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In geophysics, the uncertainty associated with model parameters or displacement
measurements plays a crucial role in the understanding of geophysical phenom-
enon. An emerging way to reduce the geodetic parameter uncertainty is to
combine a large number of data provided by SAR images. However, the
measurements by radar imagery are subject to both random and epistemic
uncertainties. Probability theory is known as the appropriate theory for random
uncertainty, but questionable for epistemic uncertainty. Fuzzy theory is more
adapted to epistemic uncertainty. Moreover, in a context of random and
epistemic uncertainties, the conventional joint inversion in the least squares sense
cannot be considered any more as the best scheme to reduce uncertainty.
Therefore, in this article, in addition to joint inversion, two other fusion schemes,
pre-fusion and post-fusion, are proposed. We consider here the conventional
approach and an original fuzzy approach for handling random and epistemic
uncertainties of D-InSAR and sub-pixel image correlation measurements. Joint
inversion and pre-fusion are then applied to the measurement of displacement
field due to the 2005 Kashmir earthquake by fusion of these data. The behaviours
of these two fusion schemes versus uncertainty reduction are highlighted through
comparisons of results.

Keywords: measurement uncertainty; fuzzy theory; fusion scheme; ground
displacement; SAR image

1. Introduction

Geodetic data, such as satellite images (radar and optic), is an important remote sensing
source of information for displacement measurement with great accuracy over large area.
So far, with the increasing number of operational sensors, large volumes of SAR images
acquired in different modes, ascending and descending passes at various incident angles
and frequencies, are available. Moreover, the launching of the future satellite generation
Sentinel in the coming years, will provide a large quantity of free SAR data (Attema 2005).
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Consequently, using a large number of geodetic measurements in order to quantify the
displacement precisely and better constrain geophysical modelling is becoming more
frequent in geophysics. In (Pedersen et al. 2003, Schmidt et al. 2005, Sudhaus and Jónsson
2009), the authors assimilated SAR data and GPS data to estimate coseismic slip
distributions on faults activated by earthquakes. Grandin et al. (2009) combined the
measurements from SAR images and optical images to measure the displacement field
and to determine the geometry of the dike of the rifting event of Afar (Ethiopia). Lu et al.
(2010) fused SAR images and optical images to characterise various natural hazards. In
this context, one important purpose of geodetic data fusion is to reduce parameter
uncertainty by an adequate combination of all the available measurements. In this view, it
is important that the retrieval algorithm can also estimate the uncertainty associated with
the displacement value, or more generally with the model parameters.

The classical uncertainty concept is based on three classes: gross uncertainty, epistemic
uncertainty, and random uncertainty. Gross uncertainty, leading to outliers, has to be
avoided or detected by control methods, whereas epistemic uncertainty has to be reduced
by correction methods and additional knowledge. The remaining uncertainty is considered
as random, and is due to phenomenon variability. In geophysical applications, the
measurement uncertainties are, after some pre-processing, considered generally as
exclusively random, and thus are represented and propagated in an adequate way by
probability tools (Tarantola and Valette 1982, Cervelli et al. 2001, Lohman and Simons
2005, Sudhaus and Jónsson 2009). But concerning the measurements by radar (SAR)
imagery, the uncertainties arise from several different sources, noise sources of the radar
instrument, on the path of radar wave propagation, at the reflecting surface, as well as
error sources introduced by data processing (Sudhaus and Jónsson 2009). On one hand,
random uncertainty exists due to the decorrelation noise, since there are usually some
backscattering property changes on the ground between two subsequent SAR acquisitions.
On the other hand, epistemic uncertainties can be induced by atmospheric disturbances
depending on the state of atmosphere and the ground surface at the time of the two SAR
acquisitions. Also, it can result from the imprecision of orbit auxiliary information, Digital
Elevation Model (DEM) errors, as well as from the imperfect corrections during data
processing, which deviate the data by a constant or a ramp from the true value.
Furthermore, it is worth noting that uncertainties present in radar measurements can be
spatially correlated, due to smoothly varying atmospheric signal delays (Doin et al. 2009).
To model such epistemic uncertainties coming from limited knowledge, the efficiency of
probability theory is called into question. Thus fuzzy theory has been investigated in
geoscience applications by a few authors (Verhoest et al. 2007a,b, Mujumdar and Ghosh
2008, Ross et al. 2009, Jacquin 2010). In fact, in geodetic measurements there is a need to
select the adequate theory for the representation and propagation of different
uncertainties. Therefore, it is worthwhile to study the combination of the most suitable
theories since several types of uncertainty occur in geodetic practice. This article is a first
contribution to such issues for the measurement of displacement field by fusion of
D-InSAR and sub-pixel image correlation measurements with different schemes.

Like in many engineering applications, fusion of information in geodetic applications is
often accomplished by a joint inversion of all the available data. For linear model, the least
squares adjustment has been widely used because it provides the minimal variance
estimation under the assumption of random uncertainties (Tarantola and Valette 1982,
Tarantola 2005). Moreover, it leads to simple computations when the measurements are
independent. Additionally, when the random variables are Gaussian ones, confidence
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intervals for the measured parameters can be easily deduced. But in case with both random

and epistemic uncertainties, this conventional fusion scheme is debatable. Therefore, in
this article we investigate two other fusion schemes: pre-fusion which consists of fusing

some data before inversion (in a least squares sense in our case), and post-fusion which
consists of performing, firstly several inversions with different subsets of the available

data, and then fusing the results of these inversions. In these three fusion schemes, we
apply the conventional approach and a fuzzy approach to represent and propagate
uncertainties.

This article is organised as follows. In Section 2, joint inversion, pre-fusion and post-

fusion schemes are presented. In Section 3, the conventional approach and a fuzzy
approach for uncertainty representation and propagation are detailed. The available data

in the considered application and their associated uncertainties are described in Section 4.
Then, joint inversion and pre-fusion, as well as the proposed uncertainty management

approaches are applied to the 3D displacement field measurement at the Earth’s surface
due to the Kashmir earthquake (Mw¼ 7.6, 2005). The behaviours of these two fusion

schemes are highlighted through comparisons of results. Finally, some conclusions are
derived and the perspectives are presented.

2. Fusion-inversion schemes

2.1 Inversion

In geophysics, modelling allows the explanation of physical processes with the help of an

analytically or numerically derived relationship between the observed signal and the
characteristics of the source. From the observed signals, the characteristics of the buried
source can be inferred once this relationship is determined. This kind of problem is

referred to as an inverse problem. Solving an inverse problem is called inversion (Tarantola
and Valette 1982). If we define the data vector R and the model vector u, the

corresponding forward model is written as

R ¼ gðuÞ ð1Þ

where g is an operator that relates the model vector to the data vector.
When g consists of linear equations, Equation (1) can be simplified to

R ¼ Pu ð2Þ

where P corresponds to a n�m matrix linking the data vector R (dimension: n) and the

model vector u (dimension: m).
In general, in the inversion, a misfit function is defined to quantify the discrepancy

between observations and model predictions. An inversion algorithm searches for models
that minimise the misfit function in the model space which can be bounded by predefined

model parameter limits.
In linear inversion, the solutions given by the ordinary least squares (OLS) (Rao 1973,

Davidson et al. 1993) method and generalised least squares (GLS) (Tarantola 2005,

Cornillon and Matzner-Lober 2007) method are shown in Equations (3) and (4),
respectively. In most cases, the independence of the used data is assumed in order to facil-

itate the data processing.With thesemethods, randomuncertainty described by the variance
can be optimally reduced depending on the number of data sets used in the inversion.
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u ¼ ðPTPÞ�1PTR ð3Þ

u ¼ ðPT��1R PÞ�1PT��1R R ð4Þ

where �R is the variance-covariance matrix of R.
The resolution for a nonlinear problem is usually more complex. There are two main

types of algorithms: one is based on the calculation of the derivative (variational
approach) and the other is based on Monte Carlo methods (stochastic approach). The
methods based on the derivative calculation are commonly used when the relationship
between the model and the data is simple. However, when the complexity of this
relationship increases, Monte Carlo methods are preferred.

2.2 Fusion schemes

Joint inversion (Figure 1(a)), in which all the available data sets are simultaneously
combined in the inversion, is the conventional scheme used by most geophysicists. With
this scheme, an important point concerning the optimality of the least squares method is
that the uncertainty has to be of a random nature, i.e. epistemic uncertainties have to be
eliminated beforehand. This is not always possible in a geodetic context, and thus we
consider two other fusion schemes: pre-fusion (Figure 1(b)) and post-fusion (Figure 1(c)).

Pre-fusion consists of a fusion step before inversion. This fusion step can be performed
for example using the mean value, the median value of a set of data sets or by selecting the
best one according to certain criteria, for example, the reliability of data sets or the signal-
to-noise ratio. The relevance of this fusion scheme depends on the availability of data sets
and the type of uncertainty to be reduced. Afterwards, the refined data sets are input in the
inversion.

In post-fusion, first, several inversions are performed with different data subsets. Next,
the corresponding inversion results are combined to obtain the final result by a fusion step.
Ideally, each data subset used in each inversion should be independent. Therefore, a great
number of data sets with a good geographic superposition are required. In addition, post-
fusion is interesting for combining results from different sources, such as radar and optical
measurements, as well as in-situ measurements, because sometimes it can be difficult to
mix all these measurements in a joint inversion due to the difficulty in comparing the
uncertainties associated with completely different measurements.

3. Uncertainty analysis and management

As mentioned in Section 1, the uncertainty concept is based on three classes: gross
uncertainty, epistemic uncertainty, and random uncertainty. Gross uncertainty, leading to
outliers, has to be avoided or detected by control methods, and it is not considered in this
article. Epistemic uncertainty originates form lack of complete knowledge about the
considered phenomenon and observation sources. The variability from one observation to
another is generally the result of the random nature of the studied phenomenon and of the
noise superposed to the source signals.

Thus, mathematical theories which are appropriate for at least some parts of
uncertainty representation and handling have to be considered in a competitive way.
Probability theory is the adequate theory for uncertainties corresponding to random
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variables. In this theory, random variables are described by a probability distribution
(often a Gaussian one) or more simply by the first two moments, i.e. the mean and the
variance (BIPM et al. 2008).

Epistemic uncertainties arising from information incompleteness cannot be represented
by one single probability distribution. Dempster–Shafer theory (Shafer 1976) and fuzzy

(a)

(b)

(c)

Me

Me

Figure 1. Schematic illustration of fusion schemes. (a) joint inversion, (b) pre-fusion and (c) post-
fusion.
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possibility theory (Dubois and Prade 1988) provide relevant representations to deal with
epistemic uncertainty. In our context of continuous measurements, the possibility theory
is more adapted because it generalises interval analysis and provides a bridge with
probability theory by its ability to represent a family of probability distributions (Dubois
et al. 2004).

In geodetic practice, there are always multiple sources of uncertainties in the
considered measurement, which leads to complex characteristics of the associated
uncertainties. Therefore, we apply the conventional approach and a fuzzy approach for
handling random and epistemic uncertainties.

3.1 Conventional approach

The standard reference in uncertainty modelling is the ‘Guide to the Expression of
Uncertainty in Measurement (GUM)’ (BIPM et al. 2008) edited by an international
consortium of legal and professional organisations. GUM groups the occurring uncertain
quantities into ‘Type A’ and ‘Type B’. Uncertainties of ‘Type A’ are determined with the
classical statistical methods, while ‘Type B’ is subject to other uncertainties like experience
and knowledge about an instrument. Both types of uncertainties can have random and
epistemic components. In fact, the GUM proposes to treat both uncertainties (random and
epistemic) in a stochastic framework, introduces variance to describe uncertainties and
treats them with the law of propagation, with the independence generally assumed.
Applying this approach to the linear inversion, the uncertainties are propagated as follows.

Let fk(x1, x2, . . . ,xn) be a set of m functions which are linear combinations of n
variables x1, x2, . . . , xn with combination coefficients a1,k, a2,k, . . . , an,k, (k¼ 1, . . . ,m).
Thus

fk ¼
Xn
i¼1

ai,kxi : f ¼ ATx ð5Þ

If the variance-covariance matrix of x is denoted by �x,

�x ¼

�21 �12 �13 � � �

�21 �22 �23 � � �

�31 �32 �23 � � �

..

. ..
. ..

. . .
.

0
BBBB@

1
CCCCA ð6Þ

Then, the variance-covariance matrix �f of f is given by

�fi,j ¼
Xn
k

Xn
l

ai,k�xk,lal,j : �f ¼ AT�xA ð7Þ

This is the most general expression for the propagation of uncertainty from one set of
variables onto another. From this, one obtains the variance-covariance matrix of u in OLS
and GLS methods, respectively, in Equations (8) and (9).

�u ¼ ðP
TPÞ�1PT�RPðP

TPÞ�1 ð8Þ

�u ¼ ðP
T��1R PÞ�1 ð9Þ
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To determine confidence intervals for the parameter, the GUM suggests to use a
Gaussian distribution (justified by the central limit theorem), and for other distributions to
apply Monte Carlo simulations.

This approach is fully justified in cases of a lot of data having independent random
uncertainties, but questionable for epistemic uncertainties that are often dependent and far
from a Gaussian representation. And this approach generally leads to an over-optimistic
assessment of uncertainties.

3.2 Fuzzy approach

Possibility theory was first introduced by Zadeh (1978). It is associated with the theory of
fuzzy sets by the semantics of uncertainty that it gives the membership function. A
possibility distribution �(x) (Figure 2) is a mapping from a set to the unit interval such that
�(x)¼ 1 for some x belonging to the set of reals. A possibility distribution �1 is called more
specific (i.e. thinner in a broad sense) than �2 as soon as 8x2R, �1(x)��2(x) (fuzzy set
inclusion). The more specific � is, the more informative it is. If for some x and �(y)¼ 0, for
all y 6¼ x, then � is totally specific (fully precise and certain knowledge), if �(x)¼ 1 for all x
then � is totally non-specific (complete ignorance).

In fact, a numerical degree of possibility can be viewed as an upper bound to a
probability degree (Dubois et al. 2004). Namely, with every possibility distribution � one
can associate a non-empty family of probability measures dominated by the possibility
measure: P(�)¼ {P, 8A,P(A)��(A)}. This provides a bridge between probability and
possibility, and there is also a bridge with interval calculus. Indeed, a unimodal numerical
possibility distribution may also be viewed as a nested set of coverage intervals, which are
the �-cuts of �: ½x�, x�� ¼ fx,�ðxÞ � �g. Obviously, the confidence intervals built around
the same point x0 are nested. It has been proven in Mauris et al. (2001) that stacking the
coverage intervals of a probability distribution F on top of one another leads to a
possibility distribution (denoted �x0 having x0 as modal value). In fact, in this way, the
�-cuts of �x0 are identified with the confidence interval I?� of probability level �¼ 1� �

Figure 2. Example of fuzzy possibility distributions.
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around the nominal value x0. In this way a probability distribution can be represented by
an equivalent possibility distribution. Moreover, a possibility distribution can be used for
representing a family of probability distributions by taking the largest 1�� confidence
intervals obtained from each probability distribution of the family. This is useful to
represent uncertainty when only partial probability knowledge is available. For example if
the variable is known to be bounded and unimodal (with mode R) and with �R as standard
deviation, then the maximum specific possibility distribution is a triangular possibility
distribution with the mode R as vertex and with ½R�

ffiffiffi
3
p
�R,Rþ

ffiffiffi
3
p
�R� as support.

In addition, due to the confidence interval interpretation, a possibility distribution is a
convenient way to express expert knowledge. In summary, a possibility distribution can
model both random and epistemic uncertainties in a unified modelling.

For the fuzzy approach, as no fully equivalent fuzzy least squares method is available,
we use the GLS method to obtain the forward model (Equation (4)). Then we build the
possibility distributions of the displacement from the nominal value R and their associated
uncertainty �R, considering �R contains both random and epistemic components.
Moreover, the measurements are considered as bounded (this is the case in the considered
context), thus we represent them by a symmetric triangular fuzzy distribution with support
½R�

ffiffiffi
3
p
�R,Rþ

ffiffiffi
3
p
�R�. Afterwards, the possibility distributions are propagated in the

least squares adjustment using fuzzy arithmetic based on Zadeh’s extension principle
(Zadeh 1978, Bisserier et al. 2008):

u ¼ ðPT��1R PÞ�1PT��1R � R ð10Þ

where � denotes the fuzzy multiplication.
In this principle, the variables are considered as non-interactive variables; this

corresponds somehow to considering a total dependence between variables. Consequently,
uncertainty propagation by the fuzzy approach leads to an over-pessimistic assessment of
uncertainties.

In order to perform comparisons of uncertainties between the conventional and the
fuzzy approaches, it is necessary to represent the uncertainty in the fuzzy approach by a
single parameter (similar to the variance in the conventional approach). The commonly
used parameter is the full width at half maximum of the possibility distribution which
corresponds to the width of the �-cut level of 0.5. Therefore, the full width at half
maximum is

ffiffiffi
3
p
�R. Let us note that with a Gaussian assumption of standard deviation �R,

the value corresponding to the 0.5 �-cuts of the equivalent possibility distribution is equal
to 1.35�R.

3.3 Uncertainty analysis by the two approaches

In general, different modes of uncertainty representation and propagation in the
conventional and the fuzzy approaches result in different behaviours of uncertainty
evolution while adding more data sets in the linear inversion. With the conventional
approach, Wright et al. (2004) have tested the effect of adding more data sets on the
improvement of output uncertainty. The tests are performed by considering the same
uncertainty for all of the input data sets. Here, we follow the same idea, and in addition to
the tests in the conventional approach, we also perform the same tests in the proposed
fuzzy approach. For this, four data sets with the same uncertainty are taken as input in the
original inversion. Then we add one more data set each time in the inversion, and follow
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the evolution of the output uncertainty. Figure 3 is an example that illustrates the different
behaviours of uncertainty in both approaches. First, the output uncertainties are always
larger in the fuzzy approach than in the conventional approach. Second, the output
uncertainties are reduced more or less significantly in the conventional approach, while
they remain constant or even increase in the fuzzy approach. These observations are

consistent with the different behaviours of both approaches mentioned in the previous
Section.

3.4 Model performance assessment

In addition to the evaluation of the displacement uncertainties, geodesists often look for
the difference between the model predictions and the data observations by computing
residues. This practice aims at palliating for the lack of ground truth. Thus, the output
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Figure 3. Evolution of the output uncertainty while adding more data sets in the inversion in (a)
conventional and (b) fuzzy approaches. In this case, the dimension of the model vector u (see
Equation (2)) is 3. P is a 4� 3, 5� 3, . . . , 8� 3 matrix that links the model and the data. Each colour
curve in the figure corresponds to one component of the model vector, and the sensibility to the
input data sets is different from one component to another. Uncertainties of all the input data sets
are normalised to 1.
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model vector is projected into the space of data vector by the forward model, and then it is
compared to the data vector.

In the conventional approach, the root mean square (RMS) is taken as index of
evaluation. It can be calculated for each data set k as

RMSk ¼

PIk
i¼1
½RkðiÞ�PkðiÞukðiÞ�

2

!kðiÞPIk
i¼1

1
!kðiÞ

ð11Þ

where Ik is the number of pixel in each data set k, with

! ¼
1, in OLS

�2R, in GLS

�

A global residue over several data sets is derived as

RMS ¼

PK
k¼1 IkRMSkPK

k¼1 Ik
ð12Þ

where K is the number of data set.
Note that in GLS, for each data set, the mean RMSk is calculated by weighting each

pixel by its corresponding coefficient in variance-covariance matrix, which is the same for
inversion. For each scheme, the mean RMS is obtained by weighting the mean RMSk of
each data set by the number of pixels used in the inversion. A large value of RMS implies a
large discrepancy between the modelled and the measured observations. In order to
differentiate the contribution of pixels really used in the inversion from those not used (in
pre-fusion, only a small number of pixels of good quality are used), three values of RMS are
calculated:RMSused is calculated on pixels really used in the inversion. It corresponds to the
value minimised in the inversion. A small value of RMSused implies a good coherence
among data sets used in the inversion. RMSnot-used is calculated on pixels not used in the
inversion. And RMStotal is obtained taking into account all of the available pixels. In fact,
RMSused and RMStotal are two main criteria used for performance assessment.

For the fuzzy approach, each result u is obtained with a possibility distribution. The
fuzzy model prediction P� u is computed by using fuzzy arithmetic. Then, instead of a
comparison between two crisp values, a comparison between two possibility distributions
(two symmetric triangular distributions) is performed in this article. In order to facilitate
the comparison, the height of the triangle of intersection (h), which varies between 0 and 1,
is taken as the index of evaluation (Figure 4). The more h is close to 1, the better is the
agreement between the modelled and the measured observations.

Figure 4. Illustration of intersection of two triangular distributions.
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For each data set, the mean hk is calculated by dividing the sum of h by the number
of pixels.

hk ¼

PIk
i¼1 RkðiÞ ^ ðPkðiÞ � ukðiÞÞ

Ik
ð13Þ

where 6 denotes the operator of intersection of two possibility distributions as illustrated
in Figure 4.

A global fuzzy index over several data sets is obtainted as

h ¼

PK
k¼1 hkIkPK
k¼1 Ik

ð14Þ

For each scheme, the mean h is calculated by weighting the mean hk of each data set by
the number of pixels used in the inversion. With the same objective as in the conventional
approach, three values of h are computed: hused is computed on pixels used in the
inversion, hnot-used is computed on pixels not used in the inversion, and htotal is obtained
taking into account all of the available pixels.

4. Input data description

The sub-pixel image correlation and differential interferometry (D-InSAR) are two
conventional techniques used to extract displacement measurements from SAR data. The
sub-pixel image correlation calculates the offsets in range (line of sight) and azimuth
(along the satellite trajectory) directions on amplitude images, with a sub-pixel accuracy. It
is widely used to measure displacements of large magnitudes (Pathier et al. 2006, Wright
et al. 2006, Yun et al. 2007). Based on the phase information, D-InSAR can measure the
displacement in range direction with an accuracy of the order of cm, or mm (Carnec and
Raucoules 2000, Carnec et al. 2000). This technique is usually applied to measure
displacements of small magnitude. In the case of a strong earthquake induced by a rupture
of a fault, in the near field of the fault, the measurements from sub-pixel image correlation
can provide reliable displacement information (Pathier et al. 2006). While in the far field of
the fault, the measurements from D-InSAR are taken as precise sources.

In this article, a series of coseismic ENVISAT images, acquired for both ascending1

and descending2 modes, from October 2004 to June 2006, is used to estimate the
deformation due to the 2005 Kashmir earthquake. Twenty two measurements from sub-
pixel image correlation and five measurements from D-InSAR, are obtained. The
availability of different types of measurements is shown in Figure 5. Figure 6 illustrates
these two types of measurements with their associated uncertainties. In the near field of the
fault, because of coherence loss, phase information cannot be extracted by D-InSAR, thus
there are no D-InSAR measurements available in this area. These measurements can be
classified in four families according to their acquisition geometry: ascending range (Asc.
Rg), ascending azimuth (Asc. Az), descending range (Des. Rg) and descending azimuth
(Des. Az). In each family, in a first approximation, all the measurements are considered to
correspond to the same displacement (in the same direction), since the incident angle is the
same for all the measurements.

Figure 7 illustrates the uncertainty present in the measurements from both sub-pixel
image correlation and D-InSAR by plotting two profiles from the displacement images
shown in Figure 6. Profile (1) is located in an area far from the fault and Profile (2) passes
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across the fault. In theory, the same displacement values should be found by these two
techniques where both measurements are available, as they measure exactly the same
quantity of displacement. However, with the presence of uncertainty in both measure-
ments, a discrepancy of displacement values is observed on both profiles. On one hand, a
significant fluctuation of displacement value is observed in the sub-pixel image correlation
measurements, which implies the presence of random uncertainty. Near the fault, the
fluctuation is small, while in the area far from the fault where the displacement magnitude
is small, the fluctuation becomes significant. On the other hand, there is a small shift
between the displacement values estimated by both techniques. Consequently, it is
probable that epistemic uncertainty is present in one or the other measurement. However,
it seems that the random uncertainty is more important than the epistemic uncertainty in
our data sets.

Figure 5. Availability of different types of measurements.

Figure 6. Displacement and associated uncertainty in range direction estimated by sub-pixel image
correlation (a), (b) and D-InSAR (c), (d). Profiles (1) and (2) are used for uncertainty analysis
thereafter.
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For measurements from sub-pixel image correlation (denoted by Cor. thereafter), the

uncertainty is represented by the pseudo-variance associated with the displacement value

obtained from the correlation technique in ROIPAC software (Rosen et al. 2004), which

implies the quality of cross-correlation between two amplitude images. Random

uncertainty exists in these measurements because of decorrelation noise present in the

data. However, epistemic uncertainty can be present due to the DEM errors or defects in

the correlation method, which is difficult to quantify. As a result, the pseudo-variance used

as uncertainty is considered to include both random and epistemic components. Note that

the possible epistemic uncertainty due to the imperfect data processing is not included in
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Figure 7. Illustration of uncertainties present in measurements from both sub-pixel image
correlation (red dots) and D-InSAR (green lines). Descending Track 463 (2004/11/06 – 2005/11/
26) (a) on Profile (1) and (b) on Profile (2) reported on Figure 6.
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the pseudo-variance. For measurements from D-InSAR (denoted by � thereafter), the
uncertainty corresponds to the variance of the phase value estimated from the filtered
coherence (Trouvé et al. 1998). It characterises essentially random variations in phase
values. However, epistemic uncertainty due to, for example, phase unwrapping errors,
atmospheric impacts, is probably present in the measurements, and it should be taken into
account in the fusion schemes and uncertainty management approaches.

5. Retrieval of 3D displacement field and associated uncertainty at the Earth’s surface

5.1 Problem statement and method

Different measurements from sub-pixel image correlation and D-InSAR are different
projections in the range and azimuth directions of the 3D displacement field at the Earth’s
surface (E, N, Up)3 (Figure 8). Consequently, the 3D displacement field can be constructed
from at least three different projections by a linear inversion. In this case, in Equation (2),
R corresponds to the different measurements from sub-pixel image correlation and
D-InSAR and the matrix P corresponds to the projection vectors matrix. u denotes the 3D
displacement field with three components E, N, Up.

To solve this linear inverse problem, the least squares methods (OLS and GLS) are
used. The uncertainties are represented by the conventional approach and a fuzzy
approach. Two fusion schemes: pre-fusion and joint inversion are investigated. In pre-
fusion, the data set with the smallest uncertainty among all of the available data sets is
selected in each family. Then, the inversion is realised with four selected data sets on

Figure 8. 3D (E,N,Up) displacement field and SAR acquisition geometry (range/azimuth
directions) for ascending pass. u denotes a 3D vector with 3 components ue, un and uup. RLos and
RAz represent the projections of u in range and azimuth direction respectively. � is the incident angle.
’ corresponds to the angle between the North and the Azimuth direction.
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each pixel. In joint inversion, the inversion is performed using all of the available data sets
on each pixel. Note that, due to the geographic position of different data sets, the number
of available data sets can be different from one pixel to another. The results are shown in
Figure 9, and analysed in the following section.

5.2 Comparison of results

In order to highlight the advantages and disadvantages of each fusion scheme and
uncertainty management approach, three levels of comparisons are performed: between
displacement values, between uncertainties and between fuzzy distributions. In addition,
the effect of uncertainty reduction due to adding D-InSAR measurements is analysed. For
this, four different cases are defined:

(1) Pre-fusion on the data sets from sub-pixel image correlation.
(2) Pre-fusion on the data sets from both sub-pixel image correlation and D-InSAR.
(3) Joint inversion on the data sets from sub-pixel image correlation.
(4) Joint inversion on the data sets from both sub-pixel image correlation and

D-InSAR.

Regarding the displacement value (Figure 9(a)), the results in different cases are
globally consistent, with an average difference in the order of mm and an RMS included
between 10 cm and 25 cm. Table 1 shows the displacement value differences of the Up
component between the different cases studied in this article and the results found by
Pathier et al. (2006) by using three measurements from sub-pixel image correlation. The
difference with respect to results found by Pathier et al. is larger, which can be explained
by the uncertainty associated with measurements and by the extra data sets used in this
article. As there is no ground truth available, in order to evaluate in detail each fusion
scheme and uncertainty management approach, the residues are calculated.

The results obtained by using the conventional approach are shown in Tables 2 and 3.
First, the RMSused and RMStotal are smaller in GLS than in OLS. This is consistent with
the fact that in GLS, the contribution of the data sets whose uncertainty is large is less
important. Thus, the weighting of different data sets, more or less reliable, is important.
Second, between pre-fusion and joint inversion, the RMStotal in joint inversion is slightly
smaller than in pre-fusion, as joint inversion reduces mostly the random uncertainty.
However, the RMSused in pre-fusion is much smaller, which can be explained by the good
quality of the data sets used and the reduced number of data sets used in the inversion:
there are four data sets in the inversion with pre-fusion, and they are compatible to each
other, thus it is easier to find a model fitting these data. Finally, the benefit of adding data
sets from D-InSAR, in both pre-fusion and joint inversion schemes is a reduction in the
RMSused and RMStotal.

The pseudo-residues in the fuzzy approach, given by Equation (14), are shown in
Table 4. The values of hused and htotal in pre-fusion are larger than those in joint inversion.
The pre-fusion is thus preferred for the fuzzy approach. With the addition of data sets
from D-InSAR, the values of hused and htotal decrease. This behaviour indicates that
epistemic uncertainty probably exists in our data sets and that it has been taken into
account by the fuzzy approach.

Regarding the uncertainty value, the evolution of uncertainty varies from one case to
another. In the conventional approach, the uncertainties are smaller in joint inversion than
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Figure 9. 3D displacement field: (a) displacement value (b)–(e) associated uncertainty; (a), (b) joint
inversion with D-InSAR data sets in the conventional approach; (c) joint inversion without
D-InSAR data sets in the conventional approach; (d) pre-fusion with D-InSAR data sets in the
conventional approach and (e) joint inversion with D-InSAR data sets in the fuzzy approach.
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in pre-fusion (Figure 9(b) (joint inversion) and (d) (pre-fusion)) because of the

contribution of a large number of data sets used in joint inversion. On the contrary, in

the fuzzy approach, the uncertainties are smaller in pre-fusion than in joint inversion,

which is consistent with the general behaviour of this approach. Adding data sets from D-

InSAR reduces the uncertainties in both conventional and fuzzy approaches. Figure 9(b)

and (c) illustrates this effect in the conventional approach. In the far field of the fault,

where data sets from D-InSAR are available, the uncertainties are reduced (Figure 9(b)

with D-InSAR data sets with respect to Figure 9(c) without D-InSAR data sets), especially

in the Up component. Finally, the uncertainties in the fuzzy approach are always larger

than those in the conventional approach, as shown in Figure 9(b) (conventional approach)

and (e) (fuzzy approach), which is coherent with the synthetic tests in Section 3.3.

Table 4. Height of triangle of intersection in different fusion schemes using
different types of measurements. See corresponding text for details.

Joint inversion Pre-fusion

Fuzzy Cor. Cor., � Cor. Cor., �

hused (m) 0.3170 0.2830 0.5640 0.5294
hnot-used (m) – – 0.1677 0.1445
htotal (m) 0.3170 0.2830 0.3653 0.3405

Table 3. RMS of displacement value in different fusion schemes using different
types of measurements for GLS method. See corresponding text for details.

Joint inversion Pre-fusion

GLS Cor. Cor., � Cor. Cor., �

RMSused (m) 0.1156 0.1133 0.0281 0.0266
RMSnot-used (m) – – 0.2528 0.2301
RMStotal (m) 0.1156 0.1133 0.1337 0.1292

Table 2. RMS of displacement value in different fusion schemes using different
types of measurements for OLS method. See corresponding text for details.

Joint inversion Pre-fusion

OLS Cor. Cor., � Cor. Cor., �

RMSused (m) 0.5468 0.4900 0.3148 0.3120
RMSnot-used (m) – – 0.7835 0.6605
RMStotal (m) 0.5468 0.4900 0.6402 0.5708

88 Y. Yan et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

en
ne

s 
I]

, [
Y

aj
in

g 
Y

an
] 

at
 0

2:
27

 0
5 

M
ar

ch
 2

01
2 



In order to understand the spatial evolution of uncertainty in both approaches, the
ratio of conventional uncertainty to fuzzy uncertainty is performed. In joint inversion, a
geographic effect is observed (Figure 10(a)). It corresponds to the distribution of the
number of available data sets (Figure 10(c)). In the darker area, the difference between two
uncertainties is large, because in this area there are more data sets available. In the
conventional approach, the output uncertainty is reduced. In the fuzzy approach, on the
contrary, the output uncertainty remains constant or increases slightly. Consequently,
the difference between two uncertainties increases. In pre-fusion, the ratio is relatively
homogeneous. As there are only four data sets in the inversion, the effect due to the
different ways of uncertainty propagation is less visible. However, the effect due to the
addition of D-InSAR measurements is observed (Figure 10(b)). In the areas where
D-InSAR measurements are available (Figure 5), as their uncertainties are much smaller
than those of sub-pixel image correlation measuresment, in both approaches, the output
uncertainty is reduced. This results in a less significant difference between uncertainties in
both approaches.

5.3 Discussion

These results show that the conventional approach and the fuzzy approach behave
differently with the different fusion schemes: the conventional approach is adapted to joint
inversion while the fuzzy approach favors the pre-fusion. Consequently, the choice of
fusion scheme depends on the nature of the uncertainty, how to represent and propagate
the uncertainty, and the user’s knowledge of the information sources.

Regarding the conventional approach, with respect to the reduction of random
uncertainty, in most cases, joint inversion is robust. However, in certain cases, joint
inversion and pre-fusion give the same results. For instance, when the same measurements
from both sub-pixel image correlation and D-InSAR are available, the uncertainty of sub-
pixel image correlation measurements is usually much larger than that of D-InSAR
measurements. On one hand, for joint inversion with the GLS method, the contribution
from the sub-pixel image correlation measurements is negligible with respect to the
contribution from D-InSAR measurements. On the other hand, in pre-fusion, only the
D-InSAR measurements are selected in the inversion. Therefore, joint inversion and

Figure 10. (a), (b) Ratio of conventional uncertainty to fuzzy uncertainty, with D-InSAR data sets,
E component in joint inversion and pre-fusion, respectively. (c) Number of available data sets for 3D
displacement retrieval.
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pre-fusion give almost the same results. In this case, pre-fusion is preferable, because it is
less time consuming. Finally, adding measurements from D-InSAR reduces uncertainty
due to their great accuracy, in particular in the far field of the fault where the
measurements of sub-pixel image correlation become less reliable.

The fuzzy approach can be considered as an interesting and intuitive alternative for
representing measurement uncertainty. The fuzzy approach is free from the assumptions of
Gaussian distribution and independence. The output uncertainty is more pessimistic than
for the conventional approach, but more robust when these assumptions are not valid. In
addition, the evolution of uncertainty with different schemes is different from that in the
conventional approach: the output uncertainty is smaller in pre-fusion compared to that in
joint inversion.

6. Conclusions and perspectives

In this article, two fusion schemes, pre-fusion and joint inversion, are investigated in a
linear inversion problem for displacement measurement in geophysics. Two approaches of
uncertainty management, the conventional approach and the fuzzy approach, based on
probability and possibility theory, respectively, are applied. The experimental results are
presented with application to the retrieval of 3D displacement fields at the Earth’s surface
due to the 2005 Kashmir earthquake. The advantages and disadvantages of each fusion
scheme or uncertainty management approach are highlighted by comparisons.

For the conventional approach, adding more data sets leads to a reduction of
uncertainty, which is why joint inversion with the GLS method is the favoured process for
most geophysicists. However, this approach is realised assuming that the uncertainty
associated with each data set is random. In most cases, in order to facilitate the processing,
the independence is also assumed. The fuzzy approach is free from these hypotheses. It
provides a different view of uncertainty management and takes into account the epistemic
uncertainty, which favors the scheme of pre-fusion. With the considered data sets, the
uncertainty obtained in the conventional approach is considered as too optimistic, while
the uncertainty obtained in the fuzzy approach is too pessimistic. As a result, the actual
uncertainty should be situated between these two uncertainties.

In this article, the fuzzy approach has been investigated by modelling the uncertainty
only with a symmetric triangular distribution; the richness and the flexibility of different
fuzzy distributions have not yet been exploited. For post-fusion, because of the geographic
positions of the data sets, it is difficult to implement this scheme with the available data
sets over large area. However, the combination of SAR measurements and optical
measurements by post-fusion will be performed in the future. Furthermore, the application
of fusion schemes and uncertainty management approaches to the estimation of fault
parameters by nonlinear inversion of a mechanical deformation model constitutes an
interesting perspective.

Acknowledgements

This work was supported by the EFIDIR project (http://www.efidir.fr; No. ANR-07-MDCO-004)
and the PAKSIS program CATTELL, granted by the French National Agency (ANR). The authors
thank the ANR for their support. The ENVISAT data sets are available thanks to ESA project
category 1, No. 3802. The authors also thank the reviewers for their help in improving the
manuscript.

90 Y. Yan et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

en
ne

s 
I]

, [
Y

aj
in

g 
Y

an
] 

at
 0

2:
27

 0
5 

M
ar

ch
 2

01
2 



Notes

1. IS6, swath positionning of sensor with a nominal incidence angle of 	42
.
2. IS2, swath positionning of sensor with a nominal incidence angle of 	23
.
3. (E, N, Up) is also known as Local Tangent Plane. It is a geographical coordinate system for

representing state vectors that is commonly used in aviation. It consists of three numbers, one
represents the position along the eastern axis, one along the northern axis and one represents
vertical position.
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