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ABSTRACT
In the past decade, passive seismic methods have shown the possibility to detect sig-
nificant changes in surface wave velocity up to several days prior to landslide failure,
even with sensors located outside the unstable zone. Electrical resistivity tomography
has also long been used to monitor hydrological changes in landslides. However, the
displacement of electrodes relative to each other during landslide movement induces a
modification of the geometric factors and, hence, of the apparent resistivity. The first
objective of this work is to evaluate the possibility of monitoring the Pont-Bourquin
landslide (Swiss Alps) with electrodes located outside the unstable zone. The second
objective is to monitor both seismic velocity and electrical resistivity to get insights
into the evolution with time of mechanical and hydrological parameters, respectively.
The sliding mass was first imaged in three dimensions to produce a resistivity starting
model for the further inversion of time-lapse data. Daily time series (235 days from
February to November 2015) showed that changes are detected but cannot be spa-
tially localized, in agreement with numerical simulation results. At the seasonal scale,
resistivity and seismic time series are positively correlated with temperature and sug-
gest a control by superficial water content. On the scale of a few days, geophysical
parameters are negatively correlated with precipitation and suggest rapid infiltration
of water into the ground.Although laboratory experiments show that no change in re-
sistivity occurs during fluidization, and since no flow occurred during the monitoring
period the evolution of resistivity during a flow event remains an open question.

Key words: Earthslide, Electrical resistivity tomography, Landslide, Monitoring, Re-
sistivity, Seismic.

INTRODUCTION

Electrical resistivity tomography (ERT) has long been used
in landslide investigations (Jongmans and Garambois, 2007;
Loke et al., 2013; Whiteley et al., 2019). Apparent resistivity
ρa is measured using two current-injecting electrodes (labelled
A and B) and two further electrodes (labelled M and N) to
measure the induced voltage (Telford et al., 1990). The appar-
ent resistivity ρa (�·m) is computed using equation (1):
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ρa = K · R = 2π
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where K is the geometric factor (m), R is the electrical resis-
tance (�),VMN is the voltage (V) measured between electrodes
M and N and IAB is the electric current (A) measured between
electrodes A and B.

When the method is appropriate for the site conditions,
that is with a resistivity contrast sufficient enough between the
landslide and the undisturbed ground, the interpretation of
inverted resistivity data provides two- and three-dimensional
(3D) images of the geological setting and of the landslide
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geometry (Chambers et al., 2011; Travelletti et al., 2012;
Bièvre et al., 2018b; Crawford and Bryson, 2018).When mea-
surements are repeated over time, the method allows the mon-
itoring of changes in resistivity (�ρ) (Travelletti et al., 2012;
Uhlemann et al., 2017) by measuring changes in the ground
resistance �R (c.f., equation (2)).

�ρ = K · �R. (2)

In landslide studies, resistivity variations are generally
related to changes in water content and are used to moni-
tor hydrological changes in the sub-surface (for a recent re-
view, see Whiteley et al., 2019). This monitoring approach
emerged in the mid- and late-2000s (Lebourg et al., 2005; Jo-
mard et al., 2007; Grandjean et al., 2009) and further appli-
cations used either resistivity (Bièvre et al., 2012; Travelletti
et al., 2012; Supper et al., 2014; Gance et al., 2016; Uhlemann
et al., 2017; Crawford and Bryson, 2018), apparent resistivity
(Lebourg et al., 2010; Palis et al., 2017) or electrical resistance
(Merritt et al., 2018). In most of these studies, electrical pa-
rameters are calibrated with environmental time series (e.g.,
rainfall, water table level, ground water content, etc.) to pro-
vide the evolution of the hydrological process from the surface
down to the water table, generally located at a few metres in
depth.

Quantitative relationships between resistivity and water
content have been established using empirical relationships
calibrated in the laboratory (Waxman and Smits, 1968; Yeh
et al., 2002; Chambers et al., 2014; Uhlemann et al., 2017).
However, electrodes located on the sliding mass move rela-
tively to each other. This induces a change in the geometric
factor (�K) that was used by Wilkinson et al. (2010, 2015)
to retrieve electrode displacement at the surface by measuring
resistivity variation (�ρ). This hypothesis implicitly assumes
that the variation in apparent resistivity is related to a change
in the geometric factor and not to amodification of the ground
porosity and/or water content and, consequently, ground re-
sistance (�R; equation (3)):

�ρ = �K · R. (3)

This potential pitfall was overcome by Uhlemann et al.
(2015), who geodetically monitored a subset of the installed
electrodes to reconstruct the geometry of all the electrodes
prior to inverting a 3D dataset. Finally, recent works also
showed the possibility to process in time-lapse data with ad

hoc topography and mesh (and, consequently, geometric fac-
tors) for each time sequence (Whiteley et al., 2020) even when
the landslide is active. Measuring resistivity in the field is gen-
erally quick and efficient. However, the need to determine the

electrode location for each measurement requires the addition
of high-resolution geodetic monitoring systems, increasing the
cost of the monitoring setup.

This research was motivated by the difficulty of setting
up geophysical instruments on landslides that move over sev-
eral metres/year and that can evolve in mudflows, such as the
Pont-Bourquin landslide (PBL) in Switzerland. This landslide
has been instrumented and monitored since March 2010, us-
ing seismic noise recording with two sensors located on ei-
ther side of the moving mass (Mainsant et al., 2012; Bièvre
et al., 2018a). This setup allowed the detection of a significant
drop in surface wave velocity (−7%) in the 8–12Hz frequency
range several days before the occurrence of a mudflow in Au-
gust 2010 (Mainsant et al., 2012). The dispersion of surface
waves was used to deduce the depth ofVs variations. The same
experimental setup also revealed low-amplitude reversible ve-
locity variations (±2%) caused by environmental parameters,
such as temperature and rainfall (Bièvre et al., 2018a). Due
to the interest in obtaining both seismic velocity and electri-
cal resistivity variations on the same site, 36 electrodes were
deployed on either side of the unstable zone. The first objec-
tive is to test the capacity of an installation with external elec-
trodes to detect resistivity variations in the landslide. The sec-
ond objective is to compare the changes in mechanical and
hydrological parameters (through seismic velocity and electri-
cal resistivity, respectively) to get a better insight into the PBL
behaviour. Very little joint geophysical monitoring of land-
slides has been carried out to date (Grandjean et al., 2009;
Bièvre et al., 2012). The main changes in apparent resistivity
are expected to come mainly from surface water infiltration.
A laboratory study conducted on samples originating from six
European landslides, including the PBL, showed that, unlike
Vs, electrical resistivity did not show any significant change at
the solid–fluid transition (Carrière et al., 2018). In case of the
occurrence of a mudflow, the fluidization at the base of the
landslide will probably not induce any change in resistivity.
The study first focused on obtaining a detailed 3D electrical
image of the landslide. In a second step, the capacity of the re-
sistivity method with such a setup (electrodes located outside
the unstable zone) to detect resistivity variations in the land-
slide mass was numerically evaluated. Finally, the time series
of resistivity and seismic velocity (235 days) are compared and
interpreted in the light of the environmental parameters.

STUDY SITE

The PBL is located in the Swiss Alps (Fig. 1a). This landslide
has been active since 2004 and forms part of the larger
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Figure 1 Study site. (a) Location of the Pont-Bourquin landslide (PBL) and of the experiments. Coordinates are metric and expressed in the
Swiss grid format. Black lines correspond to topographic contour lines, and elevations are expressed in metres above sea level. Abbreviations:
AZ, accumulation zone; EZ, erosion zone; HS, main headscarp; MSS, main secondary scarp; TZ, transportation zone. (1a and 1b): Velocimeters
(with the same label) used by Bièvre et al. (2018a). (b) Conceptual evolution model of PBL showing three stages: (1) stable state, (2) landslide
in the EZ with transportation of material to the AZ, (3) triggering of a debris flow in the AZ after heavy rainfall. The shear-wave velocity (Vs)
profile with the different interpreted units (L1 to L4) in the AZ is shown. Figure modified from Mainsant et al. (2012) and Bièvre et al. (2018a).

Parchets landslide, supposed to have been active since the
last glacial retreat (Jaboyedoff et al., 2009). The geologi-
cal bedrock is made of different lithological units (Triassic
cargneules, flyschs and Aalenian black shales; Fig. 1b) sepa-
rated by thrust faults dipping around 35◦ towards north. The
landslide is a 240-m long and 15–60-m wide translational
earthslide with a slight rotational component in its upper
part. It presents two main shear surfaces located at around
2 m and 10–11 m in depth (Jaboyedoff et al., 2009). The
landslide is made of material originating from the different
units, with a predominance of weathered clay originating
from the black shales. Detailed presentations of the landslide
can be found in Jaboyedoff et al. (2009), Brönnimann (2011)

and Bièvre et al. (2018a). From a hydrogeological point of
view, local perched water tables were identified in monitoring
wells at shallow depths (1–2 m). These water tables were not
identified with geophysical prospecting (P-wave refraction),
probably because of experimental setups were not adapted
to detect such shallow features (Brönnimann, 2011, see also
Section 4.1). The presence of a perennial spring in the lower
part of the landslide also suggests that a deep water table
exists in the bedrock below the landslide with possible inflow
into the landslide.

The PBL moves more or less continuously a few me-
tres/year (Bièvre et al., 2018a; Le Breton et al., 2019). It under-
went two flow-like movements in July 2007 ((3–6) × 103 m3;
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Table 1 Acquisition settings and inversion statistical results of geophysical profiles

Profile Geophysical Parameter Sensors (#) Sensor Spacing (m) Shots (#) Measurements (#) Iterations (#) χ2 RRMSE (%)

SP1 Vp 24 5 12 187 6 1 4.2
Vs 5 98 7 1.2 6

SP2 Vp 24 4 9 177 4 0.9 3.5
EP1 ρ 63 1.5 1312 5 0.62 4.7
EP2 ρ 64 1.5 1280 3 1.6 5.1
EP3 ρ 63 1.5 1318 5 0.75 10
EP4 ρ 64 2 1363 9 0.73 7.7
3D ρ 254 1.5–2 5273 6 0.98 9.8

Abbreviations: RRMSE, relative root-mean-square error; Vp, P-wave velocity; Vs, S-wave velocity; ρ, electrical resistivity.

Jaboyedoff et al., 2009) and August 2010 (a few thousand cu-
bic metres; Mainsant et al., 2012). The mechanism of the PBL
is detailed in Bièvre et al. (2018a) and can be summarized as
follows (Fig. 1b). First, a headscarp is created at the top of
the black shales (stage 1). Second, the main secondary scarp
is initiated by the faster motion in the central transportation
zone, probably resulting from an inflow of groundwater from
below the landslide (stage 2 in Fig. 1b). Finally, this results in
the accumulation of material in the lower part of the landslide
that allows the generation of flows (stage 3).

The seismic monitoring of Rayleigh wave velocity using
ambient seismic noise showed a significant drop of up to 7%
several days prior to the flow event of August 2010 (Main-
sant et al., 2012). The subsequent 4.5 year-long monitoring
showed no significant drop in velocity, along with no observed
failure (Bièvre et al., 2018a). On the contrary, periodic varia-
tions of velocity (period of 1 year) between −2 and +2%were
observed during the monitoring period. At the seasonal scale,
they were interpreted as resulting from environmental forc-
ing. For shorter periods, decreases in velocity were observed
immediately after rainfall and the subsequent infiltration of
water into the ground, leading to the decrease of the stiffness
of the superficial layers.

MATERIALS AND METHODS

Two seismic profiles labelled SP1 and SP2 (Fig. 1a) were
acquired in July 2014 (details are given in Table 1). Com-
pressional (P) and shear (S) waves were recorded with 4.5 Hz
vertical and horizontal geophones, respectively, connected to
a Geode seismograph. P-waves were generated with a sledge-
hammer vertically hitting a metallic plate on the ground.
S-waves were generated with the same sledge-hammer hor-
izontally hitting a loaded plank oriented perpendicular to
the profile. Due to the difficulty to lay the plank along the

slope (∼ 26◦), S-waves were not acquired along the transverse
profile. First-arrival times were manually picked, and the
data were inverted using the pyGIMLi package developed by
Rücker et al. (2017). Inversion results provided satisfactory
statistical results (Table 1) in terms of χ2 and of relative root-
mean-square error (RRMSE). The χ2 parameter is used pref-
erentially to the RRMSE by the pyGIMLi and BERT (see fur-
ther) packages and reads (Friedel, 2003; Günther et al., 2006)

χ2 = 1
n

n∑
i=1

(
di −mi

ei

)2

, (4)

where n is the number of measurements, i is the rank of the
measurement, di and mi are the experimental and theoretical
data of rank i, respectively, and ei is an experimental error.
This last encompasses a systematic error (default value of 3%),
a measurement error related to the sampling frequency and
to the error on the manual picking of first arrivals (on the
measured voltage in the case of resistivity) and, finally, an error
related to the location of the sensors (0.05 m in this work).

The RRMSE is classically defined as

RRMSE (%) =
√√√√1
n

n∑
i=1

(
di −mi

di

)2

× 100. (5)

Four two-dimensional (2D) ERT profiles were acquired
in July 2014 (EP1 to EP4; Fig. 1a and details are given in
Table 1) with a Terrameter LS resistivimeter using a multi-
gradient configuration (Dahlin and Zhou, 2006). They were
inverted individually using the BERT package (Günther et al.,
2006; Rücker et al., 2006). They were further gathered to per-
form a 3D inversion using a mesh constrained with a digital
elevation model.

A Syscal Pro Switch resistivimeter was connected to 36
electrodes to monitor the accumulation zone and the lower
part of the transportation zone (Fig. 1a). A first test was car-
ried out for several weeks with steel electrodes set into the
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ground in a conventional way. The results showed that the
contact resistances gradually increased to values up to more
than 10 k�. On 15 February 2015, 0.3 m long stainless steel
electrodes were buried 0.5 m deep to avoid air–water con-
tact and connected to the cables with waterproof connectors.
With this layout, the contact resistances remained at 1 k�

during the 282-day monitoring period ending 23 November
2015. The acquisition system was powered by solar panels
connected to a set of batteries, ensuring at least 1 hour of mea-
surements per day. The acquisition system was not remotely
controlled, and data were downloaded manually each month.
During the monitoring period, 235 daily sequences were ac-
tually measured, due to several technical problems resulting
from power outages (lightning) and cable breaks (landslide
activity, falling trees). Each daily sequence consists of 1654
(half direct and half reciprocal) measurements in an equato-
rial dipole–dipole configuration (acquisition time ∼1 hour).
Each quadrupole measurement was repeated thrice (stack op-
eration) to evaluate repeatability. The time series of appar-
ent resistivity was filtered using thresholds: reciprocity (3%),
repeatability (3%), and minimum measured voltage between
electrodes M and N (0.01 V). Negative apparent resistivity
was also removed. Time-lapse data were inverted into 3D
using the BERT package. However, filtering operations lead
to variable daily dataset, that is a specific quadrupole is not
present in each daily sequence. This discrepancy between the
235 daily measurements prevented the application of classi-
cal time-lapse inversions, such as ratio (Schütze et al., 2002)
or difference (LaBrecque and Yang, 2001) inversions, which
require homogeneous dataset in terms of quadrupoles. It was,
therefore, chosen to use a common reference model to pro-
cess the data in time lapse. The same 3D mesh was used to
invert all the time sequences. Several inversion strategies with
different starting models were tested and will be described in
the Results section. Results were analysed in terms of numeric
quality (χ2, RRMSE) and of coverage.

The 3D finite element modelling was conducted with the
Matlab F3DM package (Clément andMoreau, 2016) coupled
to the Comsol Multiphysics software to evaluate the ability of
the monitoring setup to detect changes and to localize them
spatially in the 3D model. The methodology is fully detailed
in Bièvre et al. (2018c). The geometry and mesh of the model,
as well as the resistivity distribution and electrode positions,
were defined using Comsol software. The calculation of the
voltage at each electrode is handled by a Matlab routine that
drives the forward calculation on Comsol. The apparent re-
sistivity data derived for each quadrupole were inverted with
the BERT software, using an automatically generated custom

mesh, different from the one used to perform the forward cal-
culations. Changes in resistivity were distributed at the sur-
face to simulate the rapid infiltration of rainfall into a top soil
layer and also at depth (around 10 m) to simulate the effect of
the clay fluidization at the base of the landslide proposed by
Mainsant et al. (2012).

Temperature time series data available from the site (see
further) were used to correct electrical resistivity after inver-
sion to a standard temperature corresponding to the daily av-
erage air temperature during the monitoring period (5.6◦C).
The dependency of resistivity to temperature variations is well
known (Hayley et al., 2007, 2010) and is of the form:

ρTre f = ρT · (1 + 0.0202 · (T − Tre f )), (6)

where ρTref is the resistivity at the reference temperature Tref

and ρT is the resistivity at temperature T .
The correction factor 0.0202 indicates a 2.02% decrease

in resistivity per 1◦C increase in temperature and vice versa.
However, sub-surface temperatures vary as a function of depth
and also as a function of the seasons, according to equations
describing heat diffusion such as the relationship proposed by
Musy and Soutter (1991):

T(Z,t ) = Tmean + A
2
e

−Z
d sin

(
ω · t + φ − Z

d

)
, (7)

where T(Z,t ) is the temperature at depth Z for day t, Tmean and
A are the average air temperature and the difference between
the maximum and minimum air temperature measured at a
meteorological station, ω = 2π/365 is the angular period, φ

is the offset required to bring air and subsurface temperatures
in phase (φ = ω · t0, where t0 is a time lag in days) and d is the
depth parameter of the model.Z and t0 are the two parameters
to be evaluated in equation (7). This relationship was used by
several authors to correct resistivity values at varying depths
(Brunet et al., 2010; Chambers et al., 2014; Uhlemann et al.,
2017; Merritt et al., 2018).

The temperature-corrected resistivity values were then di-
vided into four zones according to the position in the land-
slide (transport and accumulation zones with an N–S limit at
the y-coordinate = 133,515 m) and the depth (0–5 m and 5–
11 m). The average daily resistivity was then computed within
each zone. The 3D model, and the four zones, are composed
of cells with very different individual volumes (from around
6.5 × 10−4 m3 at surface close to the electrodes to around
13.6 m3 at depth) and sensitivities (higher ones are close to
the electrodes). Thus, the weighted average resistivity of each
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zone was determined using the following equation:

ρmean =

n∑
i=1

ρi ·Vi · Si
n∑
i=1

Vi · Si
, (8)

where ρmean is the weighted average resistivity of a zone (�·m),
n is the number of cells of the considered zone, ρi (�·m), Vi

(m3) and Si (dimensionless) are the resistivity, the volume and
the coverage of cell i, respectively.

These four time series were then standardized (subtrac-
tion of the mean and normalization by the standard deviation
to get zeromean and a variance of 1) and cross-correlated with
temperature, precipitation and then with the seismic time se-
ries (�V/V ) computed by Bièvre et al. (2018a) between two
velocimeters located in the accumulation zone (1a and 1b in
Fig. 1a). Cross-correlation CX1,X2 between two standardized
time-series X1 and X2 of similar length n and time sampling
τ is evaluated using the following equation (among others,
Chatfield and Xing, 2019; Paolella, 2019):

CX1,X2 (τ ) = 1
n

n∑
t=τ

X1(t ) ·X2(t + τ ), (9)

where t is the time sample.
Missing data were attributed to a value of zero and did

not affect the cross-correlation coefficient cc. The 95% confi-
dence intervalCI, inside of which the cross-correlation is con-
sidered significantly different from zero, was also computed
(see previous references).

Air temperature data were measured at a weather station
installed at the rear of the main headscarp. Hourly measure-
ments were averaged to provide daily values. Daily rainfall
was obtained from a weather station located in the village of
Les Diablerets (∼1 km west of the landslide) and operated
by the Federal Office of Meteorology and Climatology (Me-
teoSwiss). Bièvre et al. (2018b) showed that using effective
rainfall improved hydrogeological interpretations compared
to using total rainfall. In the same way, Uhlemann et al. (2017)
also used effective rainfall to interpret resistivity time series
on the Hollin Hill landslide in England. Unfortunately, it was
not possible to evaluate effective rainfall on the study site be-
cause of the relavent parameters were not available, namely
the solar radiation. Surface displacements were measured us-
ing an extensometer installed in the accumulation zone (loca-
tion in Fig. 1a). Snow accumulating on the extensometer wire
and trees damaging the same wire generated several gaps in
the data.

Figure 2 Seismic refraction tomography results. (a) P-wave velocity
along profile SP1. (b) S-wave velocity along profile SP1. (c) P-wave
velocity along profile SP2. The location of the profiles is shown in
Fig. 1(a).

RESULTS

Two- and three-dimensional geophysical images

The 2D seismic tomography SP1, which is located along the
landslide, shows a seismic stratification parallel to the slope
for both P-waves (Fig. 2a) and S-waves (Fig. 2b). Both im-
ages present low velocities over the first 10 m below the sur-
face (<800 m/s and <300 m/s forVp andVs, respectively). Be-
low 10 m,Vp and Vs increase up to more than 2500 m/s and
1000 m/s, respectively. The depth of 10 m matches previous
findings of Mainsant et al. (2012) and corresponds to the in-
terface between the landslide and the Jurassic bedrock. The
P-wave velocity in the landslide also reveals that the body of
the landslide was likely not saturated during measurements
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Figure 3 2D electrical resistivity tomography images along profiles: (a) EP1 (accumulation zone), (b) EP2 (accumulation zone), (c) EP3 (trans-
portation zone) and (d) EP4. The location of the profiles is shown in Fig. 1(a).

(July 2014). Profile SP2 (Fig. 2c) was conducted across the
landslide in the accumulation zone (see location in Fig. 1a). It
shows P-wave velocity comparable to SP1 (Vp < 800m/s in the
first 10 m and up to more than 2500 m/s below this depth).
However, the low-velocity layer is observed throughout the
profile, suggesting that the subsurface is loose and preventing
a clear delineation of the landslide body from the stable zone.

ERT profiles EP1 (Fig. 3a) and EP2 (Fig. 3b) were con-
ducted across the accumulation zone. They show a clearly de-
lineated low-resistivity zone in the centre of the profile (ρ <

100�·m) with a maximum thickness of around 10 m and a
width of 25–30 m. This layer corresponds to the landslide. Be-
low, the bedrock shows higher resistivity (ρ > 150�·m and
up to more than 500 �·m). The EP3 profile (Fig. 3c) carried
out across the transportation zone also reveales the body of
the landslide (ρ < 100�·m), with a slightly shallower depth
(8–10m).The extension of the low–resistivity layer to the west
probably corresponds to another landslide located west of
the PBL (Jaboyedoff et al., 2009). Profile EP4 was performed
along the landslide (Fig. 3d) and shows an average thickness
of the landslide body of about 7 m. In contrast to the seis-
mic images, ERT profiles then provide a very good distinction
between landslide and bedrock.

EP1 to EP4 were then gathered and inverted in 3D. The
inversion converged after a few iterations with χ2 ∼1 and
RRMSE∼10% (Fig. 4 and Table 1). The landslide body is well
detected with a low resistivity of 75–80 �·m (Fig. 4a), while
the resistivity of the bedrock is slightly higher in the accumu-
lation zone (150–170 �·m) than in the transport zone (120

�·m; Fig. 4b). This variation is probably due to the difference
in bedrock lithology, with the presence of flysch in the accu-
mulation zone and the predominance of black shales in the
transport zone (Fig. 1b). One-dimensional (1D) resistivity–
depth curves were extracted from the 3Dmodel and show that
the landslide presents an average thickness of 10m (Fig. 4b), in
agreement with the shear-wave velocity (Vs) profile of Main-
sant et al. (2012) located at the intersection between EP2 and
EP4 and shown in Fig. 4(b). The volume of the landslide im-
aged below the main secondary scarp and deduced from the
3D model is of 22.5 × 103 m3. Finally, the 1D resistivity pro-
files extracted from the 2D images EP1 and EP3 (Fig. 4c) show
that the landslide–bedrock interface is located at around 10 m
depth. The 2D resistivity in the landslide (∼50 �.m) is lower
than in the 3D image. For the bedrock, the resistivity is glob-
ally similar below EP3, but is up to more than 350 �·m below
EP1, compared to ∼150–170 �·m obtained with 3D inver-
sion.

Numerical study

The landslide geometry at depth for numerical modelling has
been extracted from seismic and ERT profiles. For simplifi-
cation purposes, the topography was removed. The numer-
ical model (Fig. 5a) with a volume of ∼26 × 106 m3 con-
tains ∼254 × 103 tetrahedrons connected by 49 × 103 nodes.
The resistivity of the bedrock and of the landslide was set to
150 and 75 �·m, respectively, based on results from the pre-
vious section. A 1-m thick layer was placed at the base of the

© 2021 European Association of Geoscientists & Engineers,Near Surface Geophysics, 19, 225–239



232 G. Bièvre et al.

Figure 4 3D electrical resistivity tomogra-
phy (a) 3D image of the PBL below the
main secondary scarp. (b) 1D resistivity–
depth curves extracted from the 3D model
and comparison with the shear-wave ve-
locity profile from Mainsant et al. (2012).
The colours of the curves refer to their
location in Fig. 4(a). (c) 1D resistivity–
depth curves extracted from 2D models
EP1 (light orange) and EP3 (green).

Figure 5 Numerical study. (a) Computa-
tion domain. (b) Inversion result without
a starting model. (c) Inversion result using
a starting model.

landslide to test the ability of the monitoring setup to detect
resistivity changes at depth (75 or 25 �·m). Finally, a 0.5-m
thick layer was placed at the surface to mimic a decrease in
resistivity following rainfall and water infiltration in the sub-
surface (75 or 25 �·m).

Four cases were studied, and they are detailed in Table 2.
First, the ability of the monitoring system to retrieve the geom-
etry of the sub-surface was tested. A model comprising a layer
with resistivity ρ = 75 �·m, including the landslide, the sur-
face soil and the basal layer, and the bedrock (ρ = 150 �·m),

was used to calculate the theoretical apparent resistivity val-
ues (case 1 of Table 2). Using this simple model, a first sim-
ulation was conducted using the 36 monitoring electrodes
only and inversion results are presented in Fig. 5(b). The re-
sistivity values remain in a narrow range between 150 and
175 �·m, and the statistical results are not satisfactory (χ2 ∼1
and RRMSE > 40%). These results indicate that the mon-
itoring system alone cannot retrieve the correct distribution
of resistivity in space and at depth. A second simulation was
conducted in two steps using the same model (case 1). First,
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Table 2 The four cases studied with numerical simulation

Unit Resistivity (�·m)
Case 1 Case 2 Case 3 Case 4

Landslide 75 75 75 75
Bedrock 150 150 150 150
Top soil 75 25 25 75
Basal layer 75 75 25 25

synthetic apparent resistivity values were computed for pro-
files EP1 to EP4. They were gathered and inverted in 3D. The
resulting model (χ2 ∼1 and RRMSE< 5%) was then used as a
starting model to invert the data computed with the monitor-
ing system. The resistivity image (χ2 ∼1 and RRMSE< 5%) is
presented in Fig. 5(c). The landslide is fairly well detected with
a resistivity of around 80 �·m.The volume of the landslide re-
trieved from 3D ERT in Fig. 5(c) is 25 × 103m3, compared to
the original volume of the landslide in the model (Fig. 5a) of
30.5 × 103m3. Despite this slight underestimation of 15%,
the use of a start model with a good resolution enhances the
results of the inversion with the monitoring setup only. This
approach will be used for further inversions.

Second, changes in resistivity were introduced in the
model in the top soil and in the basal layer (Fig. 5a and Ta-
ble 2). The 1-m thick layer at the base of the landslide was
changed from 75 �m to 25 �·m to simulate a strong in-
crease in water content, potentially leading to the fluidization
of this layer (Mainsant et al., 2012, 2015). Another change
was brought to the model, in the top soil layer (from 75 �m
to 25 �·m), to simulate water infiltration following rainfall.
These two modifications lead to four potential combinations
(models) presented in Table 2. They were computed, and the
resulting theoretical data were inverted using the 3D model
previously established as a starting model. Inversion results
are satisfactory (χ2 ∼1 and RRMSE < 5%), and 1D pro-
files extracted at the intersection between EP2 and EP4 (see,
Fig. 5c for location) are shown in Fig. 6. Globally, the four
models lead to the same inverted results. All curves present
the strongest resistivity gradient at 10 m depth, which corre-
sponds to the limit between the landslide and the bedrock. A
decrease in resistivity at the surface and/or at depth induces
after inversion a global shift of the resistivity profile towards
lower values over the entire depth, which makes it impossible
to locate the resistivity variations. These results suggest that
the experimental monitoring device is not capable of detecting
localized variations on the surface or at depth, but rather will
provide integrative volumetric information on resistivity vari-
ations.

Figure 6 1D resistivity profiles of numerical simulations for four re-
sistivity configurations. The details of the geophysical parameters are
presented in Table 2.

Figure 7 Daily measurements available during the 282 days of the
survey after filtering of apparent resistivity data.

Four-dimensional electrical resistivity tomography

Four-dimensional electrical resistivity tomography time series

The number of daily apparent resistivity measurements re-
maining after filtering operations is shown in Fig. 7. From the
282 days of the survey with 1654 direct and reciprocal mea-
sured quadrupoles, the daily available dataset comprises 235
sequences with 900–1000 quadrupoles from February up to
July 2015 and around 500–800 quadrupoles after July 2015.
This relatively low number of daily quadrupoles can be ex-
plained by the low thresholds that were used in this work (3%
reciprocity and repeatability, minimum measured voltage of
0.01 V), lower than those used in other studies (e.g.,Uhlemann
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(a) (b)

(c)

Figure 8 4D inversion statistical results and
analysis for the four starting models (see the
text for details). (a) Inversions statistical re-
sults. RRMSE: relative root-mean-square er-
ror. (b) Coverage for the 2D EP2 profile of
Fig. 3(b). (c) Coverage of 3D models (first day
of monitoring) with different starting models.
The first day of monitoring was chosen for the
figure since variations during the monitoring
period are moderate.

et al., 2017, with a reciprocity threshold of 10%). However,
in this work, the large distance between the two flanks of the
landslide induces large geometric factors associated with po-
tential low signal-to-noise ratios. It was then decided to keep
only robust apparent resistivity measurements.

Daily quadrupoles were then inverted, and four strategies
with varying starting models were tested to obtain the highest
possible coverage. The first starting model was the 3D model
of Fig. 4 (i.e., the result of the 3D inversion of profiles EP1
to EP4) and is referred to as ‘3D’. The second starting model
consisted in using ‘3D’ as a starting model to invert the aver-
age sequence (‘AS’) of the 235 daily sequences dataset, and the
resulting model was used as a starting model for the inversion
of the daily sequences. This starting model is referred to as
‘3DthenAS’. The third starting model was the model resulting
from the joint inversion of profiles EP1 to EP4 and the average
monitoring sequence. It is referred to as ‘3DplusAS’. Finally,
the fourth starting model consisted of the average monitor-
ing sequence only and is referred to as ‘AS’. The same mesh
was used to invert all data. Figure 8(a) shows the statistical
results of inversions. Models ‘3D’, ‘3DthenAS’ and ‘AS’ ex-
hibit satisfactory statistics with χ2 ∼1 and RRMSE < 12%.
On the contrary, it was not possible to obtain satisfactory val-
ues for the starting model ‘3DplusAS’ (χ2 ranging between 10
and 20 and RRMSE between 12% and 20%). Results were
then analysed in terms of coverage. Figure 8(b, c), presents
the sensitivity along profile EP2 and along the cross sections
extracted from the 3D models at the same location and for
the first day of monitoring, respectively. These figures show
first a very much lower coverage for 3D time-lapse inversion
compared to 2D imaging. They also reveal that most of the

coverage is located around the electrodes and, to a minor ex-
tent, to the landslide body. The four models provided glob-
ally similar coverage, with slightly higher values for models
‘3DthenAS’ and ‘3D’. Since ‘3DthenAS’ and ‘3D’ provided
similar χ2 (∼1), the model providing the lowest RRMSE,
namely ‘3DthenAS’, will be used for further analysis.

Temperature correction

Prior to further processing, inverted resistivity was normal-
ized to a common temperature. Unfortunately, no sub-surface
temperature data were acquired during the monitoring period.
However, sub-surface and aerial temperature data are avail-
able in 2011 and 2012. These time series were used to evalu-
ate separately the parameters of equation (7) and, in particular,
the characteristic depth d, which is characteristic of the site.
Figure 9(a) presents the experimental aerial and sub-surface
temperature time series measured on the site between January
2011 and January 2013 and used to fit equation (5). From ex-
perimental data with sensors at depths of 1.35 m and 2.25 m
(Fig. 9b, c, respectively), the following parameters were ob-
tained: Tmean = 8.1◦ and A = 33.05◦. The separate evaluation
of parameters d and t0 provided similar values d = 1.5 m and
t0 = 24 days. Parameter d previously determined was inte-
grated to equation (7). Then the only parameter left do de-
termine was the time lag t0 during the ERT-monitoring pe-
riod (Fig. 9d). The following parameters were obtained from
the meteorological station: Tmean = 5.6◦, A = 27.3◦. From the
fitting, the value of t0 was found to be 65 days. The temper-
ature curves computed at four depths are shown in Fig. 9(d).
They suggest that the temperature effect on resistivity becomes
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Figure 9 Evaluation of sub-surface tem-
perature. (a) Experimental surface and
sub-surface temperatures. (b) Fit of exper-
imental data at a depth of 1.35m. (c) Fit of
experimental data at a depth of 2.25m. (d)
Evaluation of sub-surface temperatures at
four depths during the ERT-monitoring
period.

Figure 10 Resistivity, seismic velocity and
rainfall time-series analysis. (a) Average
daily air temperature, daily precipitation
and daily cumulative displacement. (b) Re-
sistivity and relative seismic velocity time
series. Red, green and blue arrows indicate
precipitation-related events. Green arrows
indicate small rain events (< 15 mm) fol-
lowed by a drop in seismic velocity but no
change in resistivity. Blue (resp. red) arrows
indicate a small (resp. pronounced) drop in
seismic velocity and resistivity in winter and
spring (resp. summer and autumn). (c) Cor-
relograms of unfiltered resistivity and seis-
mic velocity with temperature. (d) Correlo-
grams of high-pass filtered (corresponding
period of 30 days) time series of resistivity
and seismic velocity with precipitation. (e)
Correlograms of unfiltered resistivity with
seismic velocity in the two zones. (f) Correl-
ograms of high-pass filtered (corresponding
period of 30 days) resistivity with seismic
velocity.

limited for depths greater than 5 m. Resistivity values were
then standardized to Tmean using equation (4).

Analysis of time series

As explained in Section 3, the time series analysis was con-
ducted by splitting the landslide body in four zones (the two
transport zone TZ and accumulation zone AZ, at two depth
ranges 0–5 and 5–11 m). As similar results were obtained for
AZ and TZ, only results of the accumulation zone will be fur-
ther presented (Fig. 10). At the seasonal scale (environmental
and displacement time series are shown in Fig. 10a), the two
time series of resistivity and �V/V show a similar evolution
(Fig. 10b). The values decrease from February 2015, reach a
minimum in May and June, and then increase until the end
of November. These observations indicate lower resistivity in

winter and spring, in relationship with a shallower water table
and a higher water content in the vadose zone during these
seasons. On a shorter timescale, the time series show rapid
responses of both geophysical parameters to rainfall. This is
highlighted by the blue and red arrows in Fig. 10(b), which
exhibit a decrease in resistivity and seismic velocity following
precipitation events. However, it is observed that small precip-
itation events (< 15mm per day) in winter and spring induce a
drop in �V/V but not in resistivity (green arrows in Fig. 10b).
In addition, a drop in resistivity appears to be greater in sum-
mer and autumn (red arrows) than in winter and spring (blue
arrows). This could be related to widely open cracks in sum-
mer and autumn (Bièvre et al., 2018a) that favour water in-
filtration following precipitation. Longer time series, however,
are required to confirm this observation and hypothesis.How-
ever, this observation is in agreement with findings of Merritt
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et al. (2018) on the Hollin Hill clayey landslide in England.
They observed increases in temperature-corrected electrical re-
sistance during summer periods. This increase was interpreted
as resulting from desiccation and cracking. Intense periods of
rainfall were followed by a rapid drop in electrical resistance
that was interpreted as caused by the annealing of cracks and
the increase of soil water content in the very shallow subsur-
face.

At the seasonal scale, resistivity and �V/V time series are
significantly (cc values between 0.80 and 0.85) and positively
correlated with temperature (Fig. 10c) with lags of 68 days
(ρ0−5m and ρ5−11m) and 60 days (�V/V ). Merritt et al. (2018)
observed similar lags (∼1.5 month) with temperature uncor-
rected electrical resistance (median depth of investigation of
around 1.9 m). In this work, the increase of temperature-
corrected resistivity is attributed to a decrease of water con-
tent, which is itself caused by an increase in evapotranspira-
tion originating from an increase in temperature. The similar
lags suggest that, in the present study and given the experimen-
tal setup, resistivity is mainly sensitive to shallow variations.

Time series were then high-pass filtered (corresponding
period of 30 days) to focus on short-term effects and cross-
correlated with precipitation. The curves (Fig. 10d) show a
negative correlation with a rapid reaction of resistivity (ρ0−5m

and ρ5−11m) to precipitation. The correlation coefficient cc ex-
hibits a minimum (− 0.19) for a lag of 1 day, with a further
rapid increase and no significant effect for durations greater
than 3 days after precipitation. The seismic correlogram is
comparable with a negative correlation reaching a minimum
(cc = − 0.29) for a lag of 2 days and a further increase to
non-significant cc for lags greater than 5 days. The compa-
rable reaction of each resistivity depth range to precipitation
underlines the low ability of the monitoring system to localize
resistivity changes at depth. It confirms numerical results and
indicates that resistivity measurements in this work provide
an information that must be considered global at the scale of
the landslide.

The cross-correlation of unfiltered resistivity with �V/V

exhibits a maximum cc of 0.8 for the two resistivity curves
(Fig. 10e) for a lag of 0 days, mimicking auto-correlation
curves. This highlights a high similarity between resistivity and
�V/V curves, which is clearly visible on the time series in
Fig. 10(b). These results suggest that these two geophysical pa-
rameters react simultaneously to environmental forcing at the
seasonal scale. The same analysis was conducted with high-
pass filtered time series (corresponding period of 30 days) to
study the correlation for short-term events. Results (Fig. 10f)
show moderate but significant (cc = 0.27) positive peaks of

correlation at zero lag with a subsequent rapid decrease to
non-significant values for lags greater than 2 days. These re-
sults indicate a similar reaction of both geophysical param-
eters with decreases in resistivity and seismic velocity rapidly
following short-term events such as precipitation. Once again,
this can be observed on the time series (arrows in Fig. 10b).
Finally, these results suggest that the geophysical parameters
are better correlated at the seasonal scale that at the short-
term scale.

To conclude, this analysis shows a similar reaction of
the two geophysical parameters to both seasonal and short-
term environmental parameter variations, suggesting a com-
mon control factor. On a seasonal scale, the increase in resis-
tivity and in �V/V in spring and summer suggests a decrease
in water content and an increase in rigidity (in parallel with
a decrease in wet density) in the superficial layer. This results
from the continuous increase in evapotranspiration caused by
the increase in temperature. In autumn and winter, there is an
inverse relationship with the constant drop in temperature. In
the short term, precipitation generates a decrease in resistiv-
ity and seismic velocity due to the infiltration of water into
the ground, but with a different behaviour depending on the
season. In summer and autumn, rainfall is immediately fol-
lowed by a significant drop in resistivity; while in winter and
spring, only heavy rainfall or snowmelt causes a decrease in
resistivity. This could be interpreted as the result of cracks
much more widely open in summer and autumn because of
shrinkage, and thus favouringwater infiltration at depth, as al-
ready suggested on other landslides (Bièvre et al., 2012; Trav-
elletti et al., 2012; Merritt et al., 2018). The behaviour is il-
lustrated in Fig. 11(a, b) for winter/spring (limited infiltration
through cracks) and summer/autumn (higher amount of infil-
tration through cracks), respectively, with seasonal variations
in shear-wave velocity and electrical resistivity as a function
of depth illustrated in Fig. 11(c).

SYNTHESIS AND CONCLUSIONS

The Pont-Bourquin landslide was imaged using 2D seismic
and 3D resistivity tomography. The 3D image confirmed pre-
vious investigation with average width and depth of around
40 and 10 m, respectively. A setup with electrodes located
in the stable zone was used to detect resistivity variations in
the landslide, similar to what was done previously with seis-
mic sensors to reveal velocity variations �V/V . An extensive
numerical study using the 3D landslide electrical model was
performed to test the sensitivity of the measurements to re-
sistivity changes in the landslide. These changes are detected

© 2021 European Association of Geoscientists & Engineers,Near Surface Geophysics, 19, 225–239



Electrical resistivity monitoring 237

Figure 11 Slope deformation model of the Pont-Bourquin landslide,
modified from Bièvre et al. (2018a). (a) Sketch in winter and spring
with a shallow water table and clogged fissures. (b) Sketch in summer
and autumn with a deeper water table and widely open cracks allow-
ing rapid water infiltration. (c) Measured geophysical parameters (Vs,
ρ) and conceptual cumulative displacement profile (cum. disp.).

by the external electrodes, but cannot be spatially localized,
even though the structure of the landslide is well known. The
results of the time-lapse experiment of 235 days conducted
with that setup show that �V/V and resistivity time series
have a similar shape and are therefore driven by the same
environmental parameters. At the seasonal scale, �V/V and
resistivity are positively correlated to temperature with zero
lag, suggesting a seasonal water content variation is predom-
inantly controlled by temperature. On a scale of a few days,
�V/V and resistivity are moderately and negatively correlated
to rainfall with time lags of a few days, indicating rapid infil-
tration of water into the ground. The drop in resistivity that
follows rainfall appears stronger in summer and autumn, sug-
gesting a higher amount of infiltration through more widely
open fissures and cracks because of shrinkage. Regardless of
the timescale, most of the geophysical variations measured
during this experiment therefore probably come from water
content changes in the upper layer. Despite the low resolution
of the electrical-monitoring system, it showed an overall good
agreement with velocity variations. Since wireless transmis-
sion of data is generally not an issue anymore, the two geo-
physical parameters could be jointly used to provide hydrolog-
ical andmechanical information on potential precursors to the
deformation of slow-moving landslides. Finally, and although
laboratory experiments indicate that the electrical resistivity

does not vary during clay fluidization, the evolution of electri-
cal resistivity before and during a mudflow such as the August
2010 event that generates a precursory drop of 7% in �V/V

remains an open question.
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