multifractal scaling laws can be
extrapolated to small scales to learn about the nature of the mechanisms that accommodate the deformation, or to correctly esti-
mate the amount of open water within the ice cover. We stress that these scaling properties preclude the use of homogenisation
techniques (i.e. the use of mean values) to link different scales, and we discuss how these detailed observations should be used
to constrain sea ice dynamics modelling.

2. Driving forces

Strains, stresses and fracturing are induced in the sea ice cover by several driving forces, different in nature as well as in
intensity (Lewis and Richter-Menge [14]):

(i) Wind forcing is responsible for motion-induced stresses and strains. This is generally considered to be the main forcing
term of sea ice deformation. This forcing is known to be turbulent, the atmospheric flow being characterized by very large
Reynolds numbersx 106). As such, it is itself strongly varying in space and time, and is also scale invariant.

(i) Ocean currents. This contribution is considered to bellemthan wind forcing. However, ocean drag on the bottom of
the ice plays an important role in balancing the wind-induced velocities [14]. In the so-called marginal ice zone (MIZ)
delimitating the ice cover from the open ocean, the ocean waves are known to play a role on the fragmentation of the cover.
This mechanism becomes negligible several km from the MIZ. Near the coast, tides could also play a role.

(i) Coriolis force. This term is considered to be small compared to the other terms [14].

(iv) A term related to the sea surface tilt induced by atmosphmessure gradients. This term is very small compared to the
other terms (Steele et al. [18]).

(v) Thermal strains and stresses induced by rapid variations of the air temperature (Lewis [19]) can result in tensile cracking
of the sea ice cover. This mechanism is important for sea ice fracturing.

These different driving terms can be summarized in the following momentum balance equation (in a 2D modelling frame-
work) which is at the root of most of the sea-ice dynamics models (see, e.g., Hibler [10,20]; Lindsay and Stern [21]):

d
ma—L::tw—l—tg—mfckxu—l—V'o Q)
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wherem is the ice mass per unit area (2D modelling) anthe ice velocity. In this 2D framework, the sea surface tilt is
neglectedr,, andr, represent respectively the ocean and the wind ‘stegdse forces per unit area. The third term represents
the Coriolis force wherg, is the Coriolis parameter arkda unit vector normal to the surface. The last term is written in terms
of the divergence of the internal ice stress tensowhich is a force per unit length in this 2D framewotkis defined from a
constitutive rheological law relating tltsplacement to the stress.IlBwing Hibler [10], most d the sea ice dynamics models
assume a viscous-plastic rheological law:

d d P
6=2nbd—f+[(ns—nb)T<d—f> —5]1 )

whereng andn;, are respectively the shear and bulk viscositiegddis the strain-rate tensar,(-) the trace of a tensop, the
ice strength, and the two-dimensional unity tensor.

For most of the Arctic ocean, the contribution of thermal stresses is small compared to wind forcing. Tensile fractures
can open locally as the result of these thermal stresses, butdkesignificant fracturing features are associated with shear
deformation. These ‘faults’ are calle@dds’ in the ice literature. Tee mechanisms result in stees that vary strongly in space
and time. Lewis and Richter-Menge [14] reported values of up to 250 kPa, i.e. about the tensile strength of saline ice measured
in the laboratory (200-300 kPa a3 °C (Richter-Menge and Jones [22])). In case of areas shielded from strong winds and/or
confined by coasts, such as fjords or bays, the relative contribution of thermal stresses and of ocean currents and tides can be
larger.

3. Scaling of deformation and fracture of seaice: observations

In a very broad sensscalingdesignates the way an observatMechanges with the scale of observationThe scalex
can be a spatial scale, a time scale, an energy scale. However, we employ here a more restrictive meaning originating from
statistical physics (see, e.g., Stanley [23]): an observable (or distributfoexhibits scaling scaling propertiesor scale
invariance (all these terms are used in the literature) with respect to the sciéléf/(Ax)/M (x) only depends on the scale
ratio 2 but not on the resolution scale in the distribution sense. The notatian can be understood in a broad sense (e.g.,
Lovejoy and Schertzer [24]) of a scale changing operator that only depends on the padartretbe very simplest case, this
yields M (Ax) = A* M (x) wherea is the exponent associated with the functidiix). The only function that satisfies the above
equation is a power lawd (x) ~ x“ (in what follows, the sign~’ is used to indicate proportionality).

For now almost 20 years (Allegre et al. [25]; Barton and Larsen [26]), it has been progressively realized that deformation,
fracture and faulting of the lithosphere is characterized by many different scaling properties including the self-affine geometry
and multifractal properties of fracture surfaces (Power et al. [p))er law distributions of fracture lengths, fractal distribu-
tions of fracture barycentres or earthquake hypo/epicentres, or scaling relations between fault lengths and fault slips (see, e.g.,
Main [28] or Bonnet et al. [29] for reviews on the subject). Power law distributions of earthquake energies (i.e. the Gutenberg—
Richter law (Gutenberg and Richter [30]) and fractal correlation of earthquake occurrence times (Kagan and Jackson [31]) are
another well-known scaling properties of the fracturing of the crust.

As detailed below, sea ice deformation and fracturing is charaed by multifractal scalingrpperties that describe the
heterogeneity and intermittency of the processes over spatial scales ranging from the ice cover thickness (m) to the scale of the
Arctic Basin (1(9 m), and time scales within the range 1 hour-1 year. We divided the available observations in three categories.
Section 3.1 refers to ‘static’ observations (snapshots) in the sense that they describe the geometry of the ice cover (e.g., geometry
of the fracture network) at a given time Section 3.2 presents observations base ‘kinematical’ measurements such as
displacements, velocities or a@emations (e.g., displacemergcords of buoys, or Radarsat Geophysical Processor System
(RGPS) data). Whereas static observations are common for the lithosphere, kinematic measures of the sea ice cover have yet no
counterpart for other geophgal objects. Section 3.3 focuses on theermittency of ice stress time series.

3.1. Static observations

As becomes obvious when seen from a plane or from space, the sea ice cover is not a uniform continuous sheet like the ice
that might cover a small lake or a frozen pond. Itis instead intensely fractured (Fig. 1(a)). On optical images, the large difference
of albedo between thick ice and open water or thin ice allons to easily identify recently opened fractures. During most of
the year, fracturing is particularly concentrated along sets of leads, some of them extending over hundreds of km. Within these
regions of intense fracturing, ice is fragmented into pieces called ‘floes’ (Fig. 1(a)). During summer, fragmentation of the ice
cover into floes is more widespread and lateral melting plays a significant role, leading to an apparently more homogeneous
pattern.
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Fig. 3. Cumulative distributions of floes sizeé,(> L), obtained after thresholding ofeffig. 1(a) with different thresholdgy, = 140 (circles),
vih = 160 (squares) andy, = 180 (triangles).

Historically, the first quantitative evidence of scale invariance of the fracturing of sea ice came from the analysis of the
probability that a given floe has a characteristic length larger than ldngtb. the cumulative distributiorf (L” > L), where
the sizeL can be defined from a mean diameter or the square root of arfifiesent authors reported power law distributions,
F(L' > L) ~ L™, with b in the range 1.4-2.2 fok within the range 101-1° m (Kergomard [32]; Korsnes et al. [33];
Lensu [34]; Matsushita [35]; Rothrock and Thorndike [36]). This expresses scale invariance, as it is impossible to determine
the scale of the image by comparing the relative number of floes of different sizes. Within the scale ranges analysed, none of
these studies revealed crossover scales. A zone of intense fracturing during fall, winter or spring cannot be distinguished from
summer pack ice on the basis of these scaling properties. As an example, Fig. 3 shows this scaling in the case of the SPOT
image of Fig. 1(a), using various thresholgg for defining the floes: a floe is here a connected area of pixels with values
greater thany,; See next section for a more detailed description.dfhe cumulative distribution decays 5%, with b in the
range 1.3 to 1.54 depending on the threshgid A more detailed review on this subject is given in Weiss [38].

3.1.1. Multifractal characterization of sea ice fracturing

In what follows, we present an analysis of the heterogeneigeafice fracturing based on itsade invariant properties. We
explore the scaling properties of a measure, the proportion (or ‘density’) of open water within the icepcausis measure
is a key parameter for climatic studies. It is introduced in sea ice modules of climate models as a concentration variable that
depends on thermodynamics (heat budget), and on the ice cover dynamics through a conservation law that relates the rate
dp/dr to a divergence terrv - u (see, e.g., Fichelet and Morales Maqueda [9]). However, these models do not really simulate
the mechanical effect of fracturing on the open water fracpios an example, an effect of the formation of leads by shear
faulting is not taken into account. Morpexific sea ice dynamics models take iatwount more precisely these feedbacks of
the deformation onto the open water fraction from parametrizations relating the evolutioto afivergence and shear (Stern
etal. [37]).

The proportionp, can be seen also as a fracture density and this analysis can be compared with similar analyses performed
for the lithosphere (Ouillon et al. [39]), or for ice samples fractured in the laboratory (Weiss and Gay [40]). The analysis
presented here is based on a grey-scale (0 for black to 255 for white) satellite SPOT image (visible wavelengths) of size
4096 x 4096 pixels with a resolution of.g = 14.4 m/pixel, centered around N801 W108°33, NW of Queen Elizabeth
Islands, and taken 6 April 1996, i.e. in early sgriconditions (Fig. 1(a)). The grey-scale valuef a pixel depends on the
shade, i.e. on the roughness of the surface and the inclination of the solar light, and on the albedo of the surface. As the upper
surface roughness of the ice cover, defined, e.g., as the standard deviation of the elevation, is very small (below the meter scale)
compared to the horizontal scales explored (14.4 m to 59 krogn be considered as a proxy of the albedo. However, as the
incidence angle of the solar light is large at this latitude, an increasésasbserved, in average, from N to S over this very flat
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surface, as the result of the Earth’s surface curvature. Nevertheless, as ice has a very high albedo compared to water, the image
histogram is characterized by two well-defined peaks (Fig. 1(b)) at abeut20 (water) and = 185 (ice). This allows one to

deducep from v on a binary version of the image, using a threshgjdin the 120-185 interval delimited by the two peaks of

Fig. 1(b). Pixels withw < vy, are approximated to be water or thin, transparent jce (1), pixels withv > vy, are ice p = 0).

Note, however, that some small and narrow dark lineaments could correspond to pressure ridges (compressive fracture). In this
case,p = 1 would be associated to fractures but not to open water. The binary version of the grey-scale image of Fig. 1(a) for
vth = 160 andvy, = 140 are shown respectively on Figs. 1(c) and (d).

A first indication of the scale invariance of the grey-scale image (Fig. 1(a)) is given in Fig. 3, for which individual floes
were singled out after thresholding, fof, = 140, 160 and 180. In order to further test the scale invariant character of this
image before introducing the threshold parametgy)(we compute the 2D spatial spectrurfx,, ky) and sum it along shells
of radiusk (Fig. 4). This implicitly assumes the isotropy of the distribution, i.e. that bo#imd y directions are individually
characterized by the same 1D spectrum. This was checked beforehand to be well verified. A verjccdealidg is observed,
in the scale interval extending from 100 m to 10 km.

This result demonstrates the scale invariance of the images Kifficult to interpret directly in terms of sea ice fracturing,
as the pixel valua expresses composite information (see above and Section 3.1.2). Consequently, we focus now on binary
images. We define a binary ice/water imagéx, y) at the 14.4 m resolution scale, and examine its scaling properties by
spatially averaging it at scale:

px,y) =0 ifv(x,y) > v,
px,y) =1 ifv(x,y) <wvy, atthe resolution scalkg,

pL(x,y) = / de’ dy’ p(x —x")p(y — y)BL(x",y") ®3)

whereB; is a spatial averaging kernel with characteristic séalé/e here takeB; to be zero everywhere except within a square

of size L centered at the origin. The quantipy can be considered as the fraction of open water when observed at_scale

and with an image resolutiohg < L. Its distribution changes with the averaging scaleThe distribution can be studied by
estimating the scaling of the momemsfi), where(.) stands for average. This is done fok@ < 3. For the image thresholded

at vy, = 160 (Fig. 1(c)), a(pZ) ~ L=K@ scaling is observed over about 2.5 orders of magnitud2 Kt < L < 60 km),

see Fig. 5(a). However, a spurious effect arises towards small scales on the binary(i}ni%gei (p) = 0.148 whatevey

for Lo =144 m=1 pixel, asp; takes only the values 0 or 1 at this scale. An effect of the image resolution is also possible.
These effects significantly bends the scaling over about one order of magnitude (Fig. 5(b)). Similar departures from scaling
were observed on simulated multiplicative cascade models, after thresholding of the distribution at resolution scale.

~ 1/

Spatial power spectrum
)

10 -2 I—'\ IO 1

10 10 10 10
wavelength (1/km)

Fig. 4. 2D spatial spectrum of the grey-scale ga®f Fig. 1(a), summed along shells of radiusThe 1/« scaling is shown as a straight line.
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Fig. 5. Multifractal analysis of the density of open watey,, for the image thresholded &, = 160 (Fig. 1(c)): (a) moment@a%) as a function
of scaleL for different values of over the scale range 0.2—-60 km, and the least squares lines. The slopes of these-ieg;aré) moments
(p;{) as a function of scalé for g = 0.2, ¢ = 1.4 andg = 2.6 over the whole available scale rar@0144-59 km (closed symbols), along with
the same moments for a randomly reshuffled image (open symbols). See text for details.

To test the significance of the observed scaling, we compare the results with a similar analysis performed on a randomly
reshuffled image containing the same number of ‘fractured’ (black) pixels (Fig. 5(b)). In this case, the same constraints apply to
(p])atLo=1pixel,ie.(p? )= (p)=0.148. Atthe other bound(= Lmax= 59 km), there is only one cell, §p7 ) = p‘zma
depends only o and is i(gentical for the initial image and the reshuffled data. Nevertheless, between these two commons
bounds, the actual behavior QfZ) is clearly seen to depart from the random test. This allows us to conclude that the observed
scaling(pZ) ~ LK@ is not inherent to the binary version of the image, but is a signature of the spatial correlations present
in the fracture network.

The closed symbols in Fig. 6 shows the evolutiorkaf) vs g for the image thresholded ag, = 160. A strong curvature is
observed, indicating multifractalityf sea ice fracturing. llkomparison, a monofractal field would lead to a lin&ay). With
the present definition of the fracture dengitythe functionk (¢) is constrained b (1) = 0, as(p) = 0.148 whatever the scale,
andK (0) = 0. The convexity oK (¢) implies that the higher moments of the distribution, which correspond to the largest values
of pr, grow faster towards small scales than for a monofractal scalinf,(as) > K (¢1) x q2/q1 for g2 > g1 (Marsan and

0.7 |- I ' I ' ‘ I .
06 .
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K(q)
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0.1F

0.0 F

-0.1 1 . 1 . I . 1 . 1 . 1 . 1
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Moment order, q

Fig. 6. Experimental moment functiaki(¢) for p; . Closed circles: for the image thresholded@t= 160 (Fig. 1(c)). Full line: best-fit of the
data with the Universal Multifractal Modeb(= 1.67). Dashed line: fit of the data with the lognormal modekK 2). Open circles: for the
image thresholded at, = 140 (Fig. 1(d)). Full line: best-fit of the data with the Universal Multifractal Mode(1.50).
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Bean [41]). Therefore, the hetageneity of sea ice fracturing increases towardslisscales, i.e. fracturing is more localized.
As an example, the standard deviatiorpefis given byo,, = ((p?) — (p1)?)V/?, hence scales a& (K@ —0.148%)1/2 and
therefore increases towards small scales. However, thlgsis shows that the mean and the standard deviatign aire not
sufficient to determine the spatial distribution of sea ice fracturing, which is non-Gaussian.

Even though a similar nitifractal behavioris obtained when ching the thresholdy,, the exponentX (¢), i.e. the pdf
of py., are seen to be threshold-dependent. Fig. 6 shows a comparison betw&en tsebtained for, = 140 andvy, = 160.
This shows the difficulty of unambiguously determining the fraction of open water from observations under visible light, as the
pdf of p; not only depends on the observation sdajéut also on the chosen thresholg.

3.1.2. Mdtifractal modelling wth random multiplicative cascades

An analytical expression of the moment functi&rig) can be proposed within the multifctal modelling framework based
on the concept of random rtiplicative cascades, which was initially deepked in turbulence to account for and model scale
invariance and correlations of the energy flux (see, e.g., Frisch [42]). The generation of multifractal distributions from muilti-
plicative cascades has been detailed elsewhere (see, e.g.nMadsBean [41]; Schertzer et al. [43] for reviews). We summarize
here the basic concepts for a 2D situation (particularly suited for sea ice modelling; see Section 1). The construction of a mul-
tiplicative cascade is a down-scaling procedure starting from an upperisgale(the scale of the ‘system’) down to a lower
scaleLmin. This lower scale can be a resolution scale (we are unable, with our observation tools, to resolve fluctuations and
heterogeneity at scaléds< L), Or can be related to a physical cut-off when the physical parameter under consideration (e.g.,
the fraction of open watep) is only slowly varying at scales belofm;,. In turbulence, this lower cut-off is the so-called dis-
sipation scale, at which viscosity terms in the Navier—Stokes equation start to become dominant over advection. Multiplicative
cascades fragment the value of the param&terom Lmax to Lyin in @ scale invariant way illustrated on Fig. 7. The value
M| atscalel is divided into 4 smaller value®(; /2(1), ..., My ;2(4) at scaleL /2 with intensities given b ,2(i) = M f;,
where f; are independent realizations of a positive random varigblk is easy to see that multiplicative cascades generate
scale invariant and correlated fields (the valdig (i) at scaleL and location is correlated to the value at locatigrthroughN
generations of ‘parents’, wheré depends on the logarithm of the distarice- j| and on the scale ratibmax/L).

Within this general framework, there is no a priori constraint on the nature of the positive random vériatdeever, the
so-called ‘universal’ multifractal modléntroduced by Schertzer and Lovejoy [44]sfpund a wide applicality for describing
the scale properties of many geophysical fields, as for example atmospheric turbulence (Schmitt et al. [45]), rainfall (Schertzer
and Lovejoy [44]), climatic records (Schmitt et al. [46]) or upper crustal properties (Marsan and Bean [41]). This model is
based on log-Lévy statistics fgt, and is therefore a limit process since the sum of independent, identically distributed random
variables converge towards Lévy laws. The moment funckign) takes the analytical form:

K(q) = %(q“ -q) (4)
whereC anda are constants (& « < 2). The Lévy indexx characterizes the degree of multifractality= 0 corresponds to a
monofractal whereas = 2 is associated with the lognormal model wh¢frées a lognormal random variable.

The fits obtained with Eq. (4) for the experimental moment functi&iig) describing the fracture patterns of Fig. 1(c)
(vth = 160) and (d) ¢y, = 140) are shown in Fig. 6. The best fit is obtained witk= 0.090 (respectively 0.147) and= 1.67
(1.50) for vy, = 160 (respectivelyin, = 140). This shows that sea ice fracturing can be modelled by a multiplicative cascade
process with a degree of multifractalitiightly lower than the lognormal model. Hower, this deviation from the lognormal
model is small, as shown on Fig. 6. The parameters of the multiplicative cascade change with the thyjigshitihoa decreasing
degree of multifractalityr with decreasing threshold.

Dmux Imuzx/2 L
M. (i)
Ml M2, L
M, Dinux =

i 1=

Fig. 7. Construction of a multiplicative cascade model (see text for details).
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It is worth mentioning here that the multifractal analysis performed on the image as well as the cascade model proposed are
isotropic and as such cannot reveal (or model) any directional information, even though clear anisotropy is seen (quasi-linear
leads) on the image (Figs. 1(a), (c) and (d)).

Instead of using a threshold to binarize the image, one could perform a multifractal analysis directly on the pixglivalue
on a proxy of the albedo. However, the physical interpretation would be difficult for several reasons. Thin ice freshly formed
along fractures has an albedo intermediate between water and thitkr() ice, but the relation thickness-albedo is still an
open, and probably very complex questi Indeed, in additio to ice thickness, albedo strgly depends on others physical
parameters such as the amount of snow covering the ice. Moreover, we already stressed the role of the Earth’s surface curvature
onv. A multifractal analysis om shows reasonable scaling of the momeints towards large scales, but significant deviations
towards small scales that probably reflect this composite information. Falco et al. [47] performed a similar multifractal analysis
of the backscatter amplitude of synthetic aperture radar (SAR) images of sea ice. SAR backscatter amplitude relates to other
physical properties different from the albedo in the visible wavelength range, such as the thickness, the bulk properties (e.g.,
the brine content), the roughness of the surface, the salinity, etc. The SAR backscatter fields analysed were well described as a
universal multifractal withC = 0.0086 andx = 1.85 over the scale range 12.5 m—6.4 km. Owing to the composite information
carried by the SAR backscatter, this result is difficult to interpret in terms of deformation and fracture.

The most detailed multifractal analysis of fracturing and faulting of the Earth’s crust was presented by Ouillon et al. [39].
This was performed from box-counting on several fault and fracture trace maps in Saudi Arabia from the 1 cm to the 100
km scale. Compared to the analysis presented above, severplications arose: (i) the analysis is based on 2D information
although the crust thickness clearly cannot be neglected,; (ii) the fracture traces result from an interpretation of the observer
and are modelled as lines; and (iii) sediment layers can hielpaltern in some places, leading to sampling bias. Instead of
using a fracture density as defined above, Ouillon et al. [39] considered an extensive measure, i.e. the fracture length cumulated
over the box, and characterized theltifractal properties by a set ofegeralized fra@l dimensionsD(g). It is easy to show
thatD(g) =2 — (K(q)/q — 1. This analysis revealed multifractal scaling of crustal fracture patterns over limited scale ranges
separated by crossover scales possibly associated with the layering of the crust. This interpretation is consistent with the absence
of such characteristic scales for the sea ice cover within the scale range*19-1@ll above the ice cover thickness (see
Section 4.1).

3.2. Kinematic observations

As we stressed above, high-resolution and spatially dense kinematic measures such as velocities or deformations can be
derived from buoys or satellite imagery of the sea ice cover. Expanding our view from purely static distributions, this allows us
to analyse the scaling properties of the strain and strain-rate fields.

3.2.1. Dispersion of buoys

Martin and Thorndike [48] studied the deformation of sea ice from the dispersion of buoys. They measured the squared
separation of buoys averaged over many pa'nﬂ,2>, as a function of time. For classical (molecular) diffusiofAL2) ~ 1.
For turbulent Lagrangian diffusion, two regimes are present with2) ~ 12 for small time scales angh L2) ~ ¢ for large time
scales (Taylor [49]). The observations reported by Martin and Thorndike [48] were in this respect in reasonable agreement with
turbulent diffusion. Moreover, the dispersion ra(e&aLz)/dt increases with the separatidras dALZ)/dt ~ L withs =11
for small time scales (few hours) add= 1.8 for large time scales (few days). This strongly differs from classical diffusion (no
scaling, i.e$ = 0), but resembles the turbulent scaling, although the latter is characterized by different expofgatsi(23
for respectively small and large time scales (Richardson [50]). All of this suggests a kind of ‘solid turbulence’ where dispersion
within the sea ice cover is essentially the result of fracturiregd®t in terms of deformation, these results show that the moment
of order 2 of a strain-rate,(dAL/L)z)/dtz, scales ad.5~2, therefore increases with decreasing spatial scale. More precisely,
Martin and Thorndike [48] analysed the scale dependence of the componeéms%)fnormal and parallel to the line initially
joining the two points, and found the same exponents. However, as with turbulence, we show below that the first and second
order moments of the dispersion rate are not sufficient to characterize the strain-rate field of sea ice.

3.2.2. Deformation from RGPS

The RADARSAT Geophysical Processor System (RGPS) has allowed in recent years the investigation of sea ice motion and
deformation over an unprecedented range of scales, from 10 km to the scale of the Arctic Ocean as~a Wdkmn). RGPS
is based on a cross-correlation technique applied to consecutive SAR images (Fily and Rothrock [51]), which allows tracking
in a Lagrangian fashion more than 40 000 points over the Arctic during an entire season. The tracked points define the corners
of cells which are initially square (1210 km). The velocities of the cell corners, ) are computed over the period between
two observations (typically 3 days) and are used to calculate the velocity gradients for each cell. This allows computation of the
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strain-rate tensor for each cell, a database that has no counterpart in geophysics. Details about RGPS can be found elsewhere
(Kwok [52]; Kwok et al. [53]).

Recently, Marsan et al. [54] performed a multifractal analysis of sea ice deformation from the RGPS database. For a 3-day
interval centered around 5 November 1997, they computed the scaling of the maideyit)?), where the so-called total
strain rate d/dr was defined assddr = ((du/dx — 3v/3y)2 +(Qu/dy+ av/ax)z)l/z. This scalar quantity contains information
about the intensity of the strain-rate, whereas the information about the principal directions is lost. In this case, {te/a¢an
is not necessarily constant with scale, as the strain-rate ingugtssarily conservative. leed, Marsan et al. [54] observed a
power law decrease dtle/dr) with increasing scalegde/dt) ~ 1L—020, They reported a strong curvature of the experimental
moment functionB(q), i.e. ((de/dr)7) ~ L= indicating multifractality of the strain-rat@(q) was very well approximated
by a quadratic fit8(q) = aq2 +bg with a = 0.13 andb = 0.068. This means that the strain-rate can be modelled by a lognormal
multiplicative cascade. However, as the strain rate is not conservgtitg £ 0), the multifractal model of Eq. (4) cannot be
directly applied (further fractional integration of a cengtive cascade would be necessary). As for the fracture dgndite
strain-rate becomes more localized towards small scales. The similarity between the scaling behaviours of the strain-rate and of
the fracture density is certainly not coincidental. It expressedact that deformation drives the fracture process whatever the
scale. It suggests also that brittle defiation (fracture opening, faulting, .) is essential in sea ice mechanics.

This scaling behaviour of the strain-rate is in qualitative agreement with the dispersion of buoys reported by Martin and
Thorndike [48], although the value gi(2) = 0.66 obtained for d/dr is larger than the exponent obtained fao¢AL /L)2) /dr2
at large time scalesq — 2 |= 0.2; see Section 3.2.1).

We stressed at the end of Section 3.1.1 the difficulty of unambiguously determining the open water frdctionan
optical, static image. Stern et al. [37] have used a thresholding of kinematical (e.g., divergent motions greater than a threshold)
rather than static data to define newly formed open water regions. These data were used to parameterize the relation between
p and strain in sea ice dynamics models. l@er, the thresholding of auttifractal strain field r&ses ambiguities similar to
those reported in Section 3.1.1.

3.3. Dynamical observations: intermittency of the deformation process

So far, we have analysed the heterogeneity of sea ice fracture and deformation in the spatial domain. However, these
processes are also strongly irregular in the time domain: as with the Earth’s crust, the deformation is accommodated during
short-duration events (fracturing episodes) that relate to the brittle character of sea ice (e.g., Dudko et al. [55]). Sea ice stresses
monitored over several months by stress gauges frozen into the ice cover during the Sea Ice Mechanics Initiative (SIMI) field
program (Lewis and Richter-Menge [14]; Richter-Menge and Elder [56]), also exhibited a strong intermittency. Similar mea-
surements have been performed more recently during the Surface Heat Budget of the Arctic Ocean (SHEBA) program, north
of the Alaskan coast (see http://sheba.apl.washington.edu). In what follows, we analyse the scaling properties of one of these
records, kindly provided by J. Richter-Menge and B. Elder from CRREL (see also http://www.joss.ucar.edu/sheba). This ‘shear
stress’ record (here defined as the 1st principal stress minus the 2nd) was recorded at a sampling rate of 1 hour starting from
14 October 1997. Our analysis is based on the first 4097 data points of the series (i.e. about 171 days) plotted on Fig. 2, which
shows the intermittent character of the ice stresses. As shown on Fig. 8, the power sgeckuof the stress record is scale
invariant in time,E (F) ~ F~*, whereF is the frequency and = 1.42 in the present case. Note that no well-marked peak can
be seen neither at tidal nor inertial time scales. The fact that the algebraic slope of the power spectrum is-elsgtiaates
that the time series is a non-conservative fractal. Consequently, as for example with classical fractional Brownian motion (Man-
delbrot and Van Ness [57]), we analyse how the distributions of the increm@msAtr) — (¢) vary with the time scale\r.

We performed a multifractal analysis by calculating the moments of this shear stress increment (positive or negative) defined as:

(At9)= (|t + An) — T ()|9) (%)

whereAr is a time increment. We used the time scafgs= 2" hours withn varying from 1 to 12. The results are plotted on

Fig. 9. A scaling behaviotAt?) ~ Ar¢@ is observed over more than two orders of magnitude, from= 1 hour to more

than 10 days. The break observed around 300 hours is an artefact of the analysis due to a finite size effect and is not recovered
in the power spectrum (af ~ 0.08 day !; see Fig. 8). The moment functian(¢) plotted on Fig. 10 shows curvature, i.e.
multifractality in the time domain. Theoretical arguments lead®@ = 1 — 1 (see, e.g., Frisch [42]; in the case of velocity
increments in turbulence), in correct agreement with our regut®3,—= 0.47 andu = 1.42.

The quantity{At)/At can be seen as a stress rate measured at the timeAgcéiscales as\r 066 as¢(1) =0.34, hence
increases with decreasing time scale. The moment function of the stresqgate,q, expresses the intermittency of the stress
fluctuations. As the higher moments of the stress rate distribution growth faster towards small scales than for a monofractal
scaling, the stress record is increasingly ‘localized’ in time towards small scales.

We noted in Section 3.2.1 that Martin and Thorndike [48] reported observations on the square separation ¢AELys,
in reasonable agreement with turbulent diffusion, {&L2) ~ 2 for small time scales (few hours) and L2) ~ ¢ for large
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time scales (few days). Recast in terms of strain rate, this means that the moment of order 2 of the St(’&tfir,ale,z)/Atz,

is independent of\r for small time scales, and scales&s 1 at large time scales. Thiss—1 scaling can be compared with a
Ar—153 scaling observed for the moment of order 2 of the stress ¢&@® 2= —1.53). The first regimQAL2> ~12 giving

a well-defined separation velocity is not observed here in thged hour — 170 days. The tratien between the two regimes

is expected to occur at much shorter time scales than the few hours of Martin and Thorndike [48] as it should scale with the
spatial scale at which it is measured (several km for Martin amoriidike [48], several centimetres for the stress gauge which
data are analysed here).
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It would be interesting to document, in future similar experiments, how the peak stress fluctuations relate to episodes of
fracturing, for example surveyed by seismological instrumentation.

4. Discussion

4.1. Origin of multifractality

We have shown that the observables, either static (e.g., feadensity) or kinematic (strain rate), associated with sea ice
deformation are characterized by a multifractal scaling and can be modelled by multiplicative cascades. We stress again that
we analysed scalar fields, ignorirtgetdirectional or tensorial infmation. Indeed, multifractal aysis of vectorial or tensorial
fields (displacement and strain) need to be developed in the case of the sea-ice cover.

As explained in Section 2, the turbulent winds represent the main driving force for sea ice deformation. Both the forcing
(winds) and the response to it (deformation of the ice cover)béixhiultiscaling properties. Maan et al. [54] stressed this
similarity, especially when the multifractality ofétstrain-rate is recast in terms of velocity (i.e/dt x L) and compared to
turbulent velocity fields (Frisch [42]). T could suggest that the turbulent, mubiétal driving causes the deformation to be
multiscaling as well.

On the other hand, multifractal fracturatterns have been observed for the Eartiust (Ouillon et al. [39]), although
plates motion which drives crustal deformation is not turbulent. Cowie et al. [58] developed a 2D numerical lattice model of
fracturing. They applied spatially homogeneous antiplane shear deformation and observed the development of an heterogeneous
fracture network with multifractal properties of the displacetrfezid. Cowie et al. [58] argued that multifractality arose from
the combination of three ingredients: long-ranged elastic interactions, a threshold mechanism for the rupture of the elements,
and the presence of noise in the system (e.qg., the rupture threshold of the elements). These three ingredients apply to sea ice
fracturing, in addition to a multifractal driving (the winds). It is therefore difficult at this stage to discriminate the respective
roles of these different parameters without the development of new numerical simulations.

As noted above, the main difference observed in terms of multifractality between sea ice and crustal deformation is the
presence of crossover scales related to layering of the crust. Layering can be present within sea ice, especially in multiyear
ice. However, this occurs at scales necessarily below the ice cover thickness and therefore does not leave any fingerprint on the
scaling at much larger scales. In turbulence, scaling holds down to the dissipation scale where diffusion becomes important. For
sea ice, the scaling is probably lower-bounded by the crystal scale (mm—cm) and the cover thickness (m), within a scale range
where uncorrelated spatial fluctuations of the ice properties occur (crystal orientation and size, brines, layers, ...).
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4.2. Consequences of the scaling properties

Even if the origin of the multifractality of sea ice deformation is still unclear, these scaling properties have important
consequences in terms of sea ice modelling and for the interpretation of observations.

Scaling implies that small scales cannot be arbitrarily disconnected from larges ones. Consequently, homogenization, which
assumes that an intensive measure, such as a density, candideced as independent of scale above an elementary repre-
sentative scale, is not relevant for sea ice mechanics. As an example, we have shown in Section 3.2 that the average strain-rate
(de/dr) decreases towards large scales up to the scale of the entire Arctic Basin. Overland et al. [16] proposed a hierarchical
theory of sea ice mechanics based on the distinction of disconnected scale intervals, delimited by characteristic scales related to
typical crystal scale, floe scale, and so on. Hierarchy theonynaessthat it is the degree of disconnection of processes between
different scales that constitutes the organization of the system. It explicitly uses homogenization to make the links between
these different scales. This is in contradiction with the multifractal scaling detailed above.

Let us consider now the modelling of sea ice within climate niedEheir typical grid resolution is around tens of km for
regional models (Gallée [59]) and can vary spatially for global climatic models between tens and hundreds of km (Fichelet
and Morales Maqueda [9]). As noted above, the fraction of open water over the sea icepcaser,key parameter of these
models. For example, it is used to calculate the ice streRgtHowever, the possible feedbacks are ignored or simplifieg, as
is determined only from thermodynamic processes and from a divergence term (see Section 3.1.1). Moreover, the open water
fraction p (and consequently all the related parameters, including the ice stréngtte considered in such models within a
continuous framework, that is a value is assigned to eadipgint. This implies thattte sub-scale variability o, i.e. at scales
smaller than the grid resolution, is not important, in disagreement with the observations reported here.

As atmosphere-ice-ocean interactions are complex and often non-linear processes, this ignorance of a sub-grid scale vari-
ability of p can be misleading. As an example, following Hibler [10], the ice strefgihparameterized in most of the climate
models as:

P=P*h(1— p)eCP ©)

whereh is the ice thickness anB* and C are empirical constants. Because of the non-linearity of (6), to neglect the non-
Gaussian statistics and the sub-scale variability ofin lead to a mis-estimation &f. This mis-estimation will increase with
the degree of non-linearity of the process as well as with the ratio between the grid resolution (tens to hundreds km) and the
lower bound of scaling (around the meter scale, see above). The same is true for other model variables such as thermodynamic
fluxes that depend on boghand#. Although the determination of the ice thickndssand its spatial variability from satellite
imagery is still an open question, the scaling properties of both the pixel va(B&. 4) andp (Section 3.1) suggest non-
Gaussian, possibly scale invariant statistics/ifor

If the spatial variability ofp, h or ds/dr is an issue, the intermittency revealed in Section 3.3 could be another one. The
time step of climatic simulations is of the order a day and the forcing fields of the models such as the geostrophic winds are
also averaged over a day. Time averaging of processes whadmawn to be intermittent at least down to the hour scale could
therefore raise problems.

From the scaling analyses presented here, one could suggsgtilpdirections for the imprement of seace modelling in
climate models:

(i) At the grid scale, the fraction of open watgror the ice thicknes& could be defined not only from a mean value but
also from higher order moments (such as $teandard deviation) that would be égjtly introduced in tre parametrization
of variables like the ice strength. Note however that the non-Gaussian character reported here implies that the mean
and standard deviations are not sufficient to fully describe the spatial variabilipyasfde /dz. Instead the full set of
moments is necessary. This is particuldrlye when looking at smaller and smalleates, where the multifractal statistics
imply a stronger and sitnger departure from a Gaussian behavior (i.ealisation/intermittencbecomes more and more
dominant).

(i) Random multiplicative cascade models could de used to gémacale invariant fields to set the different moments of
the grid values, taking into account the grid scaléwhich can vary from cell to cell, see, e.g., Fichelet and Morales
Maqueda [9]). This can be thought as a way to downscale the distribution from the climate models resolution scale to any
(smaller) scale of particular interest.

(iif) The modelling of the feedbacks of the ice cover dynamicsfaacturing on the fraction abpen water should be improved,
particularly in non-summer conditions whiacturing is particularly important.fiis should be done keeping in mind once
again the problem of scaling, which implies that a mean is insufficient to describe the deformation field.
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As a conclusion to this section, we stress that the scaling properties of sea ice deformation and fracturing raise numerous
difficulties when homogenization is usemrhodel complex, non-linear thermodynamitdanechanical processes. This opens
new questions in the modelling of sea ice dynamics as wellrase-ocean interaans within climate models.

4.3. Constraints on sea ice dynamics models

Since the pioneering work of Hibler [10], various sea ice dynamics models have been developed. The sea ice modules of
climate models are derived from simplified versions of these more specific, dynamical models. Most of these ice dynamics
models are based on a continuum mechanics framework with a momentum balance given by Eq. (1), and share a common
viscous-plastic rheology (Eg. (2)). One of the main chalkes for these models is to reproduce the observed heterogeneity
of deformation. In recent model developments, this is achieved through a weakening mechanism where the icePsigength
related to the divergence of the ice velocity u following (Hutchings and Hibler [60]):

-~ =PV @)

This positive feedback loop (large deformatignlarge weakenings larger deformation), associated with some initial noise
on the strength, generates localization of the deformation. This agreement with observations is, however, essentially qualitative
and, to our opinion, not sufficient, and depends on the scale of discretization of the model. The results reported here furnish
a detailed and quantitative characterization of the heterogeneity of sea ice deformation at all scales. The multifractality of sea
ice deformation and fracturing, expressed by the moment functions, should therefore constrain further developments in sea ice
dynamics modelling. A satisfying modelling should be able to gateescale invariant, multifictal deformation fields.

Finally, whether or not the viscous-plastic rheology usedhigse models is pertinent can be questioned. Indeed, as we
stressed above, the multifractality of sea ice means that deformation becomes more localized towards small scales. Marsan
et al. [54], extrapolated the pdf ot dd: at the scale of 1 m (about the ice cover thickness) from the pdf at the scale of 13 km
using the multifractal scaling that characterize the data. They showed that at this 1 m scale about 15% of the deformation was
accommodated at strain-rates larger than16~1, i.e. in a purely brittle behaviour for saline ice (Schulson [12]). Moreover,
these strain-rates were calculated for a three-day time scale. We have shown in Section 3.3 that ice stresses (so, the deformation)
are intermittent at shorter time scales. §hmplies that this percentage should incesaseaning that most of the deformation
could be accommodated through elastittler deformation. The use of a plasticatlogy instead of alasto-brittle one can
however be proposed as a way of accounting for the collective behaviour of a large set of fractures and leads that interact with
each other, and with sizes smaller than the resolution scale, or equivalently as a particular case of an emerging rheology for a
damaged elasto-brittle material (Amitrano et al. [61]).
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