Origin of the Vøring Plateau, offshore Norway – interplay between timing of rifting and emplacement of plume material

> Asbjørn Breivik CEED, University of Oslo, 2017

Vøring Plateau setting:

Tectonophysics 468 (2009) 206-223

Magma productivity and early seafloor spreading rate correlation on the northern Vøring Margin, Norway – Constraints on mantle melting

Asbjørn Johan Breivik ^{a,*}, Jan Inge Faleide ^a, Rolf Mjelde ^b, Ernst R. Flueh ^c

Bathymetry/topography (m)

Magmatic Segmentation Norwegian Margin

Breakup times in the NE Atlantic:

Position – The continent-ocean transition

<u>Time</u> – some way to determine breakup times

<u>A complicating factor</u> – Strong breakup volcanism

Crustal structure

Multiple generations of OBS wide angle seismic transects

Timing

Magnetic data from same surveys

Data issues:

GSC mag compilation (1996): Poor coverage > 10 years ago Also poor navigation (pre-GPS)

Interpretation issues:

Seafloor spreading anomalies not reliable timelines on the most magma-rich margin segments – subaerial volcanism

Interpretation issues:

Much reduced magmatism on Møre Margin – our reference

- OBS crustal transect
- New magnetic transect

Click Here Full Article

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, B07102, doi:10.1029/2005JB004004, 2006

Rates of continental breakup magmatism and seafloor spreading in the Norway Basin–Iceland plume interaction

Asbjørn Johan Breivik,¹ Rolf Mjelde,² Jan Inge Faleide,¹ and Yoshio Murai³

Møre Profile reference

A: OBS data

C: Interpreted and modeled travel times

D: Velocity layer model

B: Synthetic amplitudes from velocity model

Møre Profile reference

Norway Basin Seafloor Spreading Half Rates

Norway Basin Seafloor Spreading Half Rates

Conjugate Norway Basin Seafloor Spreading Half Rates

Geophysical Journal International

Geophys. J. Int. (2012) 188, 798-818

doi: 10.1111/j.1365-246X.2011.05307.x

The eastern Jan Mayen microcontinent volcanic margin

Asbjørn Johan Breivik,¹ Rolf Mjelde,² Jan Inge Faleide¹ and Yoshio Murai³

¹Department of Geosciences, P.O. Box 1047 Blindern, University of Oslo, N-0316 Oslo, Norway. E-mail: a.j.breivik@geo.uio.no
²Department of Earth Science, Allégt 41, University of Bergen, N-5007 Bergen, Norway
³Institute of Seismology and Volcanology, Hokkaido University, N10 W8 Kita-ku, Sapporo 060-0810, Japan

Conjugate Norway Basin Seafloor Spreading Half Rates

Conjugate Norway Basin Seafloor Spreading Half Rates

Conjugate Norway Basin Seafloor Spreading Half Rates

Northern Vøring Plateau Seafloor Spreading Half Rates

Northern Vøring Plateau Seafloor Spreading Half Rates

Northern Vøring Plateau Seafloor Spreading Half Rates

Lofoten Seafloor Spreading Half Rates

A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence

Asbjørn Johan Breivik^{a,*}, Jan Inge Faleide^a, Rolf Mjelde^b, Ernst R. Flueh^c, Yoshio Murai^d

Tectonophysics 718 (2017) 25–44

Contents lists available at ScienceDirect

Tectonophysics

Lofoten Seafloor Spreading Half Rates

The newest magnetic survey is RAS-03 (dashed outline), only partly covering our profile

Lofoten Seafloor Spreading Half Rates

Lofoten Seafloor Spreading Half Rates

Fit only with breakup within C24R3 (53.1 Ma)

Comparing breakup times

Vøring Plateau: Back-calculating breakup times using derived half-spreading rates gives ~54.1 Ma

Comparing breakup times

Lofoten – Vesterålen Margin	Profile 5	53.1 ± 0.4 Ma
	Profile 9	53.2 ± 0.3 Ma
	Profile 6	53.1 <± 0.1 Ma
Vøring Margin	Profile 10	54.1 ± 0.3 Ma
	Profile AB-99	54.3 ± 0.6 Ma
Møre Margin	Profile 1-00	54.3 ± 0.6 Ma

Approximately 1 Ma delay of breakup to the Lofoten-Vesterålen margin

A word of caution

" The Times They Are A-Changin' "

All rates and times calculated using the Cande & Kent (1995) timescale

Implementing e.g., the new Ogg (2012) time scale would affect:

Geomagnetic Polarity Time Scale

Implications of a ~1 Ma breakup delay at Lofoten

- Outer margin may have been a deep Cretaceous basin before breakup
- 1 Ma of extension at 30 km/Ma = 30 km
- Currently ~60 km wide, possibly 20-30 km wide before breakup
- Assuming 30 km of extension over 1 Ma with a start width of 30 km, gives a strain rate of 3.2 ·10⁻¹⁴ s⁻¹

Implications of a ~1 Ma breakup delay at Lofoten

- Development of low-angle detachments can explain observed geometry
- The heave of the two detachment faults sum to 26-30 km of extension
- Extension consistent with the delayed breakup

Comparison to other margins/rifts

	Low strain rates:		High strain rates:		
Location	<u>Ethiopian Rift</u>	<u>Iberian Margin</u>	Lofoten Margin	Woodlark basin	
Crustal extension	Low	High	High	High	
Strain rate	4.2-7.4 ·10 ^{−15} s ^{−1}	4.4·10 ⁻¹⁵ s ⁻¹	3.2·10 ⁻¹⁴ s ⁻¹	1.5-2.6 ·10 ⁻¹⁴ s ⁻¹	
Magmatism	Extensive	Starved	Slightly elevated	Normal	
Serpentinization	Not observed	Extensive	Not observed	Not observed	
Mantle temperature	Unusually hot	Normal to cool	Slightly elevated?	Normal	

Based on: Bastow et al. 2011, Whitmarsh et al. 2001.

From: Taylor et al. 1999

Factors determining breakup style

Volcanic margins

Mantle temperature –

massive pre- and post-

breakup volcanism, intrusion dominate over

extension

(a) Tectonic Stretching

MPa 800

Buck (2006)

Yield Stress

°C 1000 0

Temp

(b) Magmatic Extension

Iberia-type margins

Low strain rates – mantle cooling inhibits melt generation

Cool upper mantle – little magmatism, even after crustal separation

Strong lower crust – crustpenetrating low-angle faults giving deep seawater circulation and mantle serpentinization

Factors determining breakup style

penetrating low-angle faults or serpentinization

Mantle temperature – some excess breakup magmatism, hot mantle?

Factors determining breakup style

Lofoten margin

Cool/normal mantle during early rifting – favoring extension over magmatism

Late arrival of a small amount of plume material caused some elevated magmatism around breakup time

Vøring margin

Hot plume mantle during early rifting – favoring magmatic intrusion over extension

Large quantities of hot plume material, producing much excess magmatism also after breakup

Some Conclusions – Vøring Plateau formation

- Low crustal extension due to magmatic diking becoming dominant.
- Igneous growth of crust by lower-crustal intrusions
- Creation of thick postbreakup oceanic crust

Some Conclusions – Vøring Plateau northern termination

- Abrupt transition to a deepwater plain, but no apparent tectonic offset
- Crustal extension increase to the Lofoten Margin
- Probably corresponds to the outer limit of plume material distribution during early rift stages

