

Institut des Sciences de la Terre

Passive, noise-based seismic monitoring

Florent Brenguier

In collaboration with Michel Campillo, Nikolai Shapiro, Yosuke Aoki, Tetsuya Takeda, Gerrit Olivier, Pierre Boué, Nori Nakata, Philippe Roux, Taka'aki Taira, Qingyu Wang, Thomas Lecocq, Helle Pedersen...

Seismic velocities are sensitive to transient stress changes

Laboratory experiments show pre-seismic velocity decrease

Precursory changes in seismic velocity for the spectrum of earthquake failure modes

M. M. Scuderi^{1,2*}, C. Marone³, E. Tinti², G. Di Stefano² and C. Collettini^{1,2}

Temporal seismic velocity changes in nature

Seismic velocity change

Seismic velocity change

Noise-based seismic monitoring

4D noise-based seismology: principles

Campillo and Paul, Science, 2003; Shapiro and Campillo, GRL, 2004

4D noise-based seismology: principles

Campillo and Paul, Science, 2003; Shapiro and Campillo, GRL, 2004

4D noise-based seismology: principles

Advantages

✓ Continuous in time
✓ Very high accuracy (10⁻⁵)

Drawbacks

✓ Not valid for strong perturbations > 1%
✓ Low spatial resolution (coda waves)

Examples: environmental changes

Environmental changes over 30 years in Germany

Environmental changes over 30 years in Germany

Lecocq et al., 2017

Japan

Movie Qingyu

Examples: monitoring tectonic and volcanic-linked processes

The 2011, M9, Tohoku-oki earthquake

21

Coseismic velocity reduction

The large patches of maximum velocity reduction **do not** correlate with the level of shaking

0.00

-0.02

-0.04

-0.06

-0.08

-0.10

-0.12

seismic

velocity change

(%)

23

High seismic susceptibility below volcanic regions

= 0.0000 = -0.0001 = -0.0002 = -0.0003 = -0.0004 = -0.0005 = -0.0006 = -0.0007 = -0.0008 = -0.0008 = -0.0009 = -0.0010

We interpret the high level of seismic susceptibility $(\Delta V/\Delta \sigma)$ as being caused by high volcanic fluid pressure in the upper crust.

Sketch from Prejean and Haney

Brenguier et al. 2014

How can we get closer to a real fault at seismogenic depth??

Extracting body-waves instead of surface waves

Source and receiver arrays: double-beamforming

Boué et al. 2013

fairfieldnodal

The data and metadata are available without restrictions from the RESIF and EIDA datacenters (www.portal.resif, http://www.orfeus-eu.org/eida/) under the FDSN network code XP RESIM (doi:10.15778/RESIF.XP2014).

Brenguier et al. 2016

An unexpected source of body waves

Courtesy of N. Nakata

station cross-correlations

Requires double beam-forming (DBF)

Boué et al. 2013

2401 cross-correlations between arrays

1 double-beamformed cross-correlation = Body-wave part of the Green's function between arrays

Arrays correlations + DBF

Combining surface and P-wave imaging

