

CHARACTERIZING BASIN SCALE WAVEFIELDS USING A DENSE SEISMIC ARRAY

Pierre BOUÉ

Marine DENOLLE Naoshi HIRATA Shigeki NAKAGAWA Greg .C. BEROZA

The Kanto Basin and the MeSO-net

The Kanto Basin and the MeSO-net

A (very) good a priori velocity model (Koketsu et al., 2009)

37

36

35

141

6

140

Ground Motion in the Kanto Basin

From Earthquake Data

Koketsu & Kikuchi (2000), M5.7 offshore Izu peninsula

From Simulations

Fururuma &Hayakawa (2007), M6.6 Niigata-ken Chuetsu

From Ambient Noise and/or Interferometry

Denolle et al. (2014) Amplification in the basin as a function of basin depth (<u>Long period</u>)

Ground Motion in the Kanto Basin From Ambient Noise? From Ambient Noise

- Can we extract more than the amplification from reconstructed noise-based Green's function in such heterogeneous medium?
- Reconstruction of surface wave higher-modes?
 - Savage et al. (2013) in the Canterbury region (NZ)
 - Rivet et al. (2015) in the valley of Mexico
- Complex dispersion pattern?
- Basin edge effects?

From Ambient Noise and/or Interferometry

Denolle et al. (2014) Amplification in the basin as a function of basin depth (<u>Long period</u>)

Averaged Correlation Tensor Hi-net Only

Averaged Correlation Tensor MeSO-net Only

Averaged Correlation Tensor Observed Dispersion

Normalized Amplitude

Averaged Correlation Tensor Theoretical Dispersion

Particle Motion Analysis Prograde Vs Retrograde

- Computed from the eigenfunctions at the surface
- Identification of the 1st higher mode Rayleigh wave in the data?

Particle Motion Analysis Prograde Vs Retrograde

Particle Motion Analysis Prograde Vs Retrograde

Propagation Across the Basin

- Example for a radial excitation
- Fundamental and 1st higher mode
- Bending and reflection

Reflected Surface Waves at the Basin Edge

N260°E

N280°E

Transmitted Surface Waves Inside the Basin

- For a Virtual source outside the Basin
- Transmission of both Love and Rayleigh waves
- Excitation of the first higher-mode Rayleigh wave at the basin edge

C3-like Kernels

• An other way to observe the wavefield

- Recipe:
 - Two stations as receivers (A-B)
 - A backbone array as virtual sources (Z) using noise correlations (C¹)
 - Correlation of correlations (C³-like) using both ballistic and coda parts

• Result:

Map the contribution of each virtual source Z to the C_{AB}^3 at a given time τ

Time (s)

20

- Kernel 1-3s
- Comparing theoretical and empirical Fresnel zones

 One C³ for each virtual source

35.4

35.2

139

139.2 139.4 139.6 139.8

Fresnel zones

•

TKSM-IDUM

140

140.2

Conclusions

- Ambient noise correlation functions catch complex propagation features in the Kanto basin
 - Higher-mode surface waves following the basin shape
 - Reflections of surface waves (West of Tokyo)
 - Higher mode excitation at the basin edge
- It can be used both for high resolution imaging and ground motion prediction (At least up to 1s)
 - Ambient noise Imaging Vs. Simulation ...
 - Migration to map the basin edge reflector ...

doi: 10.1093/gji/ggw205

Beyond basin resonance: characterizing wave propagation using a dense array and the ambient seismic field

A1 - Theoretical Dispersion in the 3km Deep Basin

A2 – Osculation Point

A3 - Propagation from the Array Center

A4 - Reflected Surface Waves Inside a Caldera

