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Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern
for many engineering applications and for natural hazards. More specifically, the mechanisms through which
fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics
leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid
under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on
the broken fibers, following Biot’s theory. The statistical properties of damage avalanches and their evolution
toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new
model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes
comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order,
including for large pressure. The main change concerns the damage acceleration toward the failure that is well
modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing
the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff
divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role
in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under
fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have
considerable consequences on our ability to forecast failure when fluid pressure is acting.
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I. INTRODUCTION

The rupture of brittle materials is of major concern for
many engineering applications and for geomaterials in the
context of natural hazards. There is an important need to
understand the evolution of mechanical properties in the
vicinity of macrofailure in order to identify forerunners and
to progress towards the prediction of failure (e.g., earthquakes
[1], landslides [2], cliff collapse [3], etc.). In many cases, in
both industrial and natural contexts, the progressive damage
developed in presence of fluids can influence the rupture by
modifying the stress state [e.g., Refs. 1–3]. The effect of fluid
pressure on the stress state is generally assessed through the
concept of effective pressure related to Biot’s theory [4]:

σ ′ = σ + bp, (1)

where σ ′ is the effective stress undergone by the bulk material,
σ is the total stress, p is the fluid pressure, and b is Biot’s
coefficient. A part of the fluid pressure, formalized by the b

coefficient, is transmitted to the bulk material. This parameter
represents the sensitivity of the stress to the fluid pressure.
Connectivity is assumed to be sufficiently large to allow
fluid to be present anywhere in the medium. The physical
interpretation of Biot’s coefficient is the fraction of a surface
on which the fluid pressure is applied. In the case of material
partially broken, an analogy can be made between Biot’s
coefficient and the damage parameter, D, defined as the
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proportion of broken surface within the bulk material [5]:

D = S

S0
, (2)

where S is the surface of the broken part of a section
cut into the bulk and S0 is the total surface, or the initial
surface of the undamaged material. Biot’s theory [4] is often
used for analyzing the stress change induced by changes
of water pressure in the case of fluid-induced seismicity,
for landslides triggered by rainfall, and for geotechnical
applications when the material is loaded in presence of fluids
[6]. Many previous works considered a constant value of Biot’s
coefficient, generally near or equal to 1 (e.g., Refs. [1,2]). Such
constant high values are reasonable when considering granular
materials as natural soils or fault gouges for which the solid
contact area is negligible compared with the area in contact
with the fluid and does not significantly change during the
deformation.

Contrastingly, for a material undergoing damage, as de-
formed brittle rocks or fibrous material, the b parameter
should be considered as evolving. By analogy with the damage
parameter, we suggest that, upon increasing load applied to
the material, Biot’s coefficient evolves from b = 0 for an
intact material to b = 1 for a fully broken material. While
several studies on progressive failure account for the evolution
of damage as approaching failure [7–9], the link with the
evolution of Biot’s coefficient has not been considered yet. This
is problematic because the sensitivity of stress to fluid pressure
is likely to evolve when damage increases. Neglecting this
evolution does not correctly reflect the role of fluid pressure
on material progressive damage accumulation. In order to
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correctly account for this mechanism one may consider that
any broken surface of the material contributes to supporting
fluid pressure.

We propose a model that explicitly takes into account the
link between damage and Biot’s coefficient b and the damage
parameter D considering simply b = D. The fiber bundle
model (FBM) [10] is a good candidate for such an application
as it explicitly expresses the proportion of broken fibers, i.e.,
the damage level, and the fact that this proportion increases
when the applied load is increased.

Previous studies based on the FBM under force controlled
loading and equal load sharing (ELS), have reported the fol-
lowing results (for an extended review see, e.g., Refs. [9,11]):

(1) Considering fiber strength spread at random from a
uniform distribution between 0 and 1, macrofailure occurs at
σc = 0.25 and εc = 0.5, for a normalized Young’s modulus,
where σc and εc are the macroscopic stress and strain at failure,
respectively.

(2) The avalanche size s, defined as the number of fibers
failing during a loading step, is power-law distributed, P (s) ∼
s−β , with β = 5/2 for the complete set of avalanches. For
a subset of avalanches occurring close to the macrofailure,
avalanche sizes are also power-law distributed, with a lower
exponent value, P (s) ∼ s−τ , with τ = 3/2.

(3) The susceptibility χ , defined as the number of fibers
failing due to an infinitesimal change of the external stress
(σ ), χ = δ	s/δσ , follows a power-law divergence with the
applied stress χ ∼ (σc − σ )−1/2.

The same behavior is observed for the relaxation time T ,
which is the number of stress redistributions that the bundle
takes to come to a stable fixed point at an external stress
σ,T ∼ (σc − σ )−1/2.

(4) At the critical stress value σc, a fiber bundle shows a
phase transition from a partially to a completely broken state.
Different arguments have been proposed to establish the order
of this phase transition [[11], p. 508]. For fiber bundles with
global sharing rule, the proportion of surviving fiber, U , has
been used to define the order parameter O [12]:

O = U (σ ) − U (σc) (3)

near the failure, O ∼ (σc − σ )1/2, showing a continuous
transition from 1 to 0.

This transition can be alternatively analyzed by considering
the branching ratio ζ [13,14]. ζ represents the probability to
trigger future breaking events given an initial individual failure
and is related to the number of broken fibers by

ζ = 1 − 1

〈s〉 , (4)

〈s〉 being the mean avalanche size. ζ continuously approaches
the value 1 at the critical stress σc starting from zero for very
small σ . It also shows a power-law trend, (1 − ζ ) ∼ (σc −
σ )1/2. Therefore (1 − ζ ) acts as an order parameter, showing
a continuous transition at the critical point, signaling a second
order phase transition [13].

In the present work, the effect of fluid pressure is accounted
for by considering that fluid pressure is applied on each
broken fiber, of unitary surface area, whereas the total load
is sustained by the surviving (unbroken) fibers. The broken
fibers represent the porosity of the material, which increases

as damage progresses and through which the fluid pressure
is applied to the solid skeleton. The fluid is supposed to be
present everywhere, between the fibers, so that fluid pressure
may be applied on any fiber without need of connectivity
and independently from the damage state. This is a common
hypothesis made in Biot’s theory.

The paper is organized as follow. We first describe the
change we make on the FBM to include the effect of fluid
pressure. This new model is called fiber bundle model pressure
(FBMP). Then the analysis of the statistical properties of
bound breaking avalanches in the presence of pressured fluid
is performed with particular focus on the evolution of these
properties in the vicinity of failure and for a range of fluid
pressures. This behavior is compared with the dry FBM, i.e.,
the original model without fluid pressure. The implications for
the predictability of failure in the presence of fluid pressure
are discussed.

II. METHOD

We consider the basic hypothesis that within a fiber bundle,
the broken fibers represent the porosity of the damaged
material on which the fluid pressure is applied. No fluid flow
is considered, i.e., only static fluid pressure is accounted for.
The fluid is considered to be present everywhere, between
the fibers, so that fluid pressure may be applied on any fiber
without need of connectivity between broken fibers. This is a
common hypothesis made in Biot’s theory. Accordingly, the
FBM is modified to include the effect of fluid pressure on the
broken fibers.

This needs to consider the section of the fibers, a, in order
to calculate the force resulting from pressure applied. The total
force, FT , supported by the bundle is calculated as the sum of
an external load, Fext, and the load resulting from the fluid
pressure applied on broken fibers, Ffluid:

FT = Fext + Ffluid, (5)

Ffluid = panb, (6)

where p is the fluid pressure, nb the number of broken fibers.
It should be noted here that the usual FBM is recovered when
p is set to zero. Considering the proportion of surviving fibers,
U = ns/N , where ns is the number of surviving fibers and N

is the total number of fibers, ns = N − nb.
The impact of the pressure on stress and strain can be

demonstrated using a similar analysis as the dry FBM (e.g.,
Ref. [10]). The stress undergone by the each unbroken fiber is
calculated considering the global shared load rules:

σfiber = FT

ans

. (7)

In the following, a is set to unity for convenience:

σfiber = FT

NU
= Fext

NU
+ p(1 − U )N

NU
. (8)

Here we consider fiber strength randomly drawn from a
uniform distribution ranging from 0 to 1. Consequently,

σfiber = 1 − U. (9)
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Equations (8) and (9) lead to

U = 1 − σ

U
− p

(1 − U )

U
, (10)

where σ is the stress at macroscopic scale,

σ = Fext

N
. (11)

The strain of the whole bundle is similar to that of individual
fibers, since fibers are parallel and oriented in the direction of
loading,

ε = σfiber

Y
, (12)

Y being the Young’s modulus, set to unity for convenience. So

ε = 1 − U. (13)

Equation (9) takes a quadratic form:

U 2 − U (1 + p) + σ + p = 0. (14)

The physically meaningful solution to this equation is

U = 1 + p

2
+

√
1

4
(1 − p)2 − σ , (15)

U = 1 + p

2
+ √

σc − σ , (16)

with

σc = 1
4 (1 − p)2, (17)

σc being the stress at failure. As a consequence, the strain at
failure, εc, is

εc = 1
2 (1 − p). (18)

This analysis shows that p strongly influences both stress
and strain at failure. To examine properties of fiber failure
avalanches for various p we performed numerical simulations.
The loading is performed by progressively increasing the
stress applied on the fibers. Each time the stress reaches the
strength of a fiber (the weakest one), the fiber is broken, and
ns,nb, and U are updated accordingly. The external force
is kept constant to simulate stress-controlled loading. The

stress on the remaining fibers is recalculated according to
Eq. (7). The damage, D, corresponding to the proportion
of broken fibers, D = nb/N = 1 − U , is considered to be
equal to Biot’s coefficient, b. Since the number of unbroken
fibers decreases and Fext is kept constant after each rupture,
the stress on the remaining fibers increases and some of
them may reach their rupture point and eventually initiate an
avalanches of ruptures. After each rupture, the stress on the
remaining fibers is recalculated and the fibers reaching their
strength are removed until the system recovers the stability;
i.e., all the fibers are below their strength. The avalanche size,
s, is considered to be the number of broken fibers during
the whole avalanche. The number of iterations to recover
the global stability is considered to represent the duration of
the avalanche. Note that as the fluid pressure is kept constant
and the number of broken fibers increases during an avalanche
the load induced by the fluid also increases. This feature is
the essential particularity of the model developed and is likely
to promote the instability of the bundle when coming close
to macrofailure. To examine this, we analyzed the behavior
of systems with various pressure values. In order to scale the
pressure with respect to the strength of the fibers we considered
p ranging from 0 to 0.95, i.e., close to the maximal value of
individual strength. The case p = 1 is clearly the limit of
the previous analysis. Such a large p value leads to a highly
unstable rupture associated with a few avalanches including
almost all the fibers.

III. RESULTS

The results presented here correspond to N = 106 and
p ranging from 0 to 0.95. Each configuration has been
repeated several times in order to reach a good statistical
representativity. As the number of broken fibers at failure
decreases when p is increased, according to Eq. (13), we
scaled the number of simulations by the factor 1/(1 − p). So
the number of simulations was 102(1 − p) ranging from 100,
for p = 0, to 2.104, for p = 0.95.

Here we report the main observations regarding the role
of p on the behavior of the FBMP. We first verified that all
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FIG. 1. (a) Stress versus strain for fluid pressure ranging from 0 to 0.95. (b) Stress versus strain normalized according to Eqs. (17) and (18).
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FIG. 2. Critical values of strain (εc) and stress (σc) at failure for
fluid pressure p ranging from 0 to 0.95. Dotted lines corresponds to
0.5(1 − p) and to 0.25(1 − p)2 that analytically explain the pressure
dependence of εc and σc, respectively.

the usual properties of the FBM summarized in Sec. I are
recovered when p is set to zero.

The first notable impact of applying a fluid pressure on
the FBM concerns the macroscopic behavior (strain-stress
relation). Both stress and strain are strongly modified by the
fluid pressure in accordance with Biot’s theory (Fig. 1). The
stress and strain value at the maximal strength are dramatically
reduced when an increasing fluid pressure is applied. The
reduction of strain and of the number of broken fibers are
well captured by the scaling factor 1

2 (1 − p) while the stress
decrease scales with 1

4 (1 − p)2 (Fig. 2) according to Eqs. (17)
and (18).

The avalanche size distribution including all the damage
events occurring during the simulation, pdf(s), is well defined
by a power law, pdf(s) ∼ s−β (Fig. 3) with a gradual decrease
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FIG. 3. Probability density function of the avalanche size, pdf(s),
including all the rupture events, for fluid pressure p ranging from 0 to
0.95 (indicated in the legend). Dotted lines correspond to power-law
exponents of −2.5 and −1.5, respectively.
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FIG. 4. Exponent β characterizing the pdf of the avalanche size
for fluid pressure p ranging from 0 to 0.95 (indicated in the legend).

of the exponent β from 2.5 to 1.5 (Fig. 4) when pressure p

becomes close to 1.
In order to examine the size distribution of avalanches

occurring very close to the failure, we selected events with
� = σC − σ < 10−4. Their size distribution obeys a power
law, pdf(s)�→0 ∼ s−τ , with an exponent τ close to 1.5 which
is independent of p (Fig. 5). This is a common feature of
the dry FBM, which indicates that the fluid pressure does not
affect the distribution of damage events close to the failure. The
distribution tail reveals a cutoff induced by finite size effect.

The behaviors of the susceptibility χ (Fig. 6), the order
parameters 1 − ζ and O (Fig. 7) as functions of � remain
unchanged as p is increased. They still behave according to
a power law without significant changes of the exponent that
remains close to 0.5 as for the dry FBM. This indicates that
there is no change in the nature of the transition toward the
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FIG. 5. Probability density function of the avalanche size, pdf(s),
for fluid pressure p ranging from 0 to 0.95 (indicated in the legend)
when � → 0 (i.e., � < 10−4). Dotted line corresponds to a power-
law exponent of −1.5. The cutoff for largest sizes is a finite size
effect.
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FIG. 6. Rate of size event χ as a function of the control parameter
�, for simulations performed with pressure p varying from 0 to 0.95
(indicated in the legend). Dotted line corresponds to a power-law
exponent of −0.5.

failure that can be considered to be continuous even for large
values of p. Only the range of definition of the power law
is reduced due to the decrease of σc as p is increased. That
reduces our ability to forecast the failure.

IV. DISCUSSION

As mentioned previously, the aim of our work is to
investigate the role played by the fluid pressure on the failure of
heterogeneous brittle materials. In the model developed here,
the behavior of the dry FBM is fully recovered for p = 0.

When accounting for the fluid pressure (i.e., for p > 0),
the macroscopic behavior σ versus ε is kept unchanged in
terms of shape. This is not surprising since the modification
made to the model does not affect the rheology of the fibers.
At the macroscopic scale, accounting for the fluid pressure
thus results in a reduction of the maximal external load
supported by the bundle. Both stress and strain values at

the macrofailure decrease. This reduction is well accounted
by the scaling factors (1 − p) for strain and (1 − p)2 for the
stress, established analytically and well verified numerically
(Fig. 2). As the fiber strength is spread at random from uniform
distribution between 0 and 1, the value p = 1 appears as a
peculiar point where even the critical load vanished. In such
a case, the pressure applied on broken fibers is larger than the
maximal fiber strength, so the failure is highly unstable and
any avalanche may involve the whole set of fibers.

Below the limit of p = 1, the behavior of the FBMP toward
the failure still conforms to a continuous transition as the order
parameters 1 − ζ and O grow continuously when the critical
load is approached.

Contrastingly, the statistical properties of rupture
avalanches are considerably affected by the modification made
to the FBM. The power-law trend of the size probability density
function, pdf(s), of the whole avalanche set is still observed
but it is characterized by an exponent β decreasing from 2.5
for p < 0.5 to 1.5 when p → 1 (Figs. 3 and 4). This could be
simply explained by the narrowing of the stress range, when p

is increased: as the maximal stress decreases, the system comes
closer to criticality. But, considering that the change in β is
not exactly correlated with the narrowing of the stress range
(the decrease of β occurs essentially for p > 0.75, whereas
σc decreases continuously with the increase of p), the stress
range narrowing may not be the only explanation.

This loss of precursory behavior may be interpreted
qualitatively as following: the force resulting from the fluid
pressure applied on the damaged area increases as the number
of broken fibers increases. Thus, during an avalanche, the
number of remaining fibers decreases whereas the amount
of load that the bundle have to support increases, even if
the external load is kept constant. This is likely to induce
larger avalanches compared with the dry FBM, and instabilities
that may lead to macrofailure more rapidly. The abruptness
of the transition to macrofailure increases with the fluid
pressure. When considering avalanches occurring close to
the macrofailure (Fig. 5), the pdf(s)�→0 reveals no change
and shows a power-law trend with an exponent of τ = −1.5,
without any effect of p.
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FIG. 7. Order parameters 1 − ζ (a) and O = U (σc) − U (σ ) (b) against the control parameter � = σC − σ for simulations performed with
pressure p varying from 0 to 0.95 (indicated in the legend). Dotted line corresponds to a power-law exponent of 0.5.
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FIG. 8. Evolution of the avalanches size distribution as a function of the distance to macrofailure, for different values of the fluid pressure,
p = 0 (a, b), p = 0.75 (c, d), and p = 0.9 (e, f). The Panels (a), (c), and (e) display the avalanches size distribution at different � values for
p = 0 (a), p = 0.75 (c), p = 0.9 (e). Panels (b), (d), and (f) display the collapse of the avalanches size distribution according to Eqs. (19) and
(20) for p = 0 (b), p = 0.75 (c), and p = 0.9 (e). The exponents β and τ are obtained from the fit of distributions shown in Figs. 3 and 5. The
exponent γ is calculated according to Eq. (21). The legend indicates the � value corresponding to each distribution.

We analyze now the evolution of the avalanche size distri-
bution as the macrofailure is approached and the relationship
between τ and β. Figure 8 (top) shows the pdf(s,�) for
different ranges of � and different values of p (0, 0.5, and
0.9). The pdf(s,�) can be described as a power law affected by
a cutoff whose size diverges when � → 0. The distribution is
well represented by a power law associated with an exponential
tail that diverges as the control parameter � decreases, i.e., as
the failure is approached:

pdf(s,�) = s−τ exp(s/s0) (19)

with

s0 = �−γ . (20)

The good collapse shown on Fig. 8 demonstrates the pertinence
of this model for the FBMP even for pressure values close
to 1.

Considering the mechanism of sweeping of an instability
proposed by Sornette [15] the γ,τ , and β exponents should be
related according to [16]

β = τ + 1/γ. (21)

In the case of dry FBM, considering the theoretical values of
β = 2.5 and τ = 1.5, the γ exponent should be 1. This is in
good agreement with our numerical estimations.

For the FBMP, when p is increased, as τ remains constant
and β decreases, γ is supposed to increase what is confirmed
by the numerical estimate of β,τ , and γ for various values of
p (see Table I). The increase of the γ exponent corresponds
to a faster divergence of the cutoff size s0, which confirms the
destabilizing effect of the fluid pressure.

TABLE I. Exponents characterizing the distribution of damage
avalanches for p ranging from 0 to 1. β and τ are obtained by fitting
the distributions shown in Figs. 3 and 5. γ is calculated using Eq. (21).
These exponents are used for doing the collapse of the distributions
for various values of p and � (Fig. 8).

β τ γ

Pressure ±0.05 ±0.05 ±10%

0 2.50 1.50 1
0.1 2.50 1.50 1
0.25 2.50 1.50 1
0.5 2.50 1.50 1
0.75 2.45 1.50 1.05
0.85 2.10 1.50 1.65
0.9 1.80 1.50 3.3
0.95 1.55 1.50 >20
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As a summary, for p < 0.75 the exponents remain qua-
siunchanged. For larger values, when p becomes close to
1, i.e., comparable with the largest fiber strength, there is a
considerable decrease of β, which is well accounted in the
model of sweeping of an instability by an abrupt increase of
the γ exponent.

V. CONCLUSIONS AND PERSPECTIVES

Fluid pressure acts as destabilizing agent for the FBM.
The interplay between damage and Biot’s coefficient, that
is explicitly taken into account in our model, modifies the
progressive failure dynamics. The usual observations (power-
law distribution of damage event, failure precursory behavior,
divergence toward the failure) related to the behavior of brittle
heterogeneous material during progressive rupture are still
present as long as the fluid pressure remains not too large
compared with the fiber strength. As the order parameter
continuously grows toward critical load, the macrofailure can
still be regarded as a second order transition, even for large
pressure values. The exponents characterizing the behavior
toward the failure are changed and the progressive acceleration
of damage becomes more abrupt when fluid pressure is
sufficiently increased. This reduces the ability to predict the
failure. From the practical point of view, this highlights the
importance of internal loading in addition to the external
loading. The consequences for the predictability of failure in
the presence of fluid pressure are of major importance.

According to our numerical results, when the ratio of fluid
pressure to material strength remains close to zero, the usual
behavior of the FBM is recovered with small changes of

the characteristic exponents. This could correspond to natural
conditions where the fluid pressure remains limited compared
with material strength, e.g., hydrostatic water pressure com-
pared with lithostatic stress. On the contrary, large values of
fluid pressure, e.g., used for hydrofracturing, that are in the
range of material strength may lead to uncontrolled failure
as experienced in the geothermal site of Basel, Switzerland
[17]. In such a case our results show the need for taking
into account the increase of Biot’s coefficient during the
progressive damage process, which enhances the instability,
whereas many studies considered this parameter to be constant
[18].

We pointed out the considerable consequences that the fluid
pressure can cause on material failure based on a modification
of a simple lattice model, the FBM. It now appears crucial
to pursue the work initiated in this study by accounting for
more realistic scenarios: (1) where fluid flow is induced by
pressure gradients within a porous media, (2) by considering
heterogenous loading and local shear rules in two-dimensional
geometry [19], and (3) by considering a continuous material
and compressive stress states instead of pure tension. This
will allow us to test the applicability to natural systems where
compression is typically the dominant loading mode.
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