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Abstract Partially molten rocks, often called a mush, are examples of a hydrogranular mixture where the
dynamics are controlled by both fluid and crystal-crystal interactions. An obstacle to progress in
understanding high-temperature hydrogranular systems has been the lack of adequate levels of description
of microphysical processes. Here we rationalize the hydrogranular kinematic and dynamic states by applying
the concept of particle (crystal) force chains. We exemplify this with discrete-element computational fluid
dynamic simulations of the intrusion of a basaltic melt into an olivine-basalt mush, where crystal-scale
force chains, crystal transport, and melt mixing are resolved. To describe the microscale kinematics of the
system, we introduce the coordination number and the fabric tensors of particle contacts and forces. We
quantify the changing contact and force fabric anisotropy, coaxiality, and the connectedness of the mush,
under dynamic conditions. To describe the dynamics, particle and fluid characteristic response times are
derived. These are used to define local and bulk Stokes numbers, and viscous and inertia numbers, which
quantify the multiphase coupling under crystal-rich conditions. We employ the Sommerfeld number, which
describes the importance of crystal-melt lubrication, with a viscous number to illustrate the dynamic regimes
of crystal-rich magmas. We show that the notion of mechanical “lock up” is not uniquely identified with a
particular crystal volume fraction and that distinct mechanical behaviors can emerge simultaneously within a
crystal-rich system. We also posit that this framework describes magmatic fabrics and processes which
“unlock” a crystal mush prior to eruption or mixing.

“We cannot define something except in terms of ideas already at our disposal…”

-Clifford Ambrose Truesdell III [1980]

1. Introduction

There is controversy about the duration, dynamics, and physical conditions of magmatic systems [Adam et al.,
2016; Barboni et al., 2016; Cooper and Kent, 2014; Rubin et al., 2017]. Conflicting geological, geochemical, and
geophysical evidence suggest that magmas and migmatites are either short-lived or can persist in a crystal-
rich state for time spans up to 106 years [Barboni et al., 2016; de Silva and Gregg, 2014; Kaiser et al., 2017;
Paterson et al., 2016; Pritchard and Gregg, 2016; Stelten et al., 2017; Ward et al., 2014]. In the plutonic record
this is often expressed as complex time-transgressive mineral and magnetic fabrics with evidence for both
fluid and granular (crystal-crystal) interactions [Collins et al., 2006; Gutiérrez et al., 2013; Holness et al., 2007;
Jerram et al., 2003; Nicolas, 1992; Paterson, 2009; Sawyer, 2008] and in the volcanic record by the eruption
of crystal-rich magmas with a complex crystal cargo [Bachmann et al., 2002; Charlier et al., 2007; Klemetti
and Clynne, 2014; Lindsay et al., 2001; Thomson and Maclennan, 2013] (see Figure 1). Persistent crystal-rich
conditions in basaltic magma bodies have also been inferred based on seismic evidence from ocean islands
and mid-ocean ridges [Lin et al., 2014; Sinton and Detrick, 1992] and by the occurrence of picrites [Rhodes,
1995]. Collectively, these observations have been rationalized with the hypotheses that they are a crystal-rich
mush, waxing and waning in response to open-system input and cooling. A corollary to this so-called “mush
model” for magma systems is that interstitial melt can be extracted to produce crystal-poor evolved magmas
[Allan et al., 2017; Bachmann and Bergantz, 2004, 2008; Hildreth, 2004], a process already documented in mig-
matites [Brown, 1994]. However, the physical mechanisms of crystal-rich mixing and melt extraction from
magmatic and migmatitic crystal-rich systems are complex and poorly understood [Brown, 2004; Brown
et al., 1995], and the simple application of notions like crystal settling and compaction is not always in agree-
ment with the diversity of complex natural examples [McBirney et al., 2009;Walker et al., 2015] or experimen-
tal results [Schmidt et al., 2012]. This reflects the contributions from both buoyancy and deformation-assisted
reorganization of crystal-rich systems, which are often punctuated by open-system events.
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The examples cited above express the diversity of phenomena collectively known as hydrogranular behavior.
In our usage, hydrogranular refers to a saturated, mobile, multiphase mixture where pore pressure is every-
where defined and particles (or particle clusters) exchange forces that can be idealized as point contacts and
can undergo dilation or compaction upon shearing. Even simple hydrogranular media manifest a remarkable
variety of physical states from fluid-like to viscoplastic with dissipation occurring from both granular and
hydrodynamic interactions simultaneously. Yet they poorly recover end-member behavior: they are not
normal solids since they do not produce uniform lithostatic stress, and they do not necessarily manifest affine
behavior when they flow. Hydrogranular media undergo dilation, strain localization, abrupt shear thickening,
disassociation, and can manifest phase segregation. Even at low Reynolds number nonaffine behavior breaks
the time symmetry of the flow, as demonstrated by a multiphase reframing of Taylor’s canonical experiment
[Ness et al., 2017; Souzy et al., 2016]. The challenge in their description is that the length scales required for a
stationary average are not obvious; they have a history and emergent behavior [Bak, 1996]. Hydrogranular
systems are “lumpy,” because the ratio of the particle size to system size is much larger compared to simple
solids or fluids, where properties can be represented by conditions at a point of vanishing size [Haff, 1983].
Hence, the physical description of a hydrogranular mixture takes special care, as granular interactions are
inelastic and dissipate energy over a much smaller length scale than simple fluids. And any process that
produces local segregation can lead to metastable, nonequilibrium “unmixing” of a multiphase system such
that one cannot predict in advance the phase distributions and their microstructures from initial conditions
or global length scales.

Previous efforts at describing nondilute multiphase flow under high-temperature conditions have relied
almost exclusively on the assumption that distinct hydrodynamic and granular modes of dissipation can
be adequately averaged through the notion of a suspension viscosity. This is typically augmented by a
reference state such as a strength threshold or “lock up” [Marsh, 1981]. While these early efforts were novel
and inspired by an insightful assessment of natural examples, subsequent work has not yielded a conver-
gence to a widely applicable set of continuum closures [Petford, 2009], as lab and numerical experimental
results reveal a strong sensitivity to crystal fraction and orientation [Hoover et al., 2001; Martin et al., 2006;
Philpotts et al., 1999; Philpotts et al., 1998; Saar et al., 2001]. Conventional suspension rheology does not
explicitly predict or resolve the emergence of first and second normal stress differences, which signals the
onset of frictional interactions and dilatational strain. The obstacle is that it relies on averaged volume frac-
tions (or porosity) as the dominant state variable, sometimes the only state variable. The purpose of this

Figure 1. Examples of hydrogranular behavior from the crystal to the outcrop scale, over 5 orders of magnitude.
(a) Melt-present cumulate gabbro xenolith where vesiculated brown glass occupies intergranular pores and grain edges
[Bercovici et al., 2016]. (b) 3-D rendering of a computational tomography image of lava from Llaima volcano, Chile. Sample is
~1.2 cm long and contains ~40 vol % crystal on a vesicle-free basis. Glass is green, and crystals are mostly millimeter-sized
olivine (red) and plagioclase (cyan). (c) Crystal-rich gravity currents form schlieren-bounded troughs with strong mineral
alignment fabric, Sawmill Canyon, eastern margin of the Tuolumne Batholith, central Sierra Nevada, California [Paterson
et al., 2008; Solgadi and Sawyer, 2008].
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work is to introduce and exemplify additional levels of description of hydrogranular interactions in crystal-
rich systems, as a first step in linking the characterization of multiphase behavior under dilute conditions
by Burgisser et al. [2005] with the crystal-rich state.

In closing the Introduction, we direct an interested reader to a brief review of the historical development of
ideas that are emphasized in this work. Campbell [2006] (quoting citation in Duran [2000]) points out that
Titus Lucretius Carus (~98–55 B.C.) noticed that a granular solid can flow like a liquid, “One can scoop up
poppy seeds with a ladle as easily as if they were water and, when dripping the ladle, the seeds flow in a
continuous stream.” Themechanical description of natural materials as a granular assemblage was attempted
by Couplet in 1727, 49 years before Coulomb’s influential work on “earth pressure” [1776] which disregarded
the discrete nature of particulate materials [Terzaghi, 1920]. There was little subsequent progress in the
physics of granular materials with the important exceptions of establishing that granular packings are not
hydrostatic by Huber-Burnand in 1829 (and described more fully by Janssen in 1895) [Sperl, 2006], the model
for contact dynamics of Hertz [1882], and the description of dilatancy by Reynolds [1885]. Terzaghi [1920]
noted the limitations in Coulomb’s approach but found a first principles description of granular media
unwieldly and resorted to experiments to explore the average behavior of soil. Smith et al. [1929] attempted
to relate the porosity to the number of particles in contact but did not find a way to assess the magnitude of
the forces carried by individual contacts. R. A. Bagnold produced seminal work on granular flows, proposing a
“grain inertia regime” where the stresses depend on the square of the shear rate [Bagnold, 1941, 1954].
Casagrande and Carrillo [1944] observed that soil samples under loading had both an inherent and induced
anisotropy but did not identify the origins of that behavior. The use of photoelastic discs provided a novel
means to finally observe the nature of force transmission in particulate assemblages and confirmed that it
was nonhydrostatic and skeletal [Dantu, 1957; de Jong and Verruijt, 1969; Oda and Konishi, 1974;
Wakabayashi, 1950]. Biarez and Wiendieck [1963] introduced the important notion of the coefficient of fabric
normal anisotropy, and Satake and Cowin [1978] demonstrated that the normal contact distribution could be
described by a second-order anisotropy tensor. Perhaps the most significant development in the twentieth
century was the advent of the computational tool of the discrete element method (DEM) based on contact
mechanics [Cundall and Strack, 1979]. This allowed for numerical experiments to probe the micromechanics
of particulate mixtures in unprecedented detail, which produced an explosion of new work, much of which is
summarized in a number of (recommended) texts and review papers [Andreotti et al., 2013; Campbell, 2006;
Delannay et al., 2017; Duran, 2000; Forterre and Pouliquen, 2008; Franklin and Shattuck, 2015; Iverson, 1997;
Meier et al., 2007; Oda and Iwashita, 1999; Vermeer et al., 2004].

2. Numerical Experiments of Hydrogranular Processes

To develop and exemplify some relevant concepts of hydrogranular processes, we employ our previously
published discrete element method (DEM) simulations [Bergantz et al., 2015; Schleicher et al., 2016] (please
see Text S1 in the supporting information for a full elaboration of the theory and numerical implementation
and Movie S1 in the supporting information), the nomenclature is defined in Table 1. None of these previous
works have described the stresses and corresponding microstructures as we do here. Briefly, the DEM
method combines a Eulerian representation of the conservation of mass and momentum balance for the
fluid phase, and the motion of a particle of mass m is explicitly solved as a Lagrangian quantity,

m
d
dt

v

ω

� �
¼
X F

Γ

� �
(1)

where t is time and with translational velocity vector v and rotational velocity vectorω subject to force vector
F and torque vector Γ. Our application of the DEM method explicitly resolves particle sustained frictional
contact, collisions, buoyancy, hydrodynamic drag, interphase momentum transfer, and implicitly treats
lubrication; additional information regarding the governing equations and the verification and validation
procedures are in the supporting information and can be found in Garg et al. [2012a, 2012b] and Li et al.
[2012]. The fluid phase is modeled with the usual Navier-Stokes equation on a cell size that is approximately
2.5 particle diameters.

The model system is an olivine-rich magma and is shown in Figure 2; the theory, governing equations,
validation protocols, and simulation parameters are given in the supporting information and Table S1 in
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the supporting information. The domain is 2.56 × 1.28m and initializedwith particles (olivine crystals) that have
been allowed to settle forming a bed within a fluid (magma)-filled reservoir. The reservoir and the pore space
are filled by basaltic melt colored black, giving an average fluid-volume fraction in the bed of ~0.4,
approximating random loose packing. The olivine is colored with horizontal stripes as an aid in visualization;
however, all crystals have the same properties as given in Table S1. New crystal-free basaltic magma is
injected into the domain from the base and is colored white, and mixing between it and the resident melt is
shown as a gradient from black to white. Conservation of mass and pressure relief is provided by mass flow
through the upper boundary. Solid boundaries have a no-slip boundary condition for the fluid and a
wall-friction law for the crystals, but the majority of fluid and particle motion occurs far from the walls, so
boundary conditions have little influence on the dynamics. Since our purpose is to exemplify concepts from
hydrogranular kinematics and dynamics, rather than develop a fully geologically realistic scenario, our
domain is quasi-two-dimensional. In the context of discrete element models that means that the system is
only one crystal wide. However, all the elements of description of the microstructure and methods of
characterization can be directly extended to three dimensions with no loss of generality.

Figure 2 shows four time steps in the numerical experiment. Figure 2a shows the initial condition of a static
bed. Figure 2b is the corresponding initial condition, but where the particle normal forces are identified and
colored by whether they have greater than the instantaneous mean force (red) or less than the mean force
(blue). We use the instantaneous mean, rather than a fixed mean, of all the normal forces to better illustrate
the fluctuating character of the normal forces. Note that the normal force distribution forms a skeletal or
thread-like pattern, which is a manifestation of what are considered to be force chains (described below).
The dimensionless time is given for each time step in the top right-hand corner of Figures 2a, 2c, 2e, and
2g. Dimensionless time is defined as

t� ¼ U0

H0

� �
t (2)

where U0 is the velocity of the incoming crystal-free magma and H0 is the thickness of the mush. The fluid
mechanics and mixing associated with this process have been described elsewhere [Bergantz et al., 2015;

Table 1. Symbols and Parameters Defined

Symbol Definition

ac aN contact and normal force anisotropy index
C number of particle contacts
C constant in Blake-Kozeny-Carmen relationship
D particle diameter
Fc, Fn contact and normal force tensors
Ho mush thickness
I, Ivg, IvP, IIff, IIP inertia numbers: generic, gravity forcing, pressure forcing, gravity free-fall, pressure free-fall
k permeability
m particle mass
n, N particle contact normal, number of contacts
P pressure
s Sommerfeld number
St, StB Stokes number, Stokes number based on bulk shear rate
t, t* time, dimensionless time
Uo velocity of incoming magma
v, vp, vf particle relative velocity, particle velocity, fluid velocity
Z coordination number
α, αI constant in Blake-Kozney-Carman law, constant in friction law
ρp, ρf particle and fluid density
ηf fluid dynamic viscosity
δ, δrough particle gap, particle roughness scale
σΝ particle normal force in lubrication calculation
ϕ, ϕRCP, ϕRLP, ϕpc particle volume fraction, particle random close packing, particle random

loose packing, critical particle volume fraction
μ(Ι) friction law
γ shear rate
τmicro, τmacro local (Lagrangian) and far-field (Eulerian) characteristic time scales
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Schleicher et al., 2016]; our focus here is on the hydrogranular microphysics. The input of new magma is held
steady until t* = 1.65 at which time it is shut-off and the fluidized magma collapses. Figures 2g and 2e
illustrate the process of collapse at t* = 2.07, well after the shut-off has occurred, please see Movie S1.

3. Kinematics of Hydrogranular Media

Here we consider some of the characteristic features of hydrogranular media with an emphasis on crystal-
rich conditions.

3.1. Force Chains

The skeletal, nonhydrostatic distribution of force on a scale larger than the particle size was firmly established
by experiments with optically sensitive discs [Behringer et al., 1999; Dantu, 1957; de Jong and Verruijt, 1969],
3-D X-ray diffraction [Hurley et al., 2016], and later DEM numerical experiments [Cundall and Strack, 1983].
These observations were rationalized with the notion of “force chains” [Antony, 2007] as illustrated in
Figure 3. While there is no singular definition of a force chain, it is generally understood as being a

Figure 2. Four time steps of the discrete element simulation of basalticmelt intruding a basaltmush, and the corresponding
particle normal forces. Domain is 2.56 × 1.28 m. (a, c, e, and g) The progress of mush fluidization and crystal mixing and
(b, d, f, and h) the corresponding normal forces between the particles. Normal forces colored red have larger than the
mean force, and those in blue carry less than the mean force. The mean force is calculated over the entire domain at every
time step and varies between 1% and 10%. See text for discussion and Movie S1 for a full animation. Details of the cal-
culation are found in the supporting information [Alizadeh et al., 2014; Coetzee and Els, 2009; Cole and Hopkins, 2016; Costa
et al., 2010; Davidson et al., 2001; Li and Guenther, 2012; Nakamura and Watano, 2007; Paulick et al., 2015; Peng et al., 2014;
Richter et al., 2003; Ruprecht et al., 2012; Tsuji et al., 1993; Wallace and Bergantz, 2005].
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colinear arrangement of at least three
particles carrying more than the mean
force, and typically has a length of up
to 10 particles. [Cates et al., 1998; Guo,
2012; Muthuswamy and Tordesillas,
2006; Peters et al., 2005; Wambaugh,
2010]. The fundamental topology of a
force chain is that it typically branches,
forming arches, and transmitting force
oriented around some mean at the
macroscale. To quantify force propaga-
tion in granular systems, particle
arrangements can be idealized as
shown in Figure 4, where two particles
A and B are in contact. The contact nor-
mals are given by nAB and nBA, the force
vectors at the point of contact by fAB
and fBA. The branch vector is defined
as a line connecting the fixed centroid
of the particles, which for spherical par-
ticles is the sum of dBA and dAB, but in
nonspherical particles (see section 5)
the radius is not uniquely defined and
the branch vector dimension can
change as particles translate and rotate.

Importantly, the distribution of forces in
a quasi-static hydrogranular media has

a bimodal character [Majmudar and Behringer, 2005; Radjai et al., 1998] with a strong network parallel to
the loading and a weak load-carrying network that is isotropic or slightly perpendicular to the loading, acting
as a type of “pressure.” This is shown in Figures 2b, 2d, 2f, and 2h, where the normal forces with greater than
the instantaneous average force are shown in red and those with less than the average force are shown in
blue. These can be seen to be forming a fluctuating skeletal network of particles with greater than the mean
force distributed quasi-linearly across many particles. These are force chains. Figure 5 shows a circular prob-

ability density function of particle con-
tact normals colored as in Figure 2 (see
Figure 2b), and the corresponding prob-
ability density distributions of the forces
are shown, normalized to the mean
force, that correspond to the time step
in Figures 2a and 2b. The distribution in
Figure 5 is like that encountered in other
studies, where the strong network is
40% or less of the total number of con-
tacts and has an exponential distribu-
tion, and the weak network a power
law distribution [Radjai et al., 1996;
Radjai et al., 1998], confirming that a
simple model of sedimentation and
cumulate formation in a magma body
can produce a crystal mush that can be
described as a hydrogranular system.
Note that in Figure 5a there is a clear
anisotropy to the orientation of the

Figure 4. Nomenclature for an idealized system of particle contacts
between two particles A and B for use in the calculation of the
microstructure.

Figure 3. Schematic of particles under some load, with the resulting force
chain. Force chain branching and the discrete nature of force distribution
are illustrated. The blue particles are so-called spectators in that they carry
less than the mean force.
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load-bearing contact normals, while the more numerous contacts carrying less than the mean force are more
uniformly distributed; this will be discussed in detail below.

The lowest level of description of a hydrogranular media is the particle contact density function, ξ(c), which is
defined as the proportion of particles with an integer number of contacts, c. The coordination number, Z, is
the average number of particle-particle contacts per particle throughout the granular system.

Z ¼
X
c

cξ cð Þ (3)

As a granular media is assembled, the number and distribution of the particle contacts are conditioned by
steric (excluded volume) constraints that produce angular exclusions at an angle of about π/3 for a unimodal
distribution. The occurrence of particle exclusion controls the initial dilatancy, coordination number, perme-
ability, and hence pore pressure transmission and dissipation [Madadi et al., 2004; Radjai et al., 2012]. This
leads to an initial sensitivity in strength and encodes the granular framework with a history [Vanel et al.,
1999] and an anisotropic structural bias.

A consequence of this is that a static granular media is not a simple elastic body since a change in shear orien-
tation can induce a reorganization of the media with dissipation, and local reversibility is not necessarily
achieved [Ness et al., 2017]. This produces a plastic condition called “fragility” that has a dual nature, a micro-
fragile rapid strain response associated with initial contact breakage, followed by a macrofragile structural
response associated with local reconfiguration of the granular media where there is nothing to enforce a spa-
tial or temporal symmetry [Cates et al., 1998; Ness and Sun, 2016b; Ness et al., 2017]. Hence, strength is not
uniquely and universally defined, as incremental increases in loading can lead to a macrofragile reconfigura-
tion of granular elements such that a new (nonreversible) marginal equilibrium load-bearing state is achieved
[Cates et al., 1998], a result anticipated but not completely clarified by Wildemuth and Williams [1984, 1985]
and Kanai et al. [1992]. During deformation the force chains migrate as percolating networks on a time scale
approximately the inverse of the shear rate, where force is discontinuously transmitted by abandoning exist-
ing force chains and the recruitment of particles that were previously spectators into new chains, with the
continuous rotation of the branch vectors (see Figures 2 and 3). In the quasi-static regime this process is

Figure 5. Spatial distribution of normal forces from Figures 2a and 2b which represent the initial condition. Data are taken
from the region in Figure 2b within the central white box. The colors are same as that in Figure 2b, where the red forces
carrying the mean or more than the mean and the blue less than the mean.
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phenomenologically a buckling of the force chain [Cundall and Strack, 1983; Guo, 2012; Tordesillas, 2007;
Tordesillas et al., 2014; Tordesillas et al., 2009]. However, for this buckling to occur it requires a rearrangement
of particles in the region surrounding the force chain, as controlled by the interplay between steric con-
straints and the local void ratio. This produces what is termed a “nonlocal” condition where displacements
require mutual interactions over some length or volume scale that is a multiple of the particle diameter
and a function of the properties of the far-field granular media. The implication of this is that shear rate
depends not only on shear stress but also the degree of mobility in the surroundings [Bouzid et al., 2015a;
Bouzid et al., 2013, 2015b; Mansard and Colin, 2012]. This nonlocal behavior produces shear banding and
strain localization, nonuniform dilation, stick-slip behavior, and nonaffine deformation that yields a noncon-
tinuum condition [Tordesillas, 2007].

3.2. Microstructure: Fabric Tensors and Anisotropy

Hydrogranular systems are inherently anisotropic in the sense that the orientations of applied boundary
forces are not transmitted uniformly throughout the media, as force chains locally branch and redirect
around some mean value. This poses challenges for the description of granular materials as a (plastic) conti-
nuum, where the usual assumption of stress and strain coaxiality is required to formulate the constitutive clo-
sures [Hill, 1950]. Noncoaxiality between contact or shape, and force, normals arises through interactions
involving grain-scale properties such as variable shape and friction [Ai et al., 2014; Jiang et al., 2017; Zhao
and Guo, 2015], perhaps similar to noncoaxiality observed in simulations of melt-present processes in the
Earth’s mantle with viscosity heterogeneity [Butler, 2012; Katz et al., 2006]. To quantify this anisotropy, a
description of the microstructure is required.

Collectively, microstructure refers to the orientation of the particle contacts (normals), the distributions of
forces among those normals, the branch vector orientations which connect particle centers (in nonspherical
cases), and the particle shape primary axis orientation when combined with the coordination number (see
Figure 4). These elements comprise the so-called fabric of the hydrogranular media, expressed as tensor
state variables and can be extended to polydisperse granular systems [Madadi et al., 2004]. Note, however,
that while any probability density function (PDF) of a microstructural element can yield a fabric tensor, a fab-
ric tensor does not yield a unique PDF, This level of description was developed to describe geological exam-
ples [Curray, 1956; Friedman, 1965; Gipson, 1965; Laird, 1970] and soil [Brewer, 1964; Oda, 1972], and the
fabric tensor can be mapped to a directional PDF as exemplified in Figure 6 below [Bathurst and
Rothenburg, 1990; Oda et al., 1985; Rothenburg and Bathurst, 1989]. The fabric tensor represents the average
of the n unit vectors over all particles and can be weighted to express either force magnitude or a particle
shape orientation.

For the contact normals, the tensor Fc is constructed by the spatial integration of the directional probability
density function E(n) over N contacts where ⊗ is the tensor product

Fc ¼ ∮
Ω
E nð Þn⊗ndΩ ¼ 1

N

XN
k¼1

nk⊗nk (4)

which for the two-dimensional case considered here with a Cartesian coordinate system (see coordinate
reference frame inset in Figure 2b), E(n) can be written as E(θ) which produces a symmetric second rank
tensor of trace unity

Fij ¼ 1
N

XN
k¼1

cosθk cosθk
XN
k¼1

cosθk sinθk

XN
k¼1

sinθk cosθk
XN
k¼1

sinθk sinθk

2
66664

3
77775 (5)

The eigenvalues of the tensor are given by

F1

F2
¼ F11 þ F22

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F11 � F22ð Þ2 þ 4F12F21

2

s
(6)
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Figure 6. The circular distributions (probability density functions or PDFs) for both the contact and force microstructures from the area enclosed in the white box in
Figure 2b are shown. (a–d) The four time steps shown in Figure 2. The red curve is the fit to the PDFs based on (9) and (11).
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The fabric tensor given by (5) has two degrees of freedom represented by scalar values ac and θc, where an
anisotropy index can be defined as

ac ¼ 2
F1 � F2
F1 þ F2

(7)

where ac is the deviatoric invariant, or the anisotropy intensity factor, or the coefficient of variation of Fij and a
value of zero indicates an isotropic condition such that contact normals are uniformly distributed in an angu-
lar PDF. The principal direction which is the eigenvector orientation of Fij corresponding to the larger eigen-
value is given as

θc ¼ 1
2
arctan

F12 þ F21
F11 � F22

� �
¼ 1

2
arctan

PN
k¼1

sin2θk

PN
k¼1

cos2θk
: (8)

where θc is the mean. Since E(θ) is a periodic function in θ it can be expanded as a Fourier series as

E θð Þ ¼ 1
2π

1þ ac cos2 πθ � θcð Þf g; (9)

where a second-order expansion has been shown to be sufficient in representing the distribution and takes
a value of 1/2π in isotropic conditions. In three-dimensional situations the contact fabric tensor E(n) would
be described with spherical angles and the Fourier expansion in equation (9) would be replaced by
spherical harmonics, and it should be noted that even if the second rank tensor is symmetric, it is generally
not true that higher-order tensor products such as the fourth or sixth rank tensors will be [Kanatani, 1984].

For describing the distribution of some property in the microstructure such as the magnitude of normal force
associated with the contact, a weighting function, l, operating on the unit normal vectors is introduced,

FN ¼ ∫
l
∮
Ω
lE πn; lð Þn⊗ndΩdl ¼ 1

N lk
� �XN

k¼1

lknk⊗nk (10)

where hlki is the average of l over k and expressing the distribution as a Fourier expansion as before yields,

FN ¼ FNh i 1þ aN cos2 θ � θNð Þf g (11)

where

FNh i ¼ ∫
2π

0
l θð Þh idθ (12)

The contact and force weighted normals for the four time steps shown in Figures 1b, 1d, 1f, and 1h are
shown in Figure 6 for the region within the white box in Figure 2. We choose to examine a fixed region
of the simulation as a reference volume, rather than a fixed particle population. This is because we wish
to examine all the coupled hydrogranular processes as a time series, and the highly intermittent nature
of the particle behavior with particles transitioning between active and rest states, being expelled from
the mixing bowl and so on, made identifying a representative particle population a priori rather arbitrary
and unwieldly. We also sought to capture the instantaneous force fabric from fluidized to a fully rest state,
connected to the boundary where force chains are ultimately anchored. Hence, we elected to employ a
representative volume for purposes of demonstration, as it captures the entire range of the fluctuating
and quasi-static behavior.

The initial condition at t* = 0 is nearly isotropic, with a slight anisotropy in the vertical direction as loading
from gravity is parallel to the coordinate axis. Of course, truly isotropic conditions can never be achieved in
discrete media due to steric (excluded volume) effects from particles [Radjai et al., 2012]. The maximum
principal stress associated with the fluid thrust from the incomingmagma is in coaxial alignment with gravity,
so anisotropy quickly develops in the force contact normals as shown in Figure 6c at t* = 1.48. After the input
is shut-off at t* = 1.65 and the crystals begin to slump and settle into a bed, the anisotropy starts to diminish
as shown by Figure 6d.
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The coaxiality between the contact orientations and the force fabrics is presented in Figure 7 using Fc or FN as
appropriate. The left axis is the difference between the magnitudes of the anisotropy of ac and aN, both
calculated from an equation like (7) for particles within the white frame in Figure 2b, as a function of dimen-
sionless time as given in (2). The right-hand axis is a direct measure of the noncoaxiality as expressed through
the difference of θN and θc. After an initial strongly transient phase associated with the intrusion of the new
melt and the disruption of the granular bed, progressive fluidization reduces the number of contacts and
force chains are responding to support provided along the hanging wall of the faults that define the steady
state fluidized region (we call this region the “mixing bowl” [Bergantz et al., 2015]). Once the strong transi-
ent has passed, the angular measure of the coaxiality varies over a few degrees. This is not surprising as
both the gravity and the new injection are acting in a parallel direction. The “noise” or variability is due
to the fact that there is circulation within the fluidized region. One implication of this is that any natural
mineral fabric formed under hydrogranular conditions (as opposed to that from grain-boundary processes)
there will always be some inherent stochastic bias when looking at the interplay between forces and result-
ing fabrics under melt-present conditions [Zhao and Guo, 2015]. Perfect coaxiality can be approached but
never exactly achieved under natural conditions.

Figure 8 shows the coordination number Z and the contact anisotropy ac as a function of dimensionless
time, the four panels from Figure 2 are called-out along the time axis. A near-linear loss of contacts from
fluidization finally terminates at about t* = 0.275 which is when the initial input from the newly injected
magma finally breaks through and fluidizes the bed. Recall that the idea of fluidization is that support
against gravity is provided by hydrodynamic drag, so the value of the coordination number is a measure
of the particle “connectedness” in the absence of externally supported force chains in addition to contribu-
tions from the quasi-static, but fluctuating, unfluidized region below the mixing bowl. In triaxial tests it has
been shown that contacts are gained in the direction of greatest principle stress as force chains grow in
number and length with a preferential loss of contacts in the direction of greatest extension [Rothenburg
and Bathurst, 1989]. This also corresponds to a spike in the contact anisotropy, as there are no longer
crowding constraints on the vertical transport. After the injection of new magma is terminated and particles
settle individually and as slumps, the support fabric of force chains is reestablished and the coordination
number rises accordingly, with a reduction in the contact anisotropy.

As discussed above, the particle contact anisotropy, ac, is generated by the simultaneous gain of particles in
the direction of shortening and loss in the direction of extension. But this simple notion is complicated if
there is material transport. In Figure 8, there is a reduction in coordination number but an increase in

Figure 7. The anisotropy microstructure of the simulation in Figure 2 (area within the white box on Figure 2b) as a function
of dimensionless time as given by equation (2). Left axis is the difference between the magnitudes of the force and contact
anisotropy, and right axis is the circular PDF of the difference between force and contact distributions. The four panels
shown in Figure 2 are called-out on the horizontal time axis at their respective points; the shut-off time for the injection of
new magma is shown as well.
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anisotropy. This can be explained as a result of our initial configuration where gravity and the upward
fluidizing input are opposing and collinear. So even though the largest net extensional strain is vertical,
that is also the direction of the largest unbalanced principle stress. This yields competing effects: vertical
extension lowers the local particle volume fraction and hence coordination number, but of the remaining
contacts, there is a vertical bias as gravity and the opposing upward flow drive them together.

Changes in anisotropy associated with nearly constant coordination number during the quasi-steady time of
about t* = 0.44 to t* = 1.65, as is evident in Figure 8, are harder to rationalize in that way. If anisotropy is not
generated by topological changes in the contact network by contact gain or loss, some other mechanism at
nearly constant coordination number must be present. Kruyt and Rothenburg [2016] and Mutabaruka et al.
[2014] propose a second source of dilation and hence changes in ac by network distortion at constant Z.
However, the coordination number and averaged particle volume fraction in our simulations are lower than
those studies, especially in the fluidized region, so it is an open question as to whether a distortion mechan-
ism, which implies a sustained contact network, is the explanation.

To assess the relationship between the coordination number and the contact anisotropy, we examined the
coherence of their respective time series, in the quasi-steady period from t* = 0.44 to t* = 1.65; the interval
is identified on Figure 8. Assuming that a sampling interval of t* = 0.003 provides a stationary (ergodic)
record, we detrended each time series to remove any linear bias and dc offsets, and the filtered time series
are shown in Figure 9 (top left). Figure 9 (top right)shows the periodogram (power spectral density esti-
mate) for the two time series; most of the power is in the low frequencies so data are shown only to a
dimensionless frequency of f* = 21.8. The magnitude-squared coherence of the two periodograms is shown
in Figure 9 (bottom)for a larger range of frequencies. But the lack of strong coherence above say, 0.75,
indicates that a temporal causation is unlikely (assuming that correlation equals causation). The rapid
fluctuations in contact anisotropy as shown in Figure 8 might then be the result of hydrodynamic and pore
pressure fluctuations arising from complex behavior within the fluidized region. Consider that the particles
used in Figures 4–8 do not come from a uniform kinematic regime (see Figure 10). For example, in Figure 2e,
some particles are undergoing large-scale circulation within the “granular vortices” in the upper regions of
the mixing bowl, while in the lower regions particles are slumping into the chimney and getting periodi-
cally entrained vertically and rapidly transported up the central chimney. Hence, the microstructure is
perhaps more conditioned by intermittent fluid process than particle contact-friction until the shut-off
is reached.

Figure 8. Coordination number, Z, and contact anisotropy index, ac, as a function of dimensionless time, for the region
within the white frame in Figure 2b. The four time steps shown in Figure 2 are identified along the dimensionless time
axis as is the shut-off time. During the initial fluidization transient, the coordination number drops as expected, as particle
volume fractions are reduced. Once the fluidization has reached a steady state, the coordination number varies around an
internally determined value. After shut-off and the collapse of the fluidized region with an associated local increase in
particle volume fraction, the coordination number rises as support is reestablished with the subjacent bed.
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4. The Dynamics of Hydrogranular Media

The challenge in describing the dynamics of multiphase flow is that there is a multiplicity of coupling and dis-
sipative processes, producing emergent cooperating and competing length and times scales [Bak, 1996;
Crowe, 2006]. One strategy that has been successful in describing dilute flows has been separating the local

Figure 9. Detrended time series, periodograms, andmagnitude-squared coherence for time series of coordination number
Z and the contact anisotropy, ac. See text for discussion.

Figure 10. A color contour plot of the viscous number Ivg, equation (30), at dimensionless time t* = 1.48, compare with
Figures 2e and 2f. The white contour line separates regions with greater or less than a volume fraction of particles of 0.5.
The red dashed line is the outline of the mixing bowl. The value of α was calculated with a value of C = 44, appropriate for
frictionless spheres, and at ϕ ≤ 0.304, α was set to 0.081 to avoid unrealistic values in the very dilute regions where
equation (19) does not apply. See text for discussion.
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(Lagrangian description) phase behavior of the subordinate phase, such as a crystal, from far-field averaged
behavior of the carrier phase, a melt or gas (Eulerian description). For example, one common way to express
the momentum coupling is by the dilute Stokes number,

Stdilute ¼ τmicro

τmacro
(13)

where τmicro is the characteristic response time of a particle subject to a force from the carrier fluid operating
over the far-field characteristic time scale τmacro [see Burgisser et al., 2005, and references therein]. If this ratio
is small, the particle motion is a tracer, completely dictated by that of the bulk fluid, and the system can be
treated as a pseudo-single phase material whose properties are described by a weighted average of the
phase proportions. If the ratio is very large, the particle and host fluid are not well coupled and the particle
acts as a ballistic whose motion can be described independently of that of the fluid. Hence, the Stokes num-
ber provides a compact way to identify the extent of the multiphase coupling.

Extending this framework to particle-rich hydrogranular systems is not obvious, as particle-particle interac-
tions can be frictional or collisional, and hydrodynamic forces such as pore pressure and lubrication occur.
And importantly, hydrogranular media can undergo a volume change upon shear, manifesting either dilation
or compaction [Modaressi et al., 1999;Wroth, 1958], and strain is accommodated by particles passing over and
around each other. However, if the collective behavior of the granular mixture can be considered stationary
(in the dynamic sense) by a suitable averaging, it can be described as a “granular continuum” with a charac-
teristic time scale. Conceptually, this granular continuum plays the same role in controlling the macroscopic
time scales as the fluid does in the dilute case. And as described in section 3 above, the transmission of force
in the hydrogranular mixture depends on the coordination number or the compactness of granular mixture.
Hence, any process that acts to dissociate the granular mass, producing particles that decrease their coordi-
nation number and become ballistic, is equivalent to a high Stdilute for the dilute case. Conversely, processes
that act to keep particles in mutual contact are the equivalent to a small Stdilute in that the particle follows the
bulk granular flow.

4.1. Particle Response Time and Inertia Numbers

To obtain an appropriate form for the particle response time, consider a truncated version of the particle
equation of linear motion (1), where the lubrication force is omitted (scale analysis as in Andreotti et al.
[2013] demonstrates that it only changes the particle response time by a factor of 3):

π
6
ρpd

3 dvp
dt

¼ π
6
Δρd3g� Fd (14)

where vp is the particle velocity, d is the particle diameter, Δρ is the density difference between particles and
fluid, g is the scalar acceleration of gravity, and ρp is the particle density. In the absence of fluid drag, Fd, the
time scale for a particle to free-fall a distance d is given by

τff ¼
ffiffiffiffiffiffiffiffiffiffi
2dρp
Δ ρg

s
(15)

In the case of neutrally buoyant particles or if the particle restoring force is described by a confining pressure,
P, acting over the projected particle area instead of gravity,

π
6
ρpd

3 dvp
dt

¼ π
4
Pd2 � Fd (16)

the free-fall time scale over a distance d is given as

τff ¼ d

ffiffiffiffiffiffiffi
3ρp
P

r
(17)

Assuming that the particle Reynolds number, Rep, is less than unity where

Rep ¼
ρf d vp � vf
�� ��
ηf

(18)
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ηf is the fluid viscosity, the drag force can be expressed analytically. If Fd is a simple fluid drag, the information
that conditions are dense (i.e., that particles are in close proximity) is lost. Following Cassar et al. [2005] we
employ a version of Fd that explicitly incorporates the resistance to particle motion associated with the pore
pressure generated by the restoring particle having to displace fluid through the adjacent granular media of
permeability k = αd2 where α is approximated by the Blake-Kozeny-Carman relationship [Bachmann and
Bergantz, 2004],

α ¼ 1� ϕð Þ3
Cϕ2 (19)

where ϕ is the solid volume fraction and C is a constant of order 101 to 102. There is some uncertainty in the
value of α that arises from the fact that the granular framework is not a fixed permeable media and can also
deform in response to local pore pressure fluctuations. In particular, this drag is not valid for dilute systems.
We set the lower bound of α to 1/12 so as to recover the simple fluid drag (see below). The pressure drop
across the projected area is ηfdvp/k producing a drag force,

Fd ¼ π
4α

ηf dνp (20)

The solution to (14) with this drag is

νp tð Þ ¼ 2
3
Δ ρg αd2

ηf
1� exp � 3ηf

2αρpd
2 t

 !" #
(21)

which for long times becomes

νp tð Þ ¼ 2Δρgαd2

3ηf
¼ d

τvD
(22)

where the characteristic viscous time scale with pore fluid expulsion modeled by Darcy drag is

τvD ¼ 3ηf
2Δρgαd

(23)

If instead the fluid drag, Fd, is modeled as simple Stokes flow,

Fd ¼ 3πηf dνp (24)

The characteristic viscous time scale is given as

τvS ¼ 18ηf
Δρgd

(25)

The ratio of the two viscous time scales depends critically on the value of α which varies between 0.01 and
0.0001 and suggests that the Darcy drag produces 10 to 1000 times more dissipation than the Stokes
drag scaling.

If the restoring force is provided by a confining pressure as in (16) with the Darcy drag (20), the characteristic
viscous time scale can be expressed as

τvDP ¼ ηf
αP

(26)

It is customary in the dense granular physics community to define a Stokes number which is the ratio of the
free-fall and fluid drag time scales, expressing the relative contributions of grain inertia and viscous effects in
the time scale of the restoring motion. For a gravitational restoring force and a Darcy drag law as in (23) the
Stokes number is

Stdense ¼ 2αd
3ηf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dgρpΔρ

q
(27)
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It should be noted that the use of the dense Stokes number in (27) is not conceptually the same as the dilute
Stokes number defined in (13), as it does not involve the far-field granular media time scale. This macroscopic
time scale, τmacro, of the granular media is the inverse of the externally imposed shear rate γ̇,

τmacro ¼ 1
γ̇

(28)

By combining the two time scales, one for the particle response and one for the bulk granular flow, one can
define a quantity called an inertia number, I,

I ¼ τmicro γ̇ (29)

where τmicro can be chosen from the various solutions to equation (14) above. The inertia number serves the
same role for dense hydrogranular flows as does the Stokes number for the dilute case as given in equa-
tion (13), in that it is a measure of the coupling of a particle to the surrounding granular media undergoing
shear. The inertia number was first termed as such for dry granular flows by da Cruz et al. [2005] but also
developed by dimensional arguments previously [MiDi, 2004]. For hydrogranular conditions the inertia num-
ber can be decomposed into two contributions, the hydrogranular viscous number which includes both fric-
tional and viscous contributions to the dissipation [Boyer et al., 2011; Ness and Sun, 2015; Trulsson et al., 2012]
Ivg, where with gravitational forcing and Darcy drag,

Ivg ¼ 3ηf γ̇
2Δρgαd

(30)

or with a confining pressure restoring force and Darcy drag,

IvP ¼ ηf γ̇
αP

(31)

and an inertia number, associated with the free-fall time scale (15),

IIff ¼ γ̇

ffiffiffiffiffiffiffiffiffiffi
2dρp
Δρg

s
(32)

or with an externally applied pressure using (17) in (28),

IIP ¼ d γ̇

ffiffiffiffiffiffiffi
3ρp
P

r
(33)

4.2. Lubrication Forces

Lubrication refers to the force required for two approaching or diverging particles to squeeze or suck fluid
into the gap between them. While usually considered a repulsing force, it can also inhibit particles from being
separated (consider the difficulty of drawing a viscous fluid into a syringe). For example, if a hydrogranular
framework undergoes a distortion or dilantancy such that there is a local redistribution of the void space,
transients in pore pressure will occur. This can have a dual effect—both acting as a local fluidizing agent
but also inhibiting phase relative motion as viscous fluid must be drawn into the pore space. This produces
an apparent yield strength [Iverson et al., 2000; Pailha et al., 2008], as observed in the simulations of
Mutabaruka et al. [2014].

Lubrication forces have slightly different expressions depending on whether particle motion is normal (par-
ticles approaching or diverging) or tangential (particles translating past each other). Both expressions, how-
ever, share some similarity [Marzougui et al., 2015] in that the scaling can be illustrated by the normal forces
only. A general form for the normal lubrication force for spheres can be expressed as [Brenner, 1961; Kim and
Karrila, 1991]

F lub ¼ 3πηf d
2δ̇

2 δþ δrough
� 	 (34)
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where δ is the width of the gap between particles and δrough is the characteristic length scale of the particle
surface roughness. Although lubrication is present in any particle-fluid multiphase flow it is rarely treated
explicitly in dilute flows, such as dilute pyroclastic flows where the viscosity is low, the particle relative velo-
city is high, and sustained frictional contact infrequent. Under these conditions collisions are the dominant
means of particle-particle energy dissipation (expressed as a “granular temperature”) and the lubrication
force is not explicitly modeled but included by modifying the coefficient of elastic restitution [Izard et al.,
2014; Yang and Hunt, 2006].

Lubrication forces are largest when particles nearly touch each other. A characteristic lubrication time scale,
τlub, can be defined by evaluating Flub at δ = 0 and expressing how long it would take for the particle to travel
over a characteristic distance when subjected to a normal stress of magnitude σN. Coussot and Ancey [1999]
propose that this characteristic distance is the mean distance between the two centers of neighboring
particles, which has the advantage of linking τlub to crystal volume fraction:

b ¼ d
2

ϕRCP

ϕ

� �1=3

(35)

where ϕRCP is the value of the random close packing. Recasting (35) as

3πηf d
2δ̇

2δrough
¼ πdσn

4
(36)

and rearranging it yields

δ̇ ¼ δroughσn
12ηf

¼ b
τlub

(37)

where

τlub ¼ 12ηf b
δroughσn

(38)

As discussed in section 4.3 below, the transition from a hydrodynamic state of fully lubricated contacts to a
frictional, contact-dominated state by the breaking-down of lubricating melt films is associated with pro-
found rheological changes, such as discontinuous shear thickening and jamming. This transition is expressed
by a dimensionless number, s, which is proportional to τlub/τmacro [Coussot and Ancey, 1999]:

s ¼ ηf b γ̇
σnδrough

(39)

The dimensionless number s given by (39) was called Leighton number by Coussot and Ancey [1999] but is
currently more commonly referred to as the Sommerfeld number [Fernandez et al., 2013; Stachowiak and
Batchlor, 2013]. At large values of s, the so-called hydrodynamic regime, a fluid layer separates the two par-
ticle surfaces and so the bulk coefficient of friction depends on the value of s, not just the dry value of the
particle-particle friction coefficient. However, when s ≪ 1, the system is in a contact frictional regime, the first
normal stress difference is nonzero, and the bulk friction depends weakly on s and is described by the dry
friction coefficient [Clavaud et al., 2017; Fernandez et al., 2013]. For geological applications we consider a
roughness scale of δrough = 1 μm. In an environment where s is not spatially uniform jamming is initiated
locally, and a hydrogranular media can manifest very heterogeneous irreversible behavior, a process perhaps
common in crystal-rich magmas.

4.3. Jamming and Regimes of Dynamic Behavior

The jamming of granular materials is of wide interest and has been the subject of numerous reviews and
ongoing investigation [Andrea and Sidney, 2010; Banigan et al., 2013; Behringer, 2015; Grob et al., 2014;
Siemens and van Hecke, 2010; van Hecke, 2010]. A detailed exposition on the subject is beyond the scope
of this work, so we will summarize a subset pertaining to frictional, viscous suspensions as that is of most rele-
vance to magmatic processes; consideration of geological applications are given in section 5 below.

Journal of Geophysical Research: Solid Earth 10.1002/2017JB014218

BERGANTZ ET AL. HYDROGRANULAR DYNAMICS 17



In the traditional scenario, jamming, also referred to as lock up, has been indexed to a critical particle volume
fractionϕpcwhere the viscosity diverges, and the material has finite bulk and shear moduli. However, volume
fraction alone does not uniquely identify the spatial distribution of phases in that average volume, only the
number. Relationships that attempt to relate porosity to coordination number, Z, have been proposed [Field,
1963; Oda, 1977; Smith et al., 1929], but this does not carry any information about which contacts are load
bearing or their orientation. However, if the local void distribution is considered as a local fabric tensor as
in equation (8), and then combined with other microstructural descriptions, it can add significant information
[Fu and Dafalias, 2015; Li and Li, 2009].

For frictionless spheres jamming occurs through excluded volume effects and is generally understood to be
the value of the random close packing, ϕRCP, which is approximately 0.64 in 3-D and 0.84 in 2-D [Kamien and
Liu, 2007]. For frictional packings, the value of the packing depends on the particle friction coefficient and can
go from the ϕRCP down to 0.54 in 3-D and 0.77 in 2-D which is often called random loose packing,ϕRLP [Dong
et al., 2006; Farrell et al., 2010; Onoda and Liniger, 1990; Song et al., 2008]. This highlights the significance of
particle friction in mediating the stress distribution and strength which is also expressed by changes in the
coordination number (3). For example, the coordination number for frictionless particles at ϕRCP in 3-D is
5.96 and for 2-D it is 3.96 and for frictional spheres at ϕRLP is 3.88 in 3-D and 2.97 in 2-D (bidisperse)
[Silbert, 2010]. The important observation is that an increase in friction yields jamming at a lower value of
ϕpc at a corresponding lower value of the coordination number, Z. In our simulations shown in Figures 2
and 8, the coordination number is higher than that predicted by Silbert [2010]. This is because our initial pack-
ing was created by monodisperse particle settling in a vacuum, yielding an initial condition with a packing
between ϕRCP and ϕRLP with some regions in a hexagonal coordination. Perfect 2-D hexagonal packing
would produce an initial coordination of 6; the coordination number at the start of the simulation in
Figure 2 was 4.8.

This jamming at lower values of ϕ in frictional systems is the result of the breakdown of lubrication and the
onset of frictional contacts with the appearance of force chains as described in section 3.1 [Fernandez et al.,
2013; Ness and Sun, 2016b; Wyart and Cates, 2014]. It is now understood that this process is fundamental to
the rheology of hydrogranular flow and signals the onset of the so-called “boundary lubrication” frictional
regime distinct from the “hydrodynamic” regime, where lubrication films are intact and particle friction plays
almost no role [Bi et al., 2011; Clavaud et al., 2017; Fernandez et al., 2013; Grob et al., 2014; Mari et al., 2014]. A
hydrogranular system in the hydrodynamic regime will jam at a value of ϕ = ϕRCP, like that of
frictionless systems.

The Sommerfeld number (39) provides the criteria for this transition between boundary and hydrodynamic
states of lubrication and explains why there are two states of jamming possible in a hydrogranular
systems: (1) In the hydrodynamic lubrication case, jamming occurs closer to a single value of ϕ and is
not sensitive to values of particle friction coefficient, and (2) a so-called shear-jamming regime, associated
with the onset of frictional contacts, the emergence of a force chain network, and a value of ϕpc that is
not single-valued and depends explicitly on the value of the particle-particle friction coefficient. The emer-
gence of frictional behavior is now understood as contributing to continuous (suspension viscosity is
proportional to shear rate) and producing discontinuous (large discontinuous jumps in suspension viscos-
ity as a function of shear rate) shear thickening as well [Clavaud et al., 2017; Lin et al., 2015; Majumdar
et al., 2017; Mari et al., 2014; Ness and Sun, 2015, 2016a, 2016b; Peters et al., 2016; Royer et al., 2016;
Wyart and Cates, 2014].

Hence, the presence of lubrication changes the traditional picture of the rheology in two ways. The first is
that the progress to a rheological state and the value of ϕpc depends not only the shear rate but on the
absolute value of the forces needed to initiate the boundary-lubrication regime. This is clearly expressed
in (39), where normal forces compete with viscosity for control of the transition between the boundary
and hydrodynamics states of lubrication and hence frictional control. Importantly, in the same system at
the same time, the value of the lock up can be changing both locally and globally as a function of local crys-
tal properties such as modal size distribution, orientation, and local stresses. There is no singular value of ϕpc

that is globally applicable, as observed from diverse geological examples. The second implication is that
phenomena like discontinuous shear thickening, often observed in hydrogranular systems, are not the same
as a jammed state. It is a fragile condition, with intermittent flow [Vitelli and van Hecke, 2011], and depends
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not only on the shear rate but also the value of the stress and the packing perhaps as observed in the experi-
ments of Picard et al. [2013].

The inertial numbers can be employed to compose a constitutive model for hydrogranular media assuming
a bulk friction law, widely known as the μ(I) rheology which accounts for shear thinning, thickening, and the
onset of frictional behavior [Boyer et al., 2011; Ness and Sun, 2015, 2016a; Trulsson et al., 2012]. This rheology
accommodates the importance of normal forces that arise from frictional particle contacts, a process that is
not resolved in a suspension rheology (mixture theory) framing. If one assumes that the flow is homoge-
neous (affine),

μ Ið Þ ¼ μ1 þ 1:2K1=2 þ :5K (40)

where

K ¼ Ivg;P þ αI II2 (41)

and where the constant αI is about 0.3 and where μ1 can be taken as the bulk value of dry friction, commonly
around 0.38. Ness and Sun [2016a] point out that this value is dependent on the value of the particle (local)
friction and introduce a means of calculating that as a degree of freedom in the proposed rheology.
Importantly, equation (40) does not diverge at a critical volume fraction like the traditional suspension rheol-
ogy models do. However, this local rheology must be applied with caution close to the jamming transition
where sustained frictional contacts produce both correlated motion and nonlocal conditions. Staron et al.
[2010], Gaume et al. [2011], and Zhang and Kamrin [2017] suggest a correction for nonlocal behavior based
on the notion of a field variable termed the “granular fluidity,” which itself is defined in terms of a granular
temperature.

Simplifications to (40) for applications to magmatic systems can be obtained by consideration of the
scaled pressure,

IIP
IvP

¼ d
ffiffiffiffiffiffiffiffiffiffi
αρpP

p
ηf

(42)

and a Stokes number based on the bulk shear rate, which is the time for momentum transport by viscous
diffusion of the particle relative to the time for the particle to transit a neighboring particle [Ness and Sun,
2015; Trulsson et al., 2012],

StB ¼ IIP2

IvP
¼ αρp γ̇d

2

ηf
(43)

where constants of order unity have been dropped for clarity. The transition from viscous to inertia domi-
nated behavior is associated with a decrease in the dissipation from the interstitial fluid as StB rises and
has been observed to occur for values of the scaled pressure of around 5–15 and StB of around unity [Ness
and Sun, 2015, 2016a; Trulsson et al., 2012]. Note that their definition of StB differs from ours in that they do
not include the Darcy drag term, α. For typical crystal sizes and magma viscosities, StB will be below unity
and the inertia terms can be dropped for most applications except perhaps those obtained during exception-
ally rapid magma transport and eruption. Thus, the viscous inertia number, either (30) or (31) is the appropri-
ate dimensionless group to characterize the state of the system.

We illustrate this in Figure 10, where the simulation results from Figures 2e and 2f are contoured for the vis-
cous number Ivg as given in equation (30). The white contour is a line dividing the portion of the systemwith a
volume fraction of greater or less than 0.5. The red dashed line is the outline of the mixing bowl or the inci-
piently fluidized region. The color shading is the value of the viscous number from 10�3 to 1. The variable
quantities in the viscous number are the shear rate and α which is calculated with (19), so variations in the
viscous number directly reflect that. Note that for ϕ ≤ 0.304, α was set to 1/12, to avoid unrealistic values
under dilute conditions. Recall that the viscous number is measure of the connectedness of the particle net-
work with higher values indicating a diminished contiguity. This can been seen by comparing Figure 10 with
Figure 2f, where the abundance of force chains is less in the regions with the higher values of the viscous
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number. As the viscous number approaches unity the granular contact will be lost and the system will disas-
sociate and become dilute. One implication is that the viscous number is a map of the mechanism of dissipa-
tion, from what might be called “viscogranular” at very low values to a mixed mode of viscous to transitional
inertial with a Newtonian behavior (suspension) at higher values [see Ness and Sun, 2016a, Figure 1]. The
Stokes number, StB, based on equation (43), also reflects this transition, having a maximum value of around
unity in the lower chimney of the conduit in Figure 10, where the viscous number is the highest, but generally
being well below unity. Hence, Figure 10 provides a caution for the application of a simple rheological
framework based on mixture theory to systems with spatially and temporally varying mixed modes of
granular-to-viscous dissipation.

4.4. Nonspherical Particles

The discussion and simulations above are based on the assumption of spherical particles. This is a conceptual
and computational convenience as there is hydrodynamic symmetry at low particle Reynolds number such
that the particle drag and torque are insensitive to orientation. However, geologicalmaterials are not spherical
[Jerram et al., 2003; Picard et al., 2013], and the extension of the framework described above to nonspherical
conditions requires discussion in both the quasi-static modes of force transmission and the implicit reversibil-
ity imbedded in the applications of the inertia number in section 4.1 [Coetzee, 2017; Zhong et al., 2016].

The ways that a nonspherical particle differs from a spherical one is in the packing, coordination number,
steric constraints, the changing of torque magnitude as a function of dominant force contact position along
the surface, a nonuniform lubrication force (the watermelon seed effect), and the nonuniform hydrodynamic
drag as a function of particle orientation in the fluid. In addition, nonspherical particles are likely to have an
initial shape anisotropy distribution. Frictional elliptical particles deposited in viscous liquids can have lower
values of ϕRLP compared to spheres and also have variable coordination numbers and a greater resistance to
rotation which yields enhanced strength [Baram and Lind, 2012; Baule and Makse, 2014; Borzsonyi and
Stannarius, 2013; Delaney et al., 2011; Rothenburg and Bathurst, 1993]. This reaffirms the point that porosity
alone is not an adequate measure of system rheology. For example, Mead and Cleary [2015] demonstrated
that modeling granular avalanches could only replicate natural examples if nonspherical particles were used.
Yamamoto andMatsuoka [1997] and Kawabata et al. [2013] demonstrated how plate-like particles, a common
shape of natural crystals, leads to distinct microstructures, shear banding, and kinematic features reminiscent
of geological examples.

Nonspherical particles can also respond differently under dynamic conditions [Moitra and Gonnermann,
2015]. Consider a nonspherical particle displaced from a granular framework in shear. In section 4.1 the devel-
opment of the local particle response time assumed an implicit hysteresis—that a particle could reconnect
with the adjacent granular matrix by a simple reversal. But a nonspherical particle may undergo nonuniform
hydrodynamic drag [Dioguardi et al., 2014; Hölzer and Sommerfeld, 2008; Ouchene et al., 2015] such that it can
rotate, and re-establishing contact with the granular media may lead to a fragile connection. At large strains
the shearing of nonspherical particles can lead to the irreversible formation of fluid melt pockets and so
enhance unmixing and nonuniform particle distribution.

5. Applications to Geological Conditions

The principles of hydrogranular behavior may provide some guidance for the description and interpretation
of natural processes. We illustrate this in Figure 11 where natural mush dynamics was assessed by consider-
ing the scenario of mush reactivation (see Figure 2) and that of thermal convection within the reservoir. The
fields for both scenarios were calculated with typical parameters for felsic and mafic reservoirs, see the sup-
porting information for details of the calculations. Within the framing in Figure 11, the “unlocking” of a crystal
mush prior to mixing or eruption can be understood as a process that produces an increase in the viscous
number and a decrease of the coordination number, whether initiated by a thermal event [Burgisser and
Bergantz, 2011; Huber et al., 2011] or an overpressure from a new injection [Bergantz et al., 2015].
Importantly, unlocking can also occur simply by a small increase in the pore pressure as might occur during
incipient vesiculation, allowing frictional contacts to relax and enter a state of lubrication. As long as some
melt remains and maintains a connected network of pores, and if there is sufficient room for expansion, very
small strain rates can mobilize viscous magmas producing unlocking. A process such as this may allow other-
wise highly crystallized and cool systems to become rejuvenated [Cooper and Kent, 2014].
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It is beyond the scope of this work to review the numerous rheological models for (multiphase) magmatic
systems; recent reviews include that of Mader et al. [2013] and Picard et al. [2013]. Setting the effects of
crystal shape aside, the diversity of measured outcomes and nonunique critical melt fraction [A Costa
et al., 2009; Moitra and Gonnermann, 2015; Petford, 2009; Philpotts et al., 1999; Picard et al., 2013] may be
attributable to microphysical feedback originating at crystal-crystal contacts. Hence, applying rheometric
experiments to hydrogranular systems requires some caveats. Traditionally, the classic approach to suspen-
sion rheology assumes that the carrier phase, such as the melt, dominates the viscosity with the particles

Figure 11. Natural mush dynamics fall mostly between the frictional hydrogranular regime, where particle-particle
dynamics is dominated by frictional contacts and large coordination numbers and the classical suspension rheology,
where coordination numbers are small and most of the suspension response is dominated by fluid tortuosity rather than
interparticle contacts. Interestingly, the shear localization regime, where intermittent particle contact and strongly
heterogeneous particle spatial distribution are expected, and the hydrodynamic regime, where lock-up is a material
property and lubrication effects dominate particle-particle interactions, seem to be reached only under a restricted set of
conditions in magmatic context. One important consequence of being in the frictional hydrogranular regime is that
rheological lock-up does not occur at a crystal volume fraction depending only on geometrical parameters but is rather
controlled by the dynamic state of the suspension. The arrows indicate the trends caused by changing only one variable at
a time. The hydrogranular framework applies to dense systems, and we consider here that the dynamics of suspensions
below 30 vol % crystals cannot be captured in this diagram. Values of α are like calculates with C = 400 to take particle
rugosity into account. Experiments with analog materials and experiments done on real magmas in Paterson press
apparatus cover well the natural ranges. Some experiments span different regime, while others are restricted to only one
regime. As illustrated by two Paterson studies (white fields), it may be difficult to compare results from such pairs of
experimental sets, despite having been carried out with the same apparatus. Conversely, experiments spanning several
regimes may produce results challenging to interpret because of the complexity of their rheological response. See the
supporting information for methods and values used to plot data fields. Calculation details in supporting information
[Androvandi et al., 2011; Caricchi et al., 2008, 2014; Castruccio et al., 2010; Champallier et al., 2008; Cimarelli et al., 2011;
Coetzee and Els, 2009; Dufek and Bergantz, 2005; Forien et al., 2011, 2015; Girard and Stix, 2009; Grossmann and Lohse, 2001;
Jellinek and DePaolo, 2003; Le Mével et al., 2016; Okumura et al., 2016, 2015; Parks et al., 2012; Petrelli et al., 2016;
Pistone et al., 2012, 2015; Rutherford, 2008; Walker et al., 1999].
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only contributing to the dissipation and the emergence of normal stress differences close to lock-up. These
rheological experiments are typically done under conditions of constant volume, subject to simple shear,
producing a superficial Krieger-Dougherty-type suspension viscosity that diverges at the geometrical close
packing. But it has been demonstrated that this experimental approach typically will not satisfy the require-
ments of spatial and temporal homogeneity for both flow and solid fractions [Ancey et al., 2013; Ovarlez
et al., 2006; Peters et al., 2016], nor can they easily measure the friction or normal stress magnitudes to illu-
minate granular processes. Various approaches proposed to “correct” for nonsteady particle migration that
arises from shear gradients and particle-particle interactions have been controversial [Nott et al., 2011] and
depend specifically on the transport theory and application of interest with limited generality.

In addition, traditional rheology experiments may not represent the conditions of hydrogranular materials in a
natural setting, where constant volume is not locally enforced and constant pressure (normal force) may be a
more appropriate description of the ambient mechanical state. Under these conditions a hydrogranular mix-
ture subject to shear is able to manifest normal stress differences and respond by dilation or compaction,
and the viscosity does not become singular. Instead, a viscoplastic rheology is recovered where the shear to
normal stress ratio approaches a constant value, as given in (40). Nor does a Krieger-Dougherty or other power
law framing usually recover fragile states (as described in section 3.1) in natural materials at remarkably low par-
ticle volume fraction such as those reported by Philpotts et al. [1998], Martin et al. [2006], Hoover et al. [2001],
and others. Nonetheless, as shown in Figure 11 some of the available analog experiments overlap the esti-
mated parameter ranges of some magmatic processes; hence, it might be productive to revisit those experi-
ments to further characterize the microscale hydrogranular particle interactions. As a result, rheometers may
play a greater role as a “granular microscope” where detailed and highly resolved crystal-crystal-melt interac-
tions can be characterized and cataloged as in Moitra and Gonnermann [2015]. Microcomputed tomography
appears to be an especially promising approach to resolve emergent microscale behavior [Dobson et al., 2016].

A corollary to the rapid onset of frictional behavior as a function of the applied stress is the observation that
hydrogranular materials can undergo progressive mechanical “solidification,” upon impact [Jerome et al.,
2016; Peters et al., 2016; Waitukaitis and Jaeger, 2012], a condition that occurs under extension as well
[Majumdar et al., 2017]. Although pore pressure excursions associated with either dilation or compression
upon impact (particle volume increase or decrease) mediate the onset of the boundary-lubrication frictional
regime [Jerome et al., 2016], the occurrence of a jamming front that propagates away from the point of
impact is well documented. This process may explain the observation that a crystal-bearing magma can tem-
porarily manifest elastic-like behavior, for example, by supporting the injection by a dike with rather sharp
boundaries, which as the dike progresses into the interior of the magma body where there is a deceasing
crystal fraction, breaks up into a fountain-like feature. The idea is that as a dike enters a crystal-rich magma,
the initial stress exerted on the crystal mush is sufficient to initiate a shear-jamming event that then provides
support for the dike.

While our intended applications were implicitly to viscous hydrogranular systems, many of the same
elements of description are applicable to granular volcanic processes that occur during eruption; the inter-
ested reader is directed to the work of Estep and Dufek [2012, 2013]. For example, in the case of dense
granular pyroclastic flow, the viscosity of air plays a small role in the dissipation, the Sommerfeld number
is vanishingly small, and the particles are in a state of friction. The appropriate dimensionless group would
be the inertia number as given by (33), and a Bagnold scaling where the stress depends on the square of
the shear rate [Coussot and Ancey, 1999].

The microscale kinematic description of a hydrogranular media as described in section 3 can provide some
constraints on the scaling of analog and numerical experiments that attempt to probe their dynamics, e.g.,
[Oppenheimer et al., 2015; Parmigiani et al., 2016]. To establish verisimilitude with natural conditions involving
both jammed and unjammed states, care must be taken initializing the particle framework so that microscale
similarity is obtained. Currently, there is very little experimental guidance available to illuminate the appropri-
ate choices for geological applications. Porosity alone is not an adequate measure of the mechanical state of a
hydrogranular system, where even small differences in themethod of construction can initialize themedia with
a history and anisotropic bias [Daerr and Douady, 1999; Rondon et al., 2011; Vanel et al., 1999]. Experiments on
crystal-rich systemsmay require an uncertainty analysis for the initial condition prior to extending experimental
results to natural applications. This may prove to be a challenge in rheology for multiphase magmas.
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6. Concluding Remarks

The purpose of this work is to introduce and demonstrate kinematic and dynamic descriptions of hydrogra-
nular (crystal-rich) systems in support of open questions regarding the behavior of magmas and migmatites.
We demonstrated how crystal-rich systems can be described by contact and force tensors, and the aniso-
tropy of these tensors is a direct reflection of the microstructure. We invoked the concept of force chains
as a means of describing particle-particle interactions and emphasized that a breakdown in lubrication (melt
films) can produce shear jamming that is not a function of shear rate but of applied normal stress, over a
range of particle volume fractions. The implication of this is that within a magma body a jamming can occur
well below the geometric value of lock-up, and the threshold can have many values simultaneously depend-
ing on local crystal shape, surface roughness, andmelt viscosity. A corollary to this is that porosity alone is not
an adequate state variable for rheological models. We introduced a viscous number that expressed the
importance of melt viscosity relative to granular dissipation in controlling the tendency of the particle-rich
system to disassociate, with a commensurate decrease in coordination number. We also introduced the
Sommerfeld number, which is a measure of the state of lubrication at the particle-particle interface.

By combining the viscous number with the Sommerfeld number in a synoptic diagram, we identified four
end-member behaviors. Invoking order of magnitude estimates for shear rate and normal stress, and
combined with values typical of a range of geological settings, the likely field of possible outcomes was iden-
tified. We noted that while the available experiments on magma rheology appear to overlap significantly
with the expected field of natural conditions, additional work is needed to characterize the results for micro-
structural analysis. We close by highlighting the need for more detailed assessments of the microgranular
processes, with techniques taken from material science such as microcomputed tomography [Dobson
et al., 2016] offering especially compelling opportunities for motivating more complete theory and integra-
tion with natural examples.
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Introduction  

This supplementary text provides details of the simulation methods, which 

include the model theory and governing equations, simulation initialization, and code 

validation. It also includes details of the supplementary movie file. 

Text S1. Simulation Methods 

 

Multiphase fluid simulation theory and algorithm 

 

We performed simulations using a modified version of the MFIX (Multiphase 

Flow with Interphase eXchange) numerical algorithm developed by the Department of 

Energy supported National Energy and Technology Laboratory. It simulates multiphase 

flow by employing discrete element method-computational fluid dynamics (DEM-CFD). 

This is a Lagrangian-Eulerian approach for solid (crystal) and fluid (liquid) phases, 

respectively, where the center of mass of crystal phases are explicitly resolved and the 

liquid phase is treated as a continuum. This method allows us to model crystal-crystal and 

hydrodynamic interactions, that is, 4-way coupling. Collisions, sustained frictional 

contact, buoyancy, fluid drag and interphase momentum transport between phases are 

directly resolved with the soft-sphere approach, using a spring-dashpot system to model 
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the contact forces [Cundall and Strack, 1979]. The MFIX DEM-CFD algorithm has been 

verified and validated [Garg et al., 2012a; b; Li et al., 2012] including the physical 

effects of chemical reactions [Li and Guenther, 2012]; validation is discussed in detail 

below. Our simulations were run on the Stampede Cluster at the Texas Advanced 

Computing Center (TACC).  

 

Governing Equations 

 

The liquid phase is described with the governing equations for mass and momentum 

conservation: 

   (1) 

   (2) 

Here, εl is the volume fraction of the liquid phase, ρl is the liquid density, vl is the liquid 

phase velocity vector, g is the gravitational acceleration, Ilc is a coupling term that 

involves the transfer of momentum between the liquid and crystal phases, and 
 
S

l
 is the 

liquid-phase stress-tensor, given by: 

 
 
S

l
= -P

l
I +t

l
  (3) 

 2 ( )l l l l lD tr D I      (4) 

   (5) 

Pl is the liquid-phase pressure,  I  is the identity matrix, and 
 
t

l
 is the liquid-phase shear 

stress tensor. l and λl are the dynamic viscosity and second coefficient of viscosity for 

the liquid phase, and 
 
D

l
 is the strain rate tensor. 

An advection-diffusion equation is employed to model transport of a scalar attached 

to the liquid phase. This scalar acts as an inert tracer of a compositional field associated 

with new magma and is shared by mixing between the resident and incoming liquids: 

   (6) 
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Here Cl is the concentration of the liquid scalar and Dl is the diffusion coefficient for the 

scalar in the liquid phase. The cation diffusivity in basaltic melts is typically of order    

10-10 m2/s [Richter et al., 2003]. This produces a scalar Peclet number of at least order 

105 for the most active regions of flow for the duration of the simulations. Therefore, the 

scalar diffusivity was set to zero with no noticeable change in the scalar field. Hence 

modeled variations in the scalar field are entirely due to advective mixing and numerical 

diffusion. We did not quantify the effects of numerical diffusion on scalar mixing. 

The crystals in the simulation are Lagrangian particles, with coupled equations 

solved for individual crystals at each time step. The position of the crystals and their 

linear and angular momentum are calculated according to Newton’s Laws:  

 
   

dX
( i)(t)

dt
= V

( i)(t)   (7) 

 
   
m( i) dV

(i)(t)

dt
= F

T

(i)(t) = m( i)
g + F

d

( iÎk )(t) + F
c

( i)(t)   (8) 

   (9) 

The superscript (i) represents each crystal within the domain, X(i)(t) is the crystal 

position, V(i)(t) is the crystal linear velocity, and m(i) is the ith crystal’s mass. 
   
F

T

( i)(t) is the 

sum of the forces acting upon the ith crystal, 
   
F

d

( iÎk )(t) is the total drag force on the ith 

crystal in the kth liquid cell, and 
   
F

c

( i)(t) is the contact force from interactions with other 

crystals. The equation for angular velocity, , includes the ith crystal’s moment of 

inertia 
  
I ( i) =

m( i)d
c

( i)

10
 and the sum of the torques    T

( i)(t) acting on the ith crystal. 

Additional details of the implementation of the spring-and-dashpot model for 

calculating collisional forces used in MFIX can be found in the documentation of the 

MFIX-DEM algorithm [Garg et al., 2012a]. The values of the crystal-crystal coefficient 

of friction, restitution, and spring constant required for DEM are 0.1, 0.1, and 105 kg/s2, 

respectively. The sensitivity of model outcomes to the choice of DEM parameters 

depends on the dynamic regime considered [Paulick et al., 2015] although it has been 

noted particle dynamics in fluidized beds are not very sensitive to the choice of DEM 
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contact parameters [Tsuji et al., 1993]. The coefficients of friction (μf) for non-

compacted, melt-saturated olivine crystals have never been measured. Hence we assessed 

the sensitivity of both the quasi-static and fully-fluidized model results to variations in 

contact friction from values of 0.03 to 0.5. Neither the quasi-static results, the formation 

of fluidized granular eddies, or the mixing characteristics changed significantly over this 

interval, so a value of 0.1 was used.  

The value of the restitution coefficient (e) changes for collisions of particles in a 

viscous liquid, as shown by experimental results [Yang and Hunt, 2006]. The authors 

defined a parameter called the binary Stokes number for colliding particles in a viscous 

liquid:  

 
 *

1 2

* 26 ( )
B

l c

m U U
St

r


   (10) 

where m*=(1/m1+1/m2)
-1 and rc

*=(1/r1+1/r2)
-1 are the reduced mass and radius of the two 

particles in the collision, respectively, (U1 - U2) is the relative approach velocity of the 

particles, and l is the fluid dynamic viscosity. The restitution coefficient of two colliding 

particles increases with increasing StB. Our simulations generate StB << 1, therefore based 

on the empirical data of particle-particle and particle-wall interaction in a viscous fluid 

the choice of e = 0.1 is appropriate [Yang and Hunt, 2006]. 

The values used for the particle stiffness coefficients (kn, kt) are approximately the 

same or a little lower than those of the natural geological materials, which can vary from 

5x105 to 106 Nm [Cole and Hopkins, 2016], because using the extreme end of actual 

values incurs simulation times that exceed any practical limits. However it has been 

shown in validation studies that reducing the particle stiffness coefficients (spring 

constants) does not produce measureable error, and this is common practice throughout 

the CFD-DEM community [Nakamura and Watano, 2007]. A DEM study [Coetzee and 

Els, 2009] demonstrated that particle stiffness coefficients below 105 kg/s2 resulted in 

variable internal friction angle within the granular material. However, for kn values at and 

above 105 kg/s2 and low particle friction coefficients (μf  < 0.2), the angle of internal 

friction did not vary as a function of stiffness coefficient. We also performed a sensitivity 

study of the stiffness coefficients and found values that satisfy validation and do not give 

unrealistic compaction of the particle bed 
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Simulation initialization and properties 

 

The simulations are 2.5-D, with the third dimension equaling the width of a crystal. 

Our simulation is for a dike-like body whose long dimension is into-and-out-of the plane 

of the domain, so 3-D edge effects are ignored and the liquid motion is governed by the 

quasi-2-D geometry. Accurate resolution of both the liquid and crystal dynamics requires 

that the liquid continuum grid-cell size has to be less than 1/19.3 of the domain size, and 

larger than 1.63 crystal diameters [Peng et al., 2014]. We performed grid resolution 

studies and found that at a grid cell of 2.5 crystal diameters gave stable and reproducible 

results. The number of crystals is well above the minimum required to recover scalable, 

ensemble-averaged behavior [Ness and Sun, 2015]. 

The injection rate used in the simulation falls within the range of magma ascent rates 

of 10-4-101 m/s for volcanoes in a range of tectonic settings as estimated by geochemical, 

petrographic, and geophysical studies [Girard and Stix, 2009; Parks et al., 2012; 

Rutherford, 2008]. Specifying the intrusion rate is appropriate for modeling open-system 

events driven by momentum, rather than by thermal or compositional buoyancy. This 

choice of input style is motived by the common occurrence of a complex crystal cargo in 

mixed magmas, with crystal clots, rapidly created disequilibrium features, and evidence 

for near instantaneous mingling of large volumes of magma [Costa et al., 2010; Davidson 

et al., 2001; Wallace and Bergantz, 2005], all of which indicate that many open-system 

events are strongly forced and can undergo mixing and mingling. In addition many open-

system events have evidence that the open-system process has sufficient energy to 

overcome viscosity barriers producing mingled magmas with crystal transfer [Ruprecht et 

al., 2012] as well as evidence of crystals transported out of a crystal mush which requires 

fluidization.  

Solid boundaries have a no-slip boundary condition for the fluid and a wall-friction 

law for the crystals, but the majority of fluid and particle motion occurs far from the 

walls, so boundary conditions have little influence on the dynamics.  

 

 



 

 

6 

 

Code Validation 

The validation of numerical models of dense multiphase mixtures is challenging. 

This is because granular-fluid mixtures are usually opaque, making optical measurements 

of laboratory experiments difficult. Inserting instruments into experimental systems 

would interfere with the flow field by particle-instrument interactions. In addition, the 

large number of degrees of freedom and many-body interactions produce emergent 

behavior, non-local and non-affine deformation such as shear-localization, dilatancy and 

jamming, all of which are not always repeated in duplicate experiments. Laboratory 

experiments can have multi-modal grain sizes with variable density and roughness, which 

is hard to duplicate in a numerical model for validation. Hence validation of numerical 

models for dense multiphase systems is usually based on the statistics of many 

realizations from an experimental test-bed that recovers the largest scales of the dynamics 

such as the global properties of mixing, pressure-drop, bed-height, or other measures of 

system-scale, granular ensemble behavior. 

Numerous exercises have been previously performed on the MFIX-DEM code as 

validation studies [Li and Guenther, 2012]. This has included quasi-static granular flow 

such as run-out to reproduce the repose angle of glass beads, and under more dynamic 

conditions, simple multiphase shear flow, particle segregation and unmixing, as well as 

fully fluidized states. MFIX-DEM results and analog experiments gave very good 

agreement across the entire dynamic range. However we also developed validation 

exercises. 

As our simulations exemplify a dynamic cycle from static to fully-fluidized, we 

must demonstrate validation for both these states. The Viscous number, Iv, and critical 

particle volume fraction, pc (εc,c in the nomenclature of the Supplementary Information), 

framework (defined in the main text) provide a basis for identifying which dynamic 

regime and validation protocols are appropriate [Ness and Sun, 2015]. The Viscous 

number is zero in the initial quasi-static regime where the volume fraction is near critical 

at the random packing of approximately 0.6. In the fully fluidized regime the Viscous 

number is variable with values spanning more than an order of magnitude and with a 

variable crystal volume fraction that is below the critical crystal volume fraction. 
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The validation of the initial quasi-static state where the mixing bowl is first formed 

was based on replicating the fluidization of granular soils [Alizadeh et al., 2014]. Our 

model reproduced the same geometry and conditions as the analog experiments, 

indicating that our implementation of MFIX-DEM is recovering the quasi-static, 

viscoplastic, dense phase behavior. In this regime, crystal collisions are unimportant and 

are primarily frictional. Instead, sustained contact forces produce stress chains and the 

formation of bounding faults that create the mixing bowl. The formation of these 

bounding faults is followed by the Reynolds’ dilatancy leading to the initiation of 

fluidization. Our simulations capture this process, in accord with experimental results 

[Alizadeh et al., 2014].  

After the initial quasi-static response that forms the mixing bowl, four time scales 

compete to control the subsequent fluidization: one associated with the shearing from the 

momentum flux, one associated with the relaxation time of the crystal-crystal contacts, 

one associated with the steady forcing of gravity, and one associated with the dissipation 

from liquid viscosity. For the values of the Viscous number from our simulations, which 

is never greater than unity, the fluidized portion of the system is always in a quasi-

Newtonian regime. Direct validation for this regime is difficult to obtain as no existing 

experiments satisfied all the scaling requirements for verisimilitude. Alternatively, we 

invoke a previous MFIX-DEM validation exercise [Li et al., 2012] of a bubbling 

fluidized bed as a proxy validation for our fluidized regime, as it has body forces and 

non-steady behavior. However it is in a more fluidized dynamic regime where the 

Viscous number is greater, and so the dissipation mechanisms are not going to be 

weighted the same as they are in our simulations. Nonetheless, that validation exercise, 

which may in fact be a more challenging validation test example than ours, produced 

excellent agreement with experiments. In summary, our implementation of MFIX-DEM 

code meets validation as far as can be determined from the existing analog experiments. 

 

Calculations used in Figure 11: 

To assess the situation of a mafic magma, we set f = 10 Pa s and d = 4 mm. For the 

felsic case, f  = 104 Pa s and d = 1 mm. In both cases, = 600 kg/m3, contact roughness 

is set to rough = 1 m, and RCP=0.64.  



 

 

8 

 

We assessed convection at a single crystal content of = 0.5, which implies that 

= 1.25×10-3. This choice increases the clarity of Fig. 11 because there is otherwise a 

large overlap between the IvP and s values for convection and injection. At large Rayleigh 

number, Ra, and large Prandtl number, Pr, convective motions occur through unsteady 

structures such as viscous plumes. Estimating the shear rate occurring within these 

instabilities requires their characteristic width and velocity. We assume that the velocity 

of the Rayleigh-Taylor plumes, URT, can be estimated from the characteristic velocity 

entering into the large-scale Reynolds number, Re, which is related to Ra and Pr 

[Grossmann and Lohse, 2001] by: 

 
2/3 10 015m RT

m

U H
Re l Ra Pr





    (11) 

where H is the height of the convecting system, m and m are the fluid bulk density and 

viscosity, respectively. We assume next that the width of the Rayleigh-Taylor plumes, 

RT, can be estimated thanks to the minimum spacing between the plumes (Fig. 10 of 

Androvandi et al. [2011]): 

 
5/3 1/310RT HRa    (12) 

The characteristic convective shear rate is thus: 

 
4

2

2
6.46 10RT

RT

U
Ra

H






     (13) 

where = 10-6 m2/s is the thermal diffusivity. We checked that Eqs (11-12) yield the 

correct orders of magnitude by comparing calculated and measured plume width and 

velocity of two experiments of Androvandi et al. [2011]. Calculated values for 

experiment IRa12 are URT = 1.7 mm/s and RT = 18 mm, which is close to the respective 

measured values of ~ 2 mm/s and ~20 mm (Fig. 4 of Androvandi et al. [2011]). 

Calculated values for experiment syr3m are URT = 0.76 mm/s and RT = 3.9 cm, which is 

close to the respective measured values of ~ 0.3 mm/s and ~5 cm (Fig. 6 of Androvandi et 

al. [2011]). 

We varied H from 100 m to 2 km, and Ra within validity limit of this relationship 

~104 to 109 and found that 10-12 < ̇ < 10-4 1/s. This range can be compared to the thermo-

chemical modeling of Petrelli et al.[2016], who conducted numerical simulations of the 
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convection of a cooling magma body that starts from a high-temperature, crystal-free 

mafic magma and that ends when crystallization reaches ~80 vol.%. Using their model 

output for the pure buoyancy case, we find that strain rates range from 10-8 to 5.6 1/s at 

the beginning of the run when the convecting magma is mostly basaltic in composition. 

In the middle of the run when the convecting magma is mostly felsic, strain rates range 

from 10-8 to 10-4 1/s. Considering that the high end of the basaltic strain rates of Petrelli 

et al. [2016] probably overestimates natural conditions because their simulation starts 

from a homogeneous, near liquidus magma body emplaced instantaneously in the crust, 

and that the low end of strain rates estimated using (13) yields extremely small IvP and s 

values that cannot easily be shown at the scale of Fig. 11, we chose to consider that 10-8 < 

̇ < 10-2 1/s for the felsic case and 10-8 < ̇ < 1 1/s for the basaltic case. 

The maximum confining pressure at the base of a mush can be estimated by the 

weight of the mush column: 

 max cfP gHF     (14) 

where Fcf is a factor that takes into account that some particles carry more than the 

average load because of contact forces. We maximize Pmax by setting Fcf to 2.5, which 

implies that 40% of the particles carry all the bed weight (see discussion for Figure 5 in 

main text). This is a maximum value because load-bearing force chains carry more than 

the average load, but not all of it. Varying H from 100 m to 2 km and setting = 0.5 and 

= 600 kg/m3 yields 0.7 < Pmax < 15 MPa. The upper bound of this range is a 

reasonable maximum because the maximum overpressure a chamber can sustain before 

relieving it by wall fracturing and dike propagation is 10 - 40 MPa [Jellinek and 

DePaolo, 2003]. The lower bound of pressure is found atop the mush. It is given by 

setting the bed height to two particle diameters, Fcf to one, and adding a 2/3 factor to be 

consistent the calculation of vp in the main text: 

 
4

3
minP gd    (15) 

The minimum pressure is between 8 and 31 Pa for a rhyolite and a basalt, 

respectively. 

We assessed mixing by reinjection at a range of crystal contents of 0.3 < < 0.67, 

which takes into account that mush remobilization implies some degree of dilution. The 
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framework of viscous and Sommerfeld numbers applies to dense systems and 30 vol% 

crystals is a maximum lower bound below which the lubrication force formulation we use 

is no longer valid [Marzougui et al., 2015]. When assessing magma mixing, the injection 

velocity, v, below a mush pile during a reactivation event is difficult to constrain. The 

upper bound of v can be constrained by the low end of the range of magma ascent rates 

during eruption, which is 10-4 – 101
 m/s for volcanoes in a range of tectonic settings as 

estimated by geochemical, petrographic, and geophysical studies[Girard and Stix, 2009; 

Parks et al., 2012; Rutherford, 2008]. It can also be constrained by the upper range of 

short-term magma recharge estimates from geophysical and thermal modeling, which is 

10-3 – 1 km3/yr [Caricchi et al., 2014; Le Mével et al., 2016]. Assuming that the area of 

injection lies between 10 and 103 m2, which corresponds either to a dyke of 1 m wide and 

10 – 103 m long, or to a distributed flow over 0.03 – 3% of a circular recharge area of 200 

m in diameter, the upper range of magma recharge rates is 3×10-5 – 3 m/s. The minimum 

recharge rate can be constrained by the long-term, average flux of magma from depth, 

which is about 10 times lower than the short-term values [Caricchi et al., 2014]. These 

constraints led us to consider injection velocities of 10-6 – 1 m/s for the felsic case and 10-

5 – 1 m/s for the mafic case. The higher minimum value for the basalt case ensures that v 

is larger than the crystal settling velocity. The typical shear rate is given by: 

 v l   (16) 

where l is the injection half-width. Considering typical dike widths [Dufek and Bergantz, 

2005; Walker, 1999], we set l = 0.5-5 m. We consider that the mush pile is 1 to 100 m 

thick and estimate the bounds of confining pressure with (14-15). 

To describe the field covered by Paterson experiments, we used that the working 

range of shear rates is 10-6 – 5×10-3 1/s, and particle size is usually ~100 m 

[Champallier et al., 2008; Caricchi et al., 2008; Forien et al. 2011; Pistone et al., 2012, 

2015; Okumura et al., 2015]. The upper bound of ̇ was adjusted by a representative 

multiplicative factor of 3.8 [Forien et al., 2011] to take into account shear localization. 

Liquid viscosity spans from 105 to 1010 Pa s. It is generally varied jointly with crystal 

volume fraction [Carrichi et al., 2008; Champallier et al., 2008], so that the measured 

stress remains within the press sensitivity. The typical differential stress measured (or 

imposed by pore fluid pressure, Okumura et al., [2016]) is 10-100 MPa. We use this 
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differential stress as a normal stress to calculate IvP and s. It corresponds to assuming that 

s is dominated by the tangential lubrication forces, which has been shown in dense solid 

suspensions under simple shear [Fernandez et al., 2013]. The pressure entering into IvP is 

might be controlled by the confinement of the metal jacket surrounding the samples. As 

the jacket contribution generally amounts to 10% or less of the differential stress [e.g., 

Champallier et al., 2008], we cannot exclude that the values of IvP might be one order of 

magnitude above the estimates reported in Fig. 11. In Okumura et al. [2015], 10-3 < ̇ < 

10-4 1/s, f  = 3×108 Pa s, = 0.45, and 10 < d < 800 m (the lower bound is the median 

size by number and the upper bound is the median size by area). In Forien et al. [2011], ̇ 

= 2.3×10-3 1/s, f  = 2×1010 Pa s, = 0.5, and d = 100 m. 

Here we describe the field of analog experiments. In Cimarelli et al. [2011], the 

measured stress ranges from 25 to 500 Pa, 10-4 < ̇ <1 1/s, f   = 41 Pa s, = 0.5, and 50 < 

d < 250 m. In Moitra et al. [2015], the measured stress ranges from 0.01 to 6000 Pa, 10-

4 < ̇ <10 1/s, f   = 102 Pa s, and 4 < d < 122 m. Particle volume fraction varies from 0.1 

to 0.6, but we here considered the high range 0.3 <   0.6. In Castruccio et al. [2010], 

the basal differential pressure of the current ranges from 20 to 100 Pa, 2 < f  < 80 Pa s, 

and 0.1 < d < 1.5 mm. Particle volume fraction varies from 0 to 0.67, but we here 

considered the high range 0.3 <   0.67. The gravity current speed can be estimated 

from their Eq. (6), which yields 0.01 < v < 0.4 m/s. Considering that current heights are 3 

< H < 8 cm, we get 0.13 <̇ <13 1/s. In Forien et al. [2015], the shear stress at the base of 

the inclined flow pressure of the current ranges from 1 to 12 Pa, f  = 1.4 Pa s, 10-5 < v 

<10-3 m/s, 6×10-4 < ̇ < 0.1 1/s,  = 0.6, and 1 <  d < 4 mm. 
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Table S1. Model parameters for the DEM simulations 

   

Parameter [units] Variables Values 

Domain size [m] x, y 2.56 x 1.28 

Grid size [m]  0.01 x 0.01 

Injection width [m] Iw 0.32 

Fluid density [kg/m3] ρf 2650 

Fluid viscosity [Pa s] f 0.2 

Particle density [kg/m3] ρp 3300 

Particle diameter [m] d 0.004 

Initial bed height [m] H0 0.823 

Number of particles  147,040 

Particle spring stiffness coefficient 

(normal and tangential) [kg/s2] 

kn, kt 105 

Particle restitution coefficient en 0.1 

Particle coefficient of friction μp 0.1 

Time step (Initial, maximum) [s] Δt 10-6, 10-4 

Simulation time [s] t 100 

Injection velocities [m/s] U0 .023 

Minimum fluidization velocity [m/s] Umf 0.00103 

 

Movie ms01. Simulation of reintrusion of magma mush with normal forces 

The simulation has two panels, the upper panel is a bed of identical olivine crystals 

(rainbow colored as an aid in visualization) in a reservoir of basaltic melt (black), that is 

intruded from below by new melt of the same composition but colored white. Mixing 

between resident and new melt will produce shades between black and white. The lower 

panel is the normal force network, color-coded with reference to the instantons average 

force. Once a particle becomes fully fluidized it will not appear in the lower panel as it 

has no normal force. 
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