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S U M M A R Y
We seek to understand how the stress interactions and the slip-weakening process combine
within a non-coplanar, normal fault network to allow a slip instability to develop, and shape the
final slip distribution on the system. In a first part, we perform a non-linear spectral analysis
to investigate the conditions of stability and the process of slip initiation in an antiplane non-
coplanar fault system subject to a slip-dependent friction law. That numerical model allows
determining the zones that are able to slip within a fault network, as well as the location of the
stress singularities. The resulting slip profiles on the faults show only a few different shapes,
some of them with long, linear sections. This leads to formulate a general classification of
slip profiles that can be used to infer the degree of fault interaction within any non-coplanar
system. In a second part of work, we use our modelling to try reproducing the cumulative
slip profiles measured on three real normal interacting faults forming a large-scale en echelon
system. For that, we assume that cumulative slip profiles can be compared to the first static
modal solution of our conceptual model. We succeed reproducing the profiles quite well using
a variable weakening along the faults. Overall, the weakening rate decreases in the direction
of propagation of the fault system. Yet, modelling the slip along the propagating, isolated
termination segment of the system requires an unlikely distribution of weakening. This suggests
that factors not considered in our analysis may contribute to slip profile shaping on isolated,
propagating faults.

Key words: earthquakes, fault interaction, fault slip, normal faulting, spectral analysis, stress
distribution.

1 I N T RO D U C T I O N

Although most mechanical and seismological models consider

faults and fault systems as planar and/or coplanar structures (i.e.

faults lying in the same plane), real faults and systems rarely are

that simple. At all scales, faults are segmented, and geologists have

shown for long that such segments rarely are coplanar along the

fault to which they belong. As a matter of fact, the en echelon ar-

rangement of segments along faults is one of the most common fault

geometry observed worldwide. Faults also rarely are isolated, but

instead develop as systems where secondary, smaller faults form

off a main fault plane and connect it. A classical example is that

of ‘horsetail terminations’ and branching secondary faults that are

observed to form at many scales at the ends and along strike-slip

faults. It results that the mechanics of non-coplanar fault networks is

a key issue in the understanding of earthquakes and faulting. Among

other questions, one is to understand how faults interact within a non-

coplanar system, and how such interactions may govern and shape

the slip distribution within the system. We address these questions

in the present study. More specifically, we seek to characterize the

‘stress interactions’ that occur within a non-coplanar fault system

once this system has just started to slip. Our approach is thus dy-

namic. In coplanar fault systems, the question of stress interaction

is quite simple: any slip occurring at one place of the system loads

the rest of its plane, so that anywhere the fault system experiences

a stress increase before it possibly slips. In non-coplanar fault sys-

tems, the problem is more complex: slip occurring at one spot of the

system can either load or unload the other parts of the system, de-

pending on their position from the slip ‘spot’. In other words, some

portions of a non-coplanar fault system may experience a stress in-

crease while some others may experience a stress decrease (stress

shadow). From a dynamic point of view, this means that some por-

tions of a non-coplanar fault system will slip as a response to slip

occurring elsewhere on the system, while some others will not. It is,

therefore, critical to characterize the ‘stress interactions’ that occur

within a non-coplanar system that has just started to slip, for this

may help anticipating which parts of the system will eventually slip

and what the resulting slip function will be.
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We consider a non-coplanar fault system with a simple geometry,

and assume that that system is subject to slip-weakening friction.

As slip on a fault is required by the friction laws to occur in the

direction and sense of traction (i.e. no back-slip allowed), consis-

tent slip solutions can only be found from non-linear analyses. We,

therefore, develop and perform one of such non-linear analyses, to

seek predicting the final slip function on our ‘active’ fault system.

The novelty of the present work is that it allows examining together

the effects of dynamic stress transfer and of weakening on the slip

distribution. Besides, contrary to the few previous studies (see be-

low) that have been carried out on dynamic fault interaction, our

model allows examining the slip distribution that results from the

long-term evolution of the fault system. More precisely, our model

allows, as a first step, to characterize the combined effects of stress

interaction and weakening on the final slip distribution. The numer-

ical method can then be used to tentatively reproduce real (known)

slip profiles on geological faults having a given (known) geometry

(see details below). The comparison between the results from our

conceptual model and the actual observations points out two critical

issues: can the ‘best-fitting’ slip-weakening functions inferred on

the faults be considered as ‘realistic’ and what are the mechanical

factors that should be introduced in the model in addition to stress

transfer and friction, to make it able to fully reproduce the observed

slip profiles?

As said before, many studies have already been carried out on

stress interactions within non-coplanar fault systems. These previ-

ous works have either focused on the study of cumulative long-term

slip profiles, or on that of coseismic slip. However, works on cumu-

lative slip profiles generally have only addressed the static solution

of the problem and have ignored the possibility of progressive weak-

ening. On the other hand, works on coseismic slip have concentrated

on dynamic rupture propagation, using specific numerical modelling

that cannot be used to examine the longer-term evolution of slip.

Below we briefly review these works, focusing on the method-

ologies used to model fault interaction.

Okada (1992), following Comninou & Dunders (1975), calcu-

lated the static stress changes due to an earthquake fault slip, and

inferred the stress overload on adjacent faults, in the presence of

a free surface. However, these calculations are linear, so that fault

interaction is simplistically modelled as the superposition of the

static stress fields produced by each fault in the system. Although

this cannot fully represent the real processes, these computations

have since then been extensively used, with more or less success,

in particular to predict the possible increase of seismic activity on

faults adjacent to an earthquake rupture (e.g. King et al. 1994). More

recently, a refined version of the model has been proposed (Fitzenz

& Miller 2001) that also includes pre-stresses and fluid pressure;

this shows that increased pore pressure (poroelastic effects) favours

stress transfer and triggering of earthquakes from one fault to the

other.

Considering faults as cracks in an elastic medium under com-

pressive stresses (i.e. stress on cracks does not exceed the Coulomb

limiting stress), Segall & Pollard (1980) computed the static state

of stress around interacting non-coplanar faults and deduced the ge-

ometry of the possible resulting secondary fracturing. The model

was subsequently extended by several authors (e.g. Bürgmann et al.
1994; Willemse 1997; Crider & Pollard 1998). Baud & Reuschlé

(1997) quantified the effect of interaction on the crack propagation

path, and showed that interaction commonly favours branching and

coalescence of faults within the system they belong to. Detailed

methods of resolution of such problems (in particular theoretical

determination of the stress intensity factors of interacting cracks)

can be found in Pucik (1972) and Ishida (1973). Finally, Umeda

et al. (1996) suggested that crack interaction can be responsible for

rupture nucleation and/or arrest depending on the constructive or

destructive ‘interferences’ (loading or unloading) made by cracks.

Yet, although useful, crack models cannot be retained as fully satis-

factory as they ignore the possibility of progressive weakening.

Other models, which are neither dislocation nor crack models

(i.e. neither the displacement nor the stress drop distributions are

prescribed), have also been proposed to deal with fault interaction.

For instance, using a discrete quasi-static model which simulates

successive ruptures on two overlapping faults, Robinson & Benites

(1995) showed that fault interaction plays a part in the organization

of seismicity on the fault system. Spyropoulos et al. (2002) studied

crack growth and coalescence in a spring block analogue allowing

some friction to be taken into account. They found scaling laws for

crack slip and length, and pointed out the lack of symmetry of the

resulting slip profiles. Depending on the rate of strain imposed at

the boundaries of the system, faults grow isolated (with no or little

interaction) or coalesce to others (strong interaction). These two be-

haviours lead to different distributions of fault sizes. Finally, Harris

& Day (1993) addressed the dynamic, that is, coseismic part of the

problem : they studied numerically the jump of a propagating rup-

ture from a segment to another using a slip-weakening friction on the

fault planes. More recently, Aochi & Madariaga (2003) simulated

the propagation of the 1999 Izmit earthquake rupture and showed

how the dynamic interaction between the major non-coplanar seg-

ments conditioned the rupture propagation.

All the models above have clearly pointed out the importance

of stress interactions in non-planar slip processes (i.e. slip on non-

coplanar faults), whether these are seismic (i.e. resulting from one

earthquake) or cumulative (i.e. resulting from several earthquakes

and/or creep). However, as said before, very few of them have in-

vestigated the coupling between these stress interactions and the

constitutive friction laws on the faults, especially the weakening

process, and, to our knowledge, none of them have attempted to

compare numerical results with real long-term slip distributions.

We address this issue here.

We pose the problem in its simplest form : we consider the be-

haviour of a 2-D antiplane fault network (i.e. normal faults) subject

to a basic slip-weakening friction law. During earthquakes, the weak-

ening process is the one responsible for fault instability resulting in

earthquake initiation followed by rupture propagation and slip. We

define the earthquake initiation phase as the period of time extending

between the first perturbation of the mechanical conditions on the

fault system, and the onset of rupture propagation associated with

wave radiation. Such a nucleation process has been observed in lab-

oratory experiments (e.g. Ohnaka et al. 1987; Ohnaka & Kuwahara

1990). The friction on the experimental nucleating faults could be

satisfactorily described by a slip-weakening law (e.g. Ohnaka et al.
1987).

Taking these experimental results as a basis, Dascalu et al. (2000)

studied the antiplane shearing of a finite fault, and performed a

spectral analysis to relate fault stability and slip weakening, using

an integral equation method. This led them to introduce a universal

non-dimensional constant β∗
0 that appeared to only depend on the

fault geometry. They showed that this constant alone allows dis-

criminating the stable (i.e. slipping at the velocity imposed as an

external condition) and unstable (i.e. accelerating rapidly toward

a seismic event) fault states. Non-uniform stress loading on pla-

nar faults was then studied by Uenishi & Rice (2002), basically

with the same modal approach than that of Dascalu et al. (2000).

These authors reached the same conclusions regarding the value and
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interpretation of β∗
0. Then Campillo et al. (2001) used an argument

of spectral equivalence as a renormalization technique to investigate

the case of a fault with heterogeneous strength. Finally, Voisin et al.
(2002) used a finite element method to study the case of several

coplanar fault segments. By computing the evolution of their sta-

bility limit β 0 while these segments interact, Voisin et al. showed

that coplanar interaction increases fault instability, a property later

confirmed by the stability analysis of a periodic distribution of seg-

ments (Campillo et al. 2004). In all these works, the eigenfunction

associated to β 0 is shown to hold the characteristic pattern of the

displacement field on the modelled faults when those are in a meta-

stable position of equilibrium (i.e. close to their limit of stability,

hence infinitely slowly slipping) and subject to mechanical weak-

ening. In other words, this kind of analysis can be used to describe

the slip distribution as it would be on a fault system subject to

slow sliding. The slip profiles deduced from the conceptual model

can thus reasonably be compared to long-term slip profiles on real

faults.

We follow these last works to investigate the stability limit of non-

coplanar faults having different geometries. While the stability of a

system made of coplanar faults simply increases with the distance

between the faults, the stability of a non-coplanar system varies in a

much more complex way, due to the effect of local stress shadows.

Using the same modal approach than the one described above, we

deduce meta-stable slip distributions on faults belonging to systems

of various geometries. We find that most slip profiles exhibit long,

quasi-linear sections, hence do not resemble the classical elliptical

slip distributions expected for isolated faults in an elastic medium.

We then face our numerical results to a real example of non-

coplanar fault system, made of three, 20–30 km-long, en echelon,

active normal faults. We chose that system in Afar (East Africa) be-

cause faults there are active, while the boundary conditions and long-

to short-term evolution of faulting are well known (e.g. Tapponnier

et al. 1990; Manighetti et al. 1998, 2001a,b). Besides, the Afar faults

are among the rare to have their cumulative slip profiles precisely

measured (Manighetti et al. 2001a). This gives us the opportunity

to face some of these real slip profiles to the meta-stable solutions

of our modelling. That comparison allows us to infer possible slip-

weakening variations along the three example faults, while estimat-

ing the state of stress on their planes and at their tips. While our mod-

elling is ‘too simple’ to be able to reproduce the details or chronology

of the fault system growth (more parameters should be taken into

account, such as damage around fault terminations, pre-stresses,

etc., e.g. Scholz 2002; Manighetti et al. 2004), its comparison to

real data allows highlighting some of the major ‘ingredients’ that

contribute to the process of fault growth: stress shadowing, along-

strike variation of slip weakening, existence of barriers, necessity

of considering off-fault damage.

2 T H E T I M E - D E P E N D E N T P RO B L E M

We consider the 2-D antiplane shearing of two parallel finite fault

segments in an unbounded homogeneous linear elastic space (see

Fig. 1). Systems of three or more segments will be investigated

later. We denote by � f the potential geometrical support of the fault

system, but the effective fault segments, that is, the effective slipping

zones, which depend on fault interaction, will be determined by the

calculations.

Let a be a characteristic length; when several fault segments of

same length are considered, a will be their common half-length. In

the following, x and y are non-dimensional coordinates rescaled by

Figure 1. Antiplane normal fault definition. Fault segments lie in the xy
plane. Their geometrical support is the segmented curve� f . The local normal

of � f in the xy plane is denoted by n. Displacement u ≡ u z and shear stresses

σ zx and σ zy are perpendicular to the xy plane.

a. The contact on the fault is described by a slip-dependent fric-

tion law. We assume an antiplane configuration, that is, the dis-

placement field u ≡ u z is perpendicular to the faults, and does

not depend on z. The displacement is, therefore, denoted simply

by u(t , x , y), t being the time variable. The characteristic param-

eters of the elastic medium are the shear modulus G, the density

ρ and the shear velocity c = √
G/ρ. The non-vanishing shear

stress components are σzx (t, x, y) = σ∞
zx (x, y) + G

a ∂x u(t, x, y) and

σzy(t, x, y) = σ∞
zy (x, y)+ G

a ∂yu(t, x, y), where σ∞
zx and σ∞

zy are pre-

stress components. On the fault support, that is, for (x , y) ∈ � f , we

denote by σ nn(x , y) the normal stress, and by σ∞
zn(x , y) the shear

pre-stress. The equation of motion is the scalar wave equation:

∂2
t2 u(t, x, y) = c2

a2
∇2u(t, x, y), (1)

which holds for t > 0 and (x , y) outside � f .

For t > 0 and (x , y) ∈ � f , let us denote by [w(t , x , y)] the jump

of any variable w across � f according to its local normal n.

The boundary conditions on � f follow a slip-dependent friction

law, with the additional constraint that the shear stress (including

the pre-stress) cannot reverse on faults, so that the slip [u] and slip

rate [∂ t u] are non-negative. This assumption is common at small

timescales in earthquake dynamics modelling, but is also admitted

at reasonably large tectonic timescales when plates are moving at

quasi-constant rates. This statement will be the cause of strong non-

linearities in the modelling. Therefore, we formulate the constitutive

law on the fault by :

[∂t u(t, x, y)] ≥ 0, (2)

[σzn(t, x, y)] = 0, (3)

σzn(t, x, y) = −μ([u(t, x, y)]) σnn(x, y)

if [∂t u(t, x, y)] > 0, (4)

σzn(t, x, y) ≤ −μ([u(t, x, y)]) σnn(x, y)

if [∂t u(t, x, y)] = 0, (5)

for all (x , y) ∈ � f and t > 0, where σ zn is the shear stress acting on

� f and μ ([u]) is the friction coefficient.

The initial conditions are denoted by u0 and u1, that is,

u(0, x, y) = u0(x, y), ∂t u(0, x, y) = u1(x, y). (6)

3 N O N - L I N E A R S P E C T R A L A N A LY S I S

In this subsection, we define the non-linear problem associated to

the time-dependent problem stated above. To do this, we have to
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assume a few simplifications. First, since our intention is to study

the evolution of the system near an unstable equilibrium position,

we shall suppose that, at each fault point, σ∞
zn = −σ nn μs , where

μs = μ(0) is the static value of the friction coefficient. This is not a

very restrictive assumption, since, to equilibrate the system, some of

the points of � f will be spontaneously unloaded by stress interaction

and locked. We remark that taking u as a constant satisfies eqs (1)–

(5); hence u ≡ 0 is a meta-stable equilibrium position, and (u0, u1)

may be considered as a small perturbation of this equilibrium.

As a second assumption, we shall suppose that the friction law is

piecewise linear :

μ([u]) ≤ μs if [u] = 0

= μs − μs − μd

2Lc
[u] if 0 < [u] ≤ 2Lc

= μd if [u] > 2Lc,

where μs and μd are the static and dynamic friction coefficients

(μs > μd ), and Lc is the critical half-slip. We can hereafter define

the weakening rate α, which can be heterogeneous :

α(x, y) = −σnn(x, y)(μs(x, y) − μd (x, y))

GLc(x, y)
.

Since we consider a small initial perturbation (u0, u1) of the

equilibrium state u ≡ 0, we have a progressive slip growth such that

[u(t , x , y)] ≤ 2Lc(x , y) for t ∈ [0, Tc] along the faults, where Tc

is the critical time at which the slip on the fault reaches the critical

value 2Lc at least at one point. Hence, for a first period [0, Tc], called

the initiation period, the boundary value problem on � f is reduced

to the following equations:

[u(t, x, y)] ≥ 0 and [∂nu(t, x, y)] = 0 for (x, y) ∈ �f , (7)

∂nu(t, x, y) = −aα(x, y)[u(t, x, y)] if [u(t, x, y)] > 0, (8)

∂nu(t, x, y) ≤ 0 if [u(t, x, y)] = 0, (9)

where ∂ n is the normal derivative.

We can now define the non-linear eigenvalue problem connected

to eqs (1), (6) and (7)–(9):

Find � : R × R → R and λ2 ∈ R such that
∫ +∞

−∞
∫ +∞

−∞
�2(x, y) dx dy = 1 and

∇2�(x, y) = λ2�(x, y), (10a)

[∂n�(x, y)] = 0 on �f , (10b)

[�(x, y)] ≥ 0 and ∂n�(x, y) ≤ 0 on �f , (10c)

∂n�(x, y) = −aα(x, y)[�(x, y)] or [�(x, y)] = 0 on �f . (10d)

Figure 2. Left: the first linear eigenfunction. Middle: the second linear eigenfunction. Right: the first non-linear eigenfunction.

The main novelty of our modelling is that it can handle locked

zones : � f is the potential geometrical support of the fault system,

but the effective slipping zone, included in � f , is not given a priori
but instead determined as a result of the calculations, hence as a

function of stress interaction. A linear analysis would be sufficient

if we would remove the locked part of � f in the modelling. The

non-linearity of our problem comes from the fact that the geometry

of the slipping zone is one of the unknowns. The stress interactions

produce large locked zones, so that the resulting slip profiles are

different from what they would have been deduced from a linear

analysis ignoring stress shadowing.

Let us examine in details the linear and non-linear eigenfunctions

for a particular system of two overlapping parallel segments (see the

geometry on Fig. 2). The first linear mode, plotted on Fig. 2 (left),

has the smallest eigenvalue (β lin
0 = 0.97), but it cannot be retained

because one of the segments is sliding backwards. The second lin-

ear mode (Fig. 2, middle) has a positive slip and a slightly larger

eigenvalue (β lin
1 = 1.17). This mode is physically admissible (in that

the slip is everywhere non-negative), but the first non-linear mode

(Fig. 2, right)- admissible by construction - has a smaller eigenvalue

(βnlin
0 = 1.06). We recall here the physical meaning of the eigen-

value : if the weakening rate exceeds this value, the corresponding

eigenmode is triggered and grows exponentially. Hence, the first

non-linear mode will be triggered before any linear (and admissi-

ble) one. It is worth noticing that the solution is not unique, for

simple symmetry reasons: the dominant fault segment could have

been the inhibited one, and vice versa.

Where fault segments do not or hardly overlap, the solutions of the

linear system (10a), (10b), (10d) fulfil the inequality (10c) and the

general solution of (1), (6), (7)–(9) can be decomposed on the infinite

family of eigenfunctions of (10a), (10b), (10d) (see Dascalu et al.
2000; Voisin et al. 2002, for coplanar segments). By contrast, within

non-coplanar fault systems where segments significantly overlap,

the linear analysis leads to solutions that do not fulfil the condition

of positivity on the slip. Therefore, a whole non-linear analysis must

be carried out, and the decomposition above is no longer valid.

However, one important result still holds: if we find an eigenfunction

� with a positive eigenvalue λ2 ≥ 0, then u(t, x, y) = ec|λ|t/a�(x, y)

is a solution of (1), (6), (7)–(9) and u ≡ 0 is an unstable configuration.

In order to find the critical physical properties of the problem

(directly related to α), which correspond to the loss of stability,

we will focus on the case λ2 = 0. In this case, the unknown is

the weakening rate, but there is an infinite number of heterogeneous

solutions α(x , y). Therefore, we denote by η(x , y) the dimensionless

function which defines the shape of α(x , y) along � f . We assume

that aα(x , y) = βη(x , y), and the unknown is the non-dimensional

scaling factor β. The above eigenproblem becomes:

Find ϕ : R × R → R and β > 0 such that
∫ +∞

−∞
∫ +∞

−∞
ϕ2(x, y) dx dy = 1 and

C© 2006 The Authors, GJI, 165, 677–691
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∇2ϕ(x, y) = 0, (11a)

[∂nϕ(x, y)] = 0 on �f , (11b)

[ϕ(x, y)] ≥ 0 and ∂nϕ(x, y) ≤ 0 on �f , (11c)

∂nϕ(x, y) = −βη(x, y)[ϕ(x, y)] or [ϕ(x, y)] = 0 on �f . (11d)

To discriminate the stable and unstable behaviours, we need to

compute β 0, which is the smallest eigenvalue of (11a)–(11d). In-

deed, if β > β 0, then the eigenproblem (10a)–(10d) has a positive

eigenvalue λ2, that is, u ≡ 0 is an unstable solution of the non-linear

problem.

If β > β0, then u ≡ 0 is unstable. (12)

Hence, assuming that the shape η(x , y) of the weakening vari-

ations along the fault is known, the stability analysis of (1), (7)–

(9) reduces to the computation of β 0. The associated eigenfunc-

tion describes the pattern to which the system is infinitely slowly

evolving.

4 N U M E R I C A L R E S O L U T I O N O F T H E

N O N - L I N E A R S P E C T R A L P RO B L E M

In this subsection, we briefly describe the finite element numeri-

cal method used to solve the non-linear spectral problem, which is

detailed by Ionescu & Wolf (2005). Later, we will present the com-

putation of the time-dependent problem to test the spectral method.

The method for the time-dependent problem is not described in this

paper, but rather in Badea et al. (2004).

Let us state the variational formulation of the problem (10a)–

(10d), with � = R
2\�f :

Find � : R × R → R and λ2 ∈ R such that∫
�

∇�(x, y) · ∇v(x, y) dx dy − β

∫
�f

[�(x, y)][v(x, y)] dx

≥ −λ2

∫
�

�(x, y)v(x, y) dx dy,
(13)

for all test functions v such that [v] ≥ 0 on � f .

The variational formulation of (11a)–(11d) is deduced from (13)

by setting λ2 = 0. In both cases, the problem reduces to the compu-

tation of the smallest eigenvalue of a non-linear operator. This can

be done by considering the successive iterates of the non-linear op-

erator, after choosing an initial guess. The detailed algorithm can be

found in Ionescu & Wolf (2005). We only discuss here the properties

of our spatial discretization.

The classical P1 finite element method consists in covering � with

a set of triangles and then approaching � by a function which is con-

tinuous and affine over each triangle. The domain � is unbounded,

therefore, it is divided in two parts. The first one is a square that con-

tains � f and which boundary is far enough from the fault system.

It is possible to cover exactly this square with triangles. The second

part is infinite and can be covered with infinite elements (Beer &

Meek 1981). The size of the elements in the square is automatically

decreased in the regions where strong variations of the gradient are

expected, using a remeshing strategy, based on the computation of

the local error (Zienkiewicz & Zhu 1987). The implementation of

these two techniques in our model are described in Ionescu & Wolf

(2005).

5 R E S U LT S F O R T W O PA R A L L E L

H O M O G E N E O U S I D E N T I C A L

S T R A I G H T S E G M E N T S

Our numerical model can be applied to any antiplane fault geome-

try. However, we start by the simplest case of two parallel, homoge-

neous (i.e. with same homogeneous weakening rate and initially at

the static threshold), identical faults oriented along x (Fig. 3). The

faults have a common half-length a. Their normal n lies along y. As

shown in Fig. 3, the geometry of the two-faults system is completely

determined by two parameters d and e, which define the separation

distance between the two faults and their along-strike offset (hence

overlap), respectively. Length g is an output of the calculations: it is

the half-length of the effective slipping zone on the lower segment,

and can be any value between 0 and a.

To illustrate stability, let us first present the results of two dynam-

ical experiments with a = 1, d = 0.5, e = 0.1. The evolution of

the velocity field is presented on Fig. 9 of Ionescu & Wolf (2005)

for two homogeneous weakening rates α = 1.0 and α = 1.2. At

t = 0s, each point on the faults is at the static threshold, and a small

Gaussian velocity perturbation is applied at an arbitrary point. First,

the shear waves propagate in a similar way in both cases, but slip

grows faster for α = 1.2. Then the behaviour changes depending on

alpha. The slip on the faults with lower weakening rate (α = 1.0)

is rapidly stabilized so that the faults stop slipping. By contrast, the

initiation phase does begin for the faults with faster weakening rate

(α = 1.2); the slip rate has a constant shape, with a locked zone on

the lower fault, and it grows exponentially (see Badea et al. 2004,

for details on the slip growth). Note that having each point originally

at the threshold of failure does not force the system to slide globally.

Instead, in both cases the lower fault is unloaded and thus locked by

the upper one.

From result (12), and since a = 1 and η(x , y) = 1, we expect 1.0 <

β 0 < 1.2. The non-linear spectral computation gives β 0 � 1.06.

Hence, the physical meaning of the first eigenvalue is validated.

This confirms that β 0 is a critical value of the friction parameter

Figure 3. Fault geometry: two parallel segments of same half-length a. The

input parameters are the half-separation d and the half-offset e. The half-

length g of the effective slipping zone on the lower segment is an output of

the calculations. In what follows, the top and bottom segments are called

‘upper’ and ‘lower’ faults, respectively.
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Figure 4. The first eigenvalue β 0 as a function of the distance d/a between the faults, for e = 2a (left) and e = a (right).

that governs the stability of the system. In addition, in the time-

dependent experiment above, in the case where slip initiates, the

half-length of the slipping zone (g � 0.78) is determined early and

found to be independent of the location of the initial perturbation.

Therefore, it seems to be reasonable to approach the slip pattern

by some eigenmode having a slipping zone, which is part of the

unknowns. This argument justifies the non-linear spectral analysis.

To investigate the relationship between fault system stability and

geometry, we look for the meta-stable modes, which correspond

to β 0. We first study the case of two identical fault segments, that

is, with same length and weakening rate that do not overlap. We

examine the particular cases where e = 2a and e = a (see Fig. 3). The

first eigenvalue β 0 is computed for a set of values of the separation

distance d. In both cases, the two faults do not sustain any shadow

effect, so that both are sliding globally (g = a). As one can see

in Fig. 4, β 0 increases with the distance d separating the faults,

up to β∗
0. However, β 0 is high and increases weakly with d in the

case e = 2a. This means that the two faults hardly interact. By

contrast, the variations of β 0 are great for the case e = a, and

the critical value β∗
0 is reached sooner (due to the shape of the

region of positive shear stress generated by each fault). Once this

value is reached, the faults stop interacting and both segments start

consequently sliding independently (the linear analysis holds, and

the first linear eigenvalue is double).

We now examine how the stability of the two-faults system varies

as a function of both overlap and separation distances between the

two segments. Hence, we consider the evolution of β 0 with respect

to the half lateral offset e (see Fig. 3), for two fixed separation dis-

tances d/a = 0.1 and d/a = 0.3. β 0 is computed for 0 ≤ e/a ≤ 3, and

plotted in Fig. 5 (left). The evolution of the corresponding length of

the slipping zone on the lower fault (g/a) is shown in Fig. 5 (right).

Overall, whether d/a equals 0.1 or 0.3, the system exhibits roughly

the same dependence on e/a. For e/a = 0 (the faults completely

overlap each other), slip cannot initiate simultaneously on both seg-

ments because of strong shadow effects, so that the stability limit is

β∗
0 and the length of the slipping zone on the shadowed segment is

0. As the length of overlap decreases (i.e. e/a increases), a collec-

tive instability occurs: the stability limit decreases and the slipping

zone grows, rapidly for d/a = 0.1, slightly slower for d/a = 0.3.

The minimum value of the lateral offset for which the shadow effect

vanishes (no more locked zone, g/a = 1) is found for e/a ranging

between 0.6 and 0.7 for both values of d/a. It is interesting to note

that β 0 reaches a minimum, then increases and finally tends to β∗
0

(the faults are independent). This minimum value of β 0 indicates a

configuration of greatest instability, but the meaning of this has to

be balanced by the limited amplitude of the variations of β 0.

6 C L A S S I F I C AT I O N O F T W O - FAU LT S

S Y S T E M S

Fault systems made of two parallel, similar, non-coplanar segments

can be classified according to their global behaviour, which appears

to depend on the system geometry. Three classes can be defined

that only depend on the ratios d/a and e/a. In class I where the two

segments do not or hardly overlap, instabilities develop all along

both segments. Each segment tip, therefore, shows a stress singu-

larity, so that four stress concentrations are observed in the medium

(Fig. 6, left) (d/a = 0.2 and e/a = 0.8). In class II where segments

significantly overlap, one of the segments is partly inhibited by the

other. Hence, as one can see in Fig. 6 (right) (d/a = 0.2 and e/a
= 0.5), only three stress singularities are observed, at both tips of

the upper fault and at the outer tip only of the lower segment. Class

III contains the configurations for which shadowing is complete,

that is, one segment is totally inhibited by the other and unable to

slip. It, therefore, shows no stress concentration at any of its tips.

This occurs when the two segments completely overlap (e = 0). As

considering this case further would not be very different from con-

sidering an isolated fault, class III will be left aside in the following.

Classes I and II are plotted with respect to d/a and e/a on Fig. 7.

We now discuss the slip and stress profiles associated with the

different classes, by examining the particular points A, B, C, D of
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Figure 5. The stability limit β 0 (left) and slipping zone g/a (right) as functions of the ratio e/a, for d/a = 0.1 (top) and d/a = 0.3 (bottom).

the class diagram of Fig. 7. These points correspond to a constant

separation distance d/a = 0.1 between the two segments, but to

different values of their overlap (i.e. different e/a). Our computa-

tions show three different types of slip distributions on the faults,

depending on the shape (and value) of the stress distribution in the

vicinity of their tips (Fig. 8). For an isolated fault, the stress sin-

gularity at the fault tip can be approached by K/
√

2πx (e.g. Pucik

1972; Ishida 1973), where K is the stress intensity factor and x is

the distance to the fault tip (the fault is supposed to lie on line y =
0). K can be numerically computed as limx→0+

√
2πx τ (x, 0). We

use this formulation to determine the stress singularities at the tips

of the faults we investigate below.

The first type of slip distribution is found on weakly interacting

segments (point A, class I). In this case, each segment is slipping as a

whole and shows an ‘ellipsoidal’ slip profile. All fault tips also have

a significant stress singularity (Fig. 8a). The stress intensity factor

K of each singularity defines the medium’s resistance to fracture

at the corresponding fault tip, hence the minimum strength that an

hypothetical rigid barrier taken to lie at this tip would have to arrest

the lateral propagation of the fault. In this first case of weakly inter-

acting faults, the computation of all stress intensity factors shows

that all stress singularities have the same strength. Hence, in systems

of class I where rigid barriers would be replaced by breakable ones,

active segments would tend to propagate in both directions alike.

Another type of slip distribution is found for systems belonging

to class I but very close to the limit with class II, as is the case of

point B (Fig. 7). On both segments, the ellipsoidal slip distribution

appears ‘stretched’, in a symmetrical way, so that the maximum

slip is shifted outward from the zone where faults interact. The

resulting slip distribution is still elliptical near the outer fault tips,

but is roughly linear near the inner fault tips (see Fig. 8b). The

singularities at fault tips are all of the same order, but the stress

intensity factors are higher at the outer fault tips, with ratios of about

100 between their maximum and minimum values (Fig. 8b). This

may explain why the slip profiles are ‘stretched’ toward the outer

fault tips. Also, if hypothetical rigid barriers at fault tips would

be replaced by breakable ones, the outer barriers would be more

damaged than the inner ones. If the medium has a homogeneous

resistance to fracture, both segments will, therefore, preferentially

propagate toward the exterior of the system.

As one leaves class I to enter class II, the shape of the slip profiles

changes abruptly. A special case of this transition can be seen on

Fig. 5. The length of the slipping zone is seen to rapidly decrease as

the lateral offset decreases for a constant separation, that is, as the

shadowing effect grows stronger. Faults in class II have asymmetric

slip profiles: one segment has an undistorted ‘ellipsoidal’ slip dis-

tribution (as on Fig. 8a), while the slip profile of the other segment

exhibits a quasi-linear long section in the inner part of the segment

(as on Fig. 8b). Along this linear section, the slip decreases from its

maximum to zero. No stress singularity is observed at this linear tip,

which appears connected to a locked zone (Figs 8c and d). Indeed,

the occurrence of stable slip on the upper fault prevents friction to

exceed the static level on a significant part of the lower fault. This

slip shadowing occurs regardless of the fact that the medium is ev-

erywhere homogeneous along both faults. In this case, the model

predicts that the fault tip without stress singularity will not be able

to propagate quasi-statically, whether there is a barrier or not.

Let us briefly summarize the meaning of the existence of non-

linearity and the multiplicity of eigenvalues. In the above case of two

identical faults, we can find one or two eigenfunctions ϕ0 for one
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Figure 6. Displacement (top) and stress (bottom) fields, obtained by the computation of the non-linear static eigenfunction (β 0, ϕ0). At left (class I, d/a = 0.2,

e/a = 0.8), faults are mainly submitted to coplanar interaction and all fault tips have a stress singularity. At right (class II, d/a = 0.2, e/a = 0.5), non-coplanar

interaction shadows the lower fault, creating a locked zone. As a consequence, the right tip of the lower fault has no stress singularity.

eigenvalue β 0. When there is only one eigenfunction, it is necessar-

ily geometrically symmetrical with respect to the centre of the fault

network (see for example Figs 8a or 8b). The interpretation of the

multiplicity of eigenvalues is different whether they are found by a

linear or non-linear analysis. In the linear case, a linear combination

of the corresponding eigenfunctions is also an eigenfunction. In this

case, each eigenfunction corresponds to one sliding segment, with

the others being (almost) unaffected and, therefore, remaining stuck.

In the non-linear case, a linear combination of the eigenfunctions

of same eigenvalue is no longer a solution of our problem, because

the segments do interact and the corresponding slipping zones are

distinct. For example, in the case of two identical overlapping par-

allel fault segments, there are two symmetrical eigenfunctions with

the same eigenvalue and symmetrical slip profiles (see Fig. 2); both

eigenfunctions are equivalent.

The above classification concerns the static problem (11a)–(11d),

that is, λ2 = 0, but the same study can be performed for the dynamic

one (10a)–(10d). We found that there is no abrupt transition between

the quasi-static slip patterns and the ones corresponding to the dy-

namic onset of unstable slip. The slip distributions are quite similar

in both cases, except that the strength of the interaction depends on

β. More precisely, as λ2
0 grows, the length of the locked zone in-

creases, and the maximum slip on the dominant fault grows as well.

Thus, the strength of the instability tends to confine the slip during

the initiation phase. This feature is illustrated by Fig. 9. Note that

this remark is not relevant to the long-term evolution of the system,

since for λ2
0 > 0 the weakening behaviour will be followed by a phase

of rupture propagation, that is, the occurrence of a seismic event.

The computation of the entire process, from the initiation phase to

the end of the propagation of the seismic waves, leads to the slip

profile plotted on Fig. 10 (here for α = 2.0). Slip has occurred all

along both segments, even in the zone that was locked during the

initiation phase, but the slip has a linear shape in this region.

Note that our classification does not solely apply to fault sys-

tems made of two identical segments, since the slipping zones on

both segments eventually reveal not to be of same length in class II.

Hence our classification applies to any system made of two parallel,

not fully overlapping segments. Class I corresponds to the configu-

rations (symmetrical if the faults are of same length) in which the

four fault tips are arrested by a barrier, whereas class II contains the

configurations in which one fault tip is arrested by shadowing. The

limit between these two classes is so narrow that it is very difficult

to conclude, by considering only the geometry of a fault system,

on the propagation of its faults and on the explanation (barrier or

shadow) in case of arrest. However, we believe that, for a fault sys-

tem having a geometry such that the system is close to the transition
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Figure 7. Diagram of fault systems classes. This diagram allows systems

made of two segments to be classified as a function of their geometry (i.e.

normalized separation and overlap distances). The criterion of classification

is the number of stress singularities at the tips of the faults, obtained by the

computation of the non-linear static eigenfunction (β 0, ϕ0). In Class I, faults

are loading each other and all fault tips show a stress singularity (total of 2

+ 2 singularities). In Class II, fault interaction involves stress shadowing so

that the shadowed fault tip has no singularity (total of 2 + 1 singularities).

Points A, B, C and D refer to some particular computations that we have

done and that are discussed in the text.

between classes I and II, it is reasonable to infer that one of its

fault tips has stopped propagating because of shadow effects. This

conclusion will be of considerable importance in the following.

7 A P P L I C AT I O N T O A N O N - P L A N A R

FAU LT S Y S T E M I N A FA R , A N D

I M P L I C AT I O N S O N FAU LT

M E C H A N I C S

Real faults grow as they accumulate slip during repeating earth-

quakes. Interseismic, more or less aseismic sliding may also occur

and participate to their growth. The lack of observational data on

repeating earthquakes on one given fault makes the mechanical pro-

cesses of fault growth—that is, slip accumulation and lateral prop-

agation - difficult to depict and characterize. We suggest that our

modelling can build part of the bridge that necessarily extends be-

tween the only two data types that we have so far to work on, that

is, instantaneous (seismic and dynamic) and cumulative (long-term

and static) faulting. Faulting is the result of an effective weaken-

ing process that occurs as slip accumulates. The constitutive law on

a cumulative, long-term fault can, therefore, be approximated by

a simple slip-dependent friction law as the one taken in our mod-

elling. Second, real faults have been shown to evolve at the limit

of the stability (critical state, e.g. Sornette & Sornette 1989, and

additional references in Scholz 2002). Together these suggest that

the first non-linear static eigenmode of our model gives a reasonable

first-order view of the state of real cumulative fault systems. Hence,

a comparison can be drawn between the modelled slip profiles and

those measured on real cumulative faults. Knowing the geometry

of a fault system, the modelling allows dynamic stress interactions

and weakening rates to be computed together on that system, until

the solution approximating best the measured slip profiles is found.

Although solutions are possibly non unique, ‘too simple’ (for the

model does not include all the physical parameters that contribute

to fault slip), and relying on ad hoc weakening functions, that kind

of analysis allows highlighting robust general features in the fault

system behaviour. We show it below.

As our model is built for antiplane slip, we compare our results

to cumulative slip distributions measured on normal faults. Note

that measured complete slip profiles are quite rare in the literature,

particularly on large active faults capable of producing significant

slip ruptures. The normal faults that dissect the Afar Depression

(East Africa) are among the rare in the world to be at once active

(i.e. generating earthquakes), large enough (L up to 100 km; verti-

cal cumulative slip up to 1–2 km; maximum age ≈1–2 Ma) to have

ruptured during a lot of repeating earthquakes and be capable of pro-

ducing significant ones in the future, well studied (e.g. Tapponnier

et al. 1990; Manighetti et al. 1998, 2001a,b; Hayward & Ebinger

1996), and having their cumulative slip profiles measured. We, there-

fore, chose to focus on some of these Afar faults. Manighetti et al.
(2001a) already analysed the cumulative slip distributions on about

300 of these faults and systems. The major result of this analysis was

to show that most cumulative slip profiles on the Afar faults show a

self-similar envelop shape (hence, independent of scale, age, loca-

tion, etc), being roughly triangular and asymmetric. The cumulative

slip profiles thus have long, roughly linear sections, and some of

them run along the entire fault length. These linear slip profiles

were also shown to taper in the direction of overall (long-term) fault

or system propagation. They were found on both interacting and

isolated faults. These observations, together with some others else-

where (see references in Manighetti et al. 2001a), resemble some

of those we made on Fig. 8. This further suggests that a comparison

between our modelled slip profiles and real ones can be drawn.

In the following, we focus on one of the non-coplanar Afar nor-

mal fault systems that has already been analysed by Manighetti

et al. (2001a) (see that paper for a detailed description of faults and

measurements). This fault system extends NW of the Asal rift, and

offsets old lava piles (about 1 Ma). Note that it does not belong to

any magmatic rift (as defined by Varet & Gasse 1978; Tapponnier

et al. 1990; Manighetti et al. 1998, 2001b), so that its faults can be

considered as representative of normal faults in ‘common’ amag-

matic conditions. The system is made of three major fault segments

(F1, F2, F3, see Fig. 11; fault segment tips are denoted T1–T6),

en echelon arranged along a mean N125◦E direction. Each seg-

ment is 20–30 km-long, while the overall system extends over about

70 km. Each segment is separated across-strike from the next by

about 5–10 km (2d), and overlaps its immediate neighbor by about

7–10 km (2a − 2e). Their corresponding ratios d/a and e/a, there-

fore, are about 0.2–0.5 and 0.5–0.8, respectively. These make the

two couples of segments F1–F2 and F2–F3 belonging to our class

I, or to the transition zone between class I and class II. This remark

is important because, in geological observations, faults are defined

by their slipping zones, so that we are not ‘allowed’ to find large

locked zones on the computed slip profiles. Finding each couple of

segments outside class II gives us a chance to avoid such locked

parts in the interacting triplet. In addition, as stated at the end of

the previous subsection, finding a couple of faults close to the class

transition gives precious information on the propagation of their

inner tips.

The slip profiles measured on the three segments are shown in

Fig. 12(b) (measurements are projected in the mean N125◦E direc-

tion of the overall fault system). The maximum cumulative vertical

offsets measured at the surface on F1, F2, and F3 are about 800,

1200 and 1000 m, respectively. On each segment, such huge slip

has accumulated in the last million years (Manighetti et al. 2001a),
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Figure 8. Slip and stress distributions deduced from the static eigenfunction for the different classes. Slip is at left; shear stresses on the faults are at right,

only highlighted in black for the lower segment. Note that the relevant feature about the strength of the singularities is the stress intensity factor K, whereas

the value of the peak stress only depends on the discretization around the fault tip. (a) Point A: Two weakly interacting faults (d/a = 0.1 and e/a = 1.5) (b)

Point B: Just before class transition I–II (d/a = 0.1 and e/a = 0.7) (c) Point C: Just after class transition I–II (d/a = 0.1 and e/a = 0.6) (d) Point D: Highly

interacting faults (d/a = 0.1 and e/a = 0.1).
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Figure 9. Slip profiles for increasing values of λ2
0 (0.0, 0.5 and 1.0).

at a minimum vertical slip rate, therefore, averaging 1 mm yr−1.

The three profiles show different patterns. The slip distribution on

F2 is rather symmetric and triangular, with high slip gradients on

either side of the zone of maximum slip. The slip distribution on

F3 is more asymmetric with the maximum slip being shifted toward

the outer fault tip (T6), and slip decreasing roughly linearly from

maximum to zero toward the other inner fault tip (T5). The slip

distribution on F1 is even more asymmetric with the maximum slip

being completely shifted at the inner fault tip (T2) and the rest of

the slip decreasing linearly from its maximum to zero toward the

other outer fault tip (T1). This latter slip profile has been shown

by Manighetti et al. (2001a) to slant in the direction of F1 overall

propagation. The high slip drop at the outer tip of F3 (T6) coincides

with the NW termination of the volcano-tectonic, active Asal rift,

which is therefore interpreted to act as a barrier to faulting lateral

propagation (Manighetti et al. 2001a).

We use the average surface trace of the segments (Fig. 11) as our

geometrical support � f for the calculation of slip. We seek, through

a trial-and-error approach, for the weakening rates η(x , y) on the

three fault segments that best allow the modelling (computation of

the first static eigenfunction (β 0, ϕ0(x , y)) to reproduce the observed

slip profiles. As said above, we must find solutions lying either in

class I or at the narrow limit between classes I and II.

Although we did not perform a strict inversion procedure, we

found that the slip profile shapes that we produced were very sensi-

tive both to the distribution of the weakening rate along the fault, and

to the fault geometry � f . The latter is known and fixed in our case.

Figure 10. Slip profiles resulting from an entire seismic event for α = 2.0.

Yet, our capability of finding a solution entirely in class I revealed

to strongly depend on the position that we assigned to fault tips,

especially tip T4. More generally, the geometry of the system—that

favours strong interactions—made it quite difficult to avoid produc-

ing locked zones. As a matter of fact, although our final solution

places both pairs of interacting segments in class I, they remain very

close to class transition I–II.

To find the most appropriate weakening functions, we started

by testing simple hypotheses such as constant or linearly varying

weakening along the faults. Yet, those rapidly revealed not to be

successful. In particular, considering a homogeneous weakening rate

(η(x , y) = 1), led to the development of large locked zones along the

segments (class II) that are not observed in the data. The final, ‘best-

fitting’ weakening profiles that we found (α(x , y) = β 0 η(x , y)), are

presented in Fig. 12(a), together with the corresponding observed

and modelled slip profiles (Fig. 12b) and the shear stress drops on the

faults (Fig. 12c). While the three distributions of weakening differ in

detail, they share a common characteristic: the weakening rate varies

along fault strike, and decreases toward x < 0, hence in the NW

direction shown to be that of overall fault propagation (see Fig. 12a).

Beyond that common general trend, the weakening distributions

show differences from one fault to the other. On fault F3, a simple,

linear, NW decrease of the weakening rate allowed reproducing the

slip profile quite well. By contrast, on F2, we had to add a bump in

the middle of the weakening profile to succeed concentrating slip

at the fault centre (Fig. 12a). On fault F1, a linear northwestward

decrease of the weakening rate was not sufficient to reproduce the

linear section of the measured slip profile, what forced us to consider

instead a cubic decrease (Fig. 12a). We are aware that these ad hoc
variations of the weakening rate may not be realistic. Yet, that the

real slip profiles could not be reproduced without introducing such

local variations confirms that the weakening rate varies along fault

strike, and may increase with fault slip. All in all, the modelled slip

profiles produced for F2 and F3 are quite similar to the observed

profiles, hence are reasonable solutions. By contrast, the solution

obtained for F1 is a bit weaker, as we do not reproduce the exact slip

profile pattern. Such discrepancy on the most propagating segment

of the system suggests that other factors than stress interaction and

weakening process contribute as well to fault growth.

Note that, if stress shadowing had not been included in our calcu-

lations, the weakening functions above would not have succeeded

alone in reproducing the observed slip profiles; a very small change

in the shape of the weakening can produce an abrupt change in the

slip of interacting faults (such as the disappearance of a significant

portion of slipping zone), whereas it has only a weak influence on an

isolated fault. Conversely, a linear slip function is produced along

most of F1, in the absence of any particular interaction at T1. This
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Figure 11. Fault system in Afar made of three en echelon normal fault segments. Inset shows general setting of Afar, and star locates the analysed fault system.

Fault segments are denoted F1, F2 and F3 and fault tips T1,T2, . . . ,T6. This fault system geometry defines our geometrical support � f = F1 ∪ F2 ∪ F3 for

the slip.

further suggests that other factors than stress interaction and weak-

ening contribute to fault slip profile shaping, particularly where the

slip profiles exhibit long linear sections. Manighetti et al. (2004)

have proposed that distributed off-fault inelastic strain may be one

of such additional factors.

Having determined the optimal weakening rate distributions

along the three F1–F2–F3 faults, we can analyse the stress dis-

tributions on and around the modelled faults. Note however that

this state of stress does not include the ‘pre-stresses’, which are un-

known. Computed shear stresses on the fault planes are shown in

Fig. 12(c), while 2-D displacement and stress fields are represented

in Fig. 13.

Although the faults are non planar, the state of stress at the

fault tips can be observed on σ zn (Fig. 12c). Tip T4 is ob-

served to have the strongest stress intensity, while tip T2 has

the weakest. This is because slip on F2 has put T2 in a stress

shadow zone. Also, T2, together with T5, are close to the class

transition I–II.

Figure 12. Results of the trial-and-error search for the three-faults system in Afar. From left to right, respectively: the deduced profiles of weakening along

the faults, the computed slip profiles (thick lines) compared to the observed ones (thin lines), and the computed shear stress profiles on the faults.

Fig. 14 shows together, at each mesh vertex, the calculated orien-

tation of the plane submitted to maximal shear and the corresponding

shear magnitude. Strictly speaking, Fig. 14 cannot be used to infer

the location and orientation of the secondary faults likely to develop

in the network, as Fig. 14 has been computed without including any

pre-stress (i.e. regional state of stress). Both regional and local in-

fluences must be considered to infer secondary faulting. We limit

our discussion to the effect of the change of stress associated with

the stable sliding produced by our model. In coplanar fault systems,

maximum shear is expected to apply on planes radially distributed

at fault tips. This is the case at tip T6 where the largest stresses

are observed. This suggests that T6 is presently arrested by a fea-

ture capable of impeding the lateral propagation of faulting. This

feature could be the active volcano-tectonic Asal rift as suggested

before. All other fault tips show different shear patterns. Stress ori-

entations at tip T2 are strongly anisotropic, with a weak stress con-

centration in the orientation of the fault. This suggests that tip T2

is about to stop or to propagate in a new direction. In the region of
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Figure 13. Displacement field, stress fields σ zx and σ zy .

interaction of F1 and F2, associated to tips T2 and T3, the direction

of maximal shear is roughly perpendicular to both fault strikes while

the shear magnitude is strong. A branching process may thus be ex-

pected (note that a starting connection is observed on the field). The

situation is similar between F2 and F3 but shear stresses are weaker.

As our model does not precisely reproduce the slip profile on F1,

we cannot conclude on this fault’s tips. We however believe that T1

has not yet encountered any barrier and is still propagating north-

westward. Note that our model predicts a low weakening near T1,

so that F1 would be growing without producing a large stress drop.

8 S U M M A RY A N D D I S C U S S I O N

The aim of this paper was to understand how the fault geometry and

the slip-weakening process combine within a non-coplanar, nor-

mal fault network to allow a slip instability to develop. This led us

to analyse how stress interactions occur as the system starts slip-

ping. The main result of our work is to show that, in non-coplanar

normal fault systems, hence in most normal fault systems world-

wide, the distribution and partition of the slip can be understood

and predicted by using a modal approach of a meta-stable equi-

librium that basically only includes a slip-weakening process. The

geometry of the fault system also is, of course, an important pa-

rameter. Yet, many geological studies have shown that fault systems

exhibit only a few self-similar geometries (e.g. Tchalenko 1970;

Aydin & Schultz 1990), so that the arrangement of faults within a

system is not random and can be precisely characterized and quan-

tified at all scales. In particular, the non-coplanar fault geometry

most commonly observed worldwide and at all scales, that is, the

en echelon arrangement of faults, has been shown to satisfy pre-

Figure 14. Orientation of the most solicited plane and unsigned magnitude of shear. At each point, the bar gives the orientation of the plane on which the shear

stress is maximal, regardless of its sign. The length of the bar is proportional to the shear magnitude.

cise scaling-laws, the major ones linearly relate the overlap dis-

tance to fault length (i.e. e/a = constant), and the separation dis-

tance to the overlap distance (i.e. d/a = constant) (e.g. Acocella

et al. 2000, and references therein). Hence, the geometrical param-

eters can be reasonably determined and fixed in any problem of

the type we address, so that the weakening rate distribution along

the faults remains the major parameter that we must know to solve

the problem.

In the first part of our work, we have formalized the problem

and explored its non-linear modal solutions. The static formulation

of the problem led to compute a stability criterion and the cor-

responding (meta-stable) static eigenfunction. We showed that the

effect of non-coplanar interaction on fault stability is much more

complex than the one of coplanar interaction. Indeed, even though

faults within a system are all submitted to similar conditions, slip

will not occur homogeneously on them. This comes from the fact

that, in non-coplanar configurations, a slip patch on a part of the

system may, depending on the system geometry and on its ‘weaken-

ing configuration’, enhance or impede slip on other sections of the

system.

In the second part of our work, we have used our modelling to

try reproducing the cumulative slip profiles measured on three real

normal faults forming a large-scale en echelon system, and simul-

taneously determine the most appropriate weakening rate functions

along the faults. For that, we assumed that cumulative slip profiles

can be compared to the first static modal solution of the model

(β 0,ϕ0). An underlying question was to test whether stress interac-

tion and weakening are the two major factors contributing to slip

distribution within the fault system. This approach led to several

results.
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First, we were able to roughly reproduce the observed slip pro-

files. This is important because the slip profiles observed in Afar

(Manighetti et al. 2001a) reveal to have an overall shape very dif-

ferent from that predicted by simple models of faults or cracks in

a linear elastic medium. Such models predict that slip distributions

should be elliptical or bell shaped. Instead, most Afar slip profiles are

triangular, asymmetric, with long roughly linear sections slanting in

direction of overall fault propagation. Note that similar quasi-linear

slip profiles have been observed elsewhere in the world on both

dip-slip (see references in Manighetti et al. (2001a)) and strike-slip

faults, and for both cumulative and seismic deformation (Manighetti

et al. 2005). Our modelling produces similar linear slip profiles, both

in the static (λ2 = 0) and dynamic cases.

So far, one common explanation to the observed linear slip pro-

files has been that friction on faults reduces with increasing slip

(e.g. Bürgmann et al. 1994). Although this general statement must

be true at a certain scale, our results show that it does not alone

explain observations. Indeed, although a linear along-strike vari-

ation of slip weakening succeeds in explaining the slip distribu-

tion on fault F3 (Fig. 12a), linear-weakening profiles fail in ex-

plaining the other two slip profiles. In particular, we are forced to

consider a cubic weakening decrease along F1, which exhibits the

longest, most linear slip profile. Such a rapid weakening decrease,

which leads to a very low weakening on a long section of the fault

(10 km), seems quite unlikely. This may suggest that other factors

not considered in our analysis may contribute to slip profile shaping

on isolated, propagating faults.

Another common explanation to the observed linear slip profiles

relies on fault interaction (Bürgmann et al. 1994; Martel 1997, 1999;

Scholz 2002). Our modelling clearly demonstrates that, indeed, fault

interaction can account for the development of steep linear slants

inside shadow zones between interacting segments. Note however

that long linear sections also develop in slip profiles in the absence

of any interaction, as observed along fault F1.

Non-uniform boundary stresses were also advocated to account

for the observed Afar linear slip profiles (e.g. Bürgmann et al. 1994).

Our results demonstrate that this condition is not required, as the

boundary conditions in our modelling are homogeneous, and yet

linear slip profiles are produced.

The Afar linear slip profiles were also shown to taper in the direc-

tion of overall fault propagation (Manighetti et al. 2001a). Although

our modelling cannot handle the process of fault propagation, we

show that slip-weakening rate distributions on the analysed faults

must, to be appropriate, decrease in the supposed direction of fault

propagation. This gives supports to the propagation statement above.

Finally, our modelling also reproduces the high slip gradients ob-

served at some fault tips. Such high slip drops, capable of dropping

the slip from almost 1000 m high to 0 m in a distance of less than

10 km, were attributed to the existence of mechanical barriers. Our

modelling also suggests the existence of such an obstacle to prop-

agation at the eastern tip of F3 where the overall fault system ends

abruptly.

We end by noting that our calculations, that assume a perfect lin-

ear elastic medium, lead to values for σ zn that can reach 8 per cent

of the shear modulus G (Fig. 12). This value is much higher than

the value of the normal compression expected at 10 km depth in

the crust, which is about 0.1 per cent of the classical instantaneous

shear modulus G deduced from wave propagation speed. Of course,

the tectonics reloads the fault, which compensates the stress drop

due to such large slip. However, if the surrounding crust is purely

elastic with the instantaneous value of G, it will be unreasonably

overloaded. If elastic crustal behaviour is assumed, this suggests

that the shear modulus appropriate for the Afar faults analysed at

this long timescale should be smaller than the instantaneous value

by one or two orders of magnitude. This supports the assumption

that ‘crustal damage’ occurs in the medium surrounding the faults,

resulting in a lowered effective shear modulus. Such off-fault dam-

age could contribute to produce the linear slip profiles on isolated

faults, as recently suggested by Manighetti et al. (2004).
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