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ABSTRACT
We define a seismicity model based on (1) the epidemic-type aftershock sequence model
that accounts for earthquake clustering, and (2) a closed slip budget at long timescale. This
is achieved by not permitting an earthquake to have a seismic moment greater than the
current seismic moment deficit. This causes the Gutenberg–Richter law to bemodulated by
a smooth upper cutoff, the location of which can be predicted from the model parameters.
We investigate the various regimes of this model that more particularly include a regime in
which the activity does not die off even with a vanishingly small spontaneous (i.e., back-
ground) earthquake rate and one that bears strong statistical similarities with repeating
earthquake time series. Finally, this model relates the earthquake rate and the geodetic
moment rate and, therefore, allows to make sense of this relationship in terms of funda-
mental empirical law (the Gutenberg–Richter law, the productivity law, and the Omori
law) and physical parameters (seismic coupling, tectonic loading rate).

KEY POINTS
• A model that accounts for both earthquake clustering

and seismic moment budget is proposed.
• An upper smooth cut-off of the Gutenberg-Richter law is

caused by the seismic moment budget.

• A remarkable, self-organized critical regime is found,
in which all earthquakes are aftershocks.

INTRODUCTION
By combining together well-accepted empirical laws, the epi-
demic-type aftershock sequence (ETAS) model (Ogata, 1988;
see Zhuang et al., 2011, for a review) has proved to be a valuable
approach for studying various aspects in earthquake studies. It
provides a general framework for analyzing complex earthquake
time series, make sense of them, and hence allows to identify in
the data anomalous features that are not “built-in” the model.
Using ETAS as a null hypothesis, one can objectively address the
issue of measuring whether a specific earthquake pattern is at
odds with what can be considered as a normal behavior. This
is particularly useful for evaluating whether a cluster of earth-
quakes, for example related to swarm of foreshock activity, could
simply emerge from normal earthquake triggering, hence clus-
tering, laws, or if it is rather the signature of an aseismic
phenomenon, for example, a fluid pressure transient or slow slip
(e.g., Hainzl and Ogata, 2005; Lombardi et al., 2010; Marsan
et al., 2013; Reverso et al., 2015).

ETAS models are based on a stochastic approach and do
not contain any mechanical information related to the state of
the fault zone (e.g., slip, strain, or stress). This is particularly

powerful, as dealing with numbers of earthquakes only makes
this approach a simple and efficient one, which can deal with
very large earthquake datasets that nowadays seismic networks
and more and more efficient detection methods quasi-
routinely produce. It is also a limitation, as no mechanical con-
strains originating from either frictional or bulk properties are
incorporated in the data. A simple illustration of this limitation
comes from the widespread use in ETAS models of an
unbounded Gutenberg–Richter (G-R) law to generate synthetic
earthquake time series. It is straightforward to show that the
mean seismic moment of such a distribution is infinite (see
the Observed Upper Cutoff in Magnitude section; Knopoff
and Kagan, 1977; Sornette and Sornette, 1999), as long as the
b-value that characterize the G-R law is less than 1.5—as is very
often observed with real data. Although this has no consequence
when dealing with just numbers or rates of earthquakes, this
becomes a critical problem when one needs to model seismic
slip on a fault: an ETAS-generated time series with no upper
bound in the G-R law will result in a cumulative slip or moment
(Brune, 1968; Kostrov, 1974) with no statistical upper bound,
hence with the potential to reach any arbitrary (large) slip-rate
value even after very long observation times. Thus, while
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mimicking important features found in earthquake catalogs (i.e.,
clustering), it cannot describe how the total slip evolves on a
fault. This unfortunately prohibits possibly fruitful comparisons
with geodetic information. The simple addition of an upper cut-
off to the G-R law would solve this issue, but would be ad hoc, as
the choice of the location and shape of this upper cutoff would
not be constrained.

Besides ETAS models, statistical approaches have been devel-
oped to infer how the G-R law must be (upper) bounded by
exploiting geodetic and seismological constraints (Kagan, 2002b;
D’Agostino, 2014; Avouac, 2015; Stevens and Avouac, 2017).
These studies estimate a maximum magnitude and can infer
a mean return time for the largest earthquakes of a given tectonic
region, based on seismicity and geodetic data observed at the
scale of years to tens of years (Molnar, 1979; McCaffrey, 1994).
Given (1) λ the earthquake rate above a minimum magnitude
m0, (2) the b-value of the G-R law, (3) the seismic moment rate
M
:
0, the requirement that over long timescales M

:
0 � λ M̄0

with M̄0 the mean seismic moment for any random earthquake
put a constraint on the maximum magnitude Ω, yielding

EQ-TARGET;temp:intralink-;df1;41;484Ω� 1
γ−β

�
−βm0−9:1ln10� lnM

:
0− lnλ� ln

γ−β

β

�
; �1�

for M
:
0 in N · m per unit time, with γ � 1:5 ln 10 and

β � b ln 10, in the case of a sharp cutoff (see Kagan, 2002a,b,
for alternative models with smoother cutoffs), and in the
Ω ≫ m0 limit. This is crucial for seismic hazard assessment.
Somewhat similar approaches, recognizing that seismic moment
release is dominated by the largest shocks (provided b < 1:5),
have shown that one can reconcile seismic coupling inferred
from earthquake rates (including paleoseismic observations)
and geodetic interseismic coupling (Scholz and Campos, 2012).
Both methods are, however, known to be prone to undersam-
pling (McCaffrey, 1997): for example, the pre-2011 estimate
of the earthquake-based seismic coupling for the offshore
Honshu subduction was 1/2 of the geodetic estimate (Pacheco
et al., 1993), this discrepancy vanishing when adding the
Mw 9.0 Tohoku earthquake (Scholz and Campos, 2012). With a
return time of about 1000 yr or more, the chance to miss an
Mw 9.0 earthquake in less than 100 yr of seismicity observation
is high. More generally, unknown past occurrences of large earth-
quakes and nonstationarity of the earthquake rate can result in
biased estimations of λ and therefore of the maximum magni-
tude Ω. Because earthquakes cluster in time, there exists period’s
intense activity intertwined with lulls. The intermittency of earth-
quake occurrence rates must thus be accounted for to avoid such
undersampling. More fundamentally, these methods assume that
λ constrains Ω—although the converse is also true—and thus
they do not explain the seismicity rate value, even though the
two are coupled. Modeling bothΩ and λ frommore fundamental
(i.e., stable) variables can be performed by considering a seismic-
ity model constrained by a closed long-term slip budget.

We here propose to reconcile both approaches: (1) ETAS
models that, on their own, cannot resolve the slip budget and
(2) estimations of the maximum magnitude, which rely on an
inadequate Poisson description of earthquake occurrences. The
connection between the two is very simply made by con-
straining the cumulative seismic moment release to always
be less than the cumulative moment imposed by the tectonic
forcing, the rate of which can be independently estimated by
geodesy. Several important consequences naturally emerge
from adding this constraint: the G-R law is then modulated
by a smooth upper cutoff, location of which can be predicted
from model parameters. In particular, this cutoff depends on
the background rate of earthquakes, which is a much less inter-
mittent, nearly constant, hence more fundamental variable than
the highly complex earthquake rate—which includes aftershock
sequences; estimation of the background rate can however be
delicate, and the gain of describing the seismicity by a more sta-
ble background rate rather than by the more intermittent raw
rate has to be balanced against potentially severe estimation
biases, as will be explained later. Remarkably, our approach
makes original predictions about the relationships between
(1) seismic coupling times relative plate velocity, (2) the mean
earthquake rate, and (3) the background earthquake rate, into
nonlinear ones. This thus allows to directly relate observed
earthquake rates and geodetic information in a nontrivial way,
as will be described later.

This article is structured as follows: we first describe the
model, including a simple modification of the model, to pro-
duce simulations that quickly reach steady state. The upper
cutoff on the G-R relationship that naturally arises in the mod-
eled time series is then analyzed. We show how the earthquake
rates (both overall and background) and the imposed moment
rate are nonlinearly related and point out to specific regimes of
interest. Finally, we discuss the potential pitfalls when estimat-
ing model parameters from the data, especially when the p
exponent of the Omori–Utsu law is close to 1.

MODEL
Definition
Wemodel earthquakes with magnitudes fmig above a minimum
magnitude m0; their occurrence times ftig follow the simplest
version of the ETAS model (Ogata, 1988): earthquakes result
from a nonstationary Poisson process with rate

EQ-TARGET;temp:intralink-;df2;308;185λt � μ�
X
i=ti<t

n0eα�mi−m0� p − 1
c

�
1� t − ti

c

�
−p
; �2�

in which μ is the background rate, assumed constant here,
and the sum corresponds to aftershock triggering. We do not
consider earthquake spatial locations or rupture extents,
that is, the model is purely temporal. We further assume that
the earthquakes follow a strictly bounded G-R law with
density
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EQ-TARGET;temp:intralink-;df3;53;744f t�m� � βe−βm

e−βm0 − e−βΩt
; �3�

form0 < m < Ωt , in which β � b ln 10, andΩt is the maximum
magnitude conditioned on time t. We suppose that Ωt ≥ m0 at
all time. This upper bound is taken such that the moment
deficit

EQ-TARGET;temp:intralink-;df4;53;653ΔM0�t� � M
:
0t −

X
i=ti<t

M0;i; �4�

that is, the departure from the Brune (1968) moment estimate
with the geodetic one, would be exactly filled by an earthquake
of magnitude Ωt . We emphasize that the model does not impose
a seismic moment conservation, only an upper, time-varying
maximum magnitude Ωt that prevents ruptures to relax more
slip than the cumulative slip deficit. We will, however, show
in the Observed Upper Cutoff in Magnitude section that a
long-term seismic moment conservation is effectively verified
by the model, as the mean ofΩt indeed agrees with the prediction
based on this principle. We use the Hanks and Kanamori (1979)
relationship M0 � 101:5m�9:1 relating seismic moment M0

(in N · m) with magnitude m, so that M0;i � 101:5mi�9:1 and
ΔM0�t� � 101:5Ωt�9:1. We will here make the hypothesis that
the forcing moment rate M

:
0 is constant with time.

The branching ratio n̄ is a key parameter in ETAS models
and is defined as the mean number of aftershocks directly trig-
gered by an earthquake taken at random (Helmstetter and
Sornette, 2002). Because the total number of aftershocks grows
as n0eα�m−m0��1� n̄� n̄2 � � � �� when adding aftershocks
of the second, third, …, generations, the condition n̄ < 1 is
required to stabilize the model; n̄ > 1 would lead to an infinite
number of earthquakes in a finite time, hence λ growing to
infinity. Here, it is straightforward to show that n̄ depends
on time because it is conditioned by Ωt

EQ-TARGET;temp:intralink-;df5;53;289n̄t�
Z

Ωt

m0

dmn0eα�m−m0�f t�m�� βn0
β−α

×
e�α−β��Ωt−m0�−1
e−β�Ωt−m0�−1

; �5�

if α � β, or n̄t � βn0�Ωt −m0�=�1 − e−β�Ωt−m0�� if α � β. We
note that, contrary to the ETAS model, the cutoff at Ωt allows
α > β; however, because analyses suggest that α is less than β
(compare to Hainzl et al., 2013), we will assume this inequality
to hold true and thus restricts our attention to α < β models,
with the exception of the Repeating Earthquakes section. For
Ωt → ∞ (and α < β), one finds that n̄t � βn0

β−α and stability
requires that n̄t < 1, hence n0 < 1 − α

β. As we will show later,
this stability criterion is relaxed in our model because Ωt

is finite; however, we find different seismicity regimes depending
on whether n0 < 1 − α

β or not (compare to the Dependence of
Seismicity Rate λ on Background Rate μ and on Seismic Moment
Rate M0 section), so that the critical value nc � 1 − α

β remains
of particular importance.

All model parameters (μ, α, β, p, c, n0, M
:
0) are assumed

constant. This implies that we do not account for seismogenic
processes that could depend on a time-varying mean level of
stress acting on the faults. Such dependencies would render
the ETAS model nonlinear and would therefore prevent the
analytical developments described in this work.

Accounting for prior earthquake activity
A classical issue when fitting an ETASmodel to data is the initial
edge effect: knowing earthquakes only past an origin time t � 0
implies that, initially, most earthquakes will wrongly be consid-
ered as background (Wang et al., 2010; Seif et al., 2017). This is
particularly problematic when searching for possible slow
changes in background rate, as this will cause a spurious decel-
eration of this rate (Marsan et al., 2017). Adding data prior to
the target period is a way to mitigate this effect (Wang et al.,
2010; Harte, 2018). A related problem comes with simulations:
generating a synthetic dataset with no activity prior to t � 0
leads to a preliminary period during which the rate slowly
grows, as more and more aftershock sequences add up.
Unfortunately, this transient acceleration can be very long, espe-
cially as p is close to 1, so that the steady state is practically never
reached. It is thus desirable to generate synthetic datasets that
quickly reach steady state. We here describe how this can be
achieved, developing on ideas detailed in van der Elst (2017).

Instead of starting a simulated dataset ab nihilo, one can sim-
ply assume that it was preceded by seismicity activity with a rate
constant with time, equal to λ∞ defined as the mean seismicity
rate for infinitely long time periods. These prior earthquakes
have magnitudes distributed according to the G-R law f �m�
of equation (3) bounded by Ωt , which can be approximated
as a fixed mean value Ω̄. We will detail in the Observed
Upper Cutoff in Magnitude section how the rate λ∞ and the
upper bound Ω̄ can be directly computed from model param-
eters. This prior activity generates aftershocks during the simu-
lated t > 0 period, a prior earthquake at time t′ < 0 triggering
aftershocks with rate:

EQ-TARGET;temp:intralink-;df6;320;263λ�t; t′� � n0
p − 1
c

�
1� t − t′

c

�
−p
Z

Ω̄

m0

dmf �m�eα�m−m0�: �6�

Integrating this rate yields
R
0
−∞ dt′λ�t; t′� � n̄�1� t

c�1−p. Thus,
starting at time t � 0, the simulated dataset is an outcome of
the rate of equation (2), to which a term is added to account
for this prior activity:

EQ-TARGET;temp:intralink-;df7;320;158λt � μ� νt �
X
i=ti<t

n0eα�mi−m0� p − 1
c

�
1� t − ti

c

�
−p
; �7�

with

EQ-TARGET;temp:intralink-;df8;320;94νt �� λ∞n̄

�
1� t

c

�
1−p

: �8�
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It is important to note that νt decays very slowly with time when
p is close to 1; this will have consequences on estimation strat-
egies, as discussed later. Also, we set the initial moment deficit to
its expected value (when averaged over infinitely long times)
M0�Ω̄� so that the system is already loaded when starting the
simulation.

Example
To illustrate the model, we run a 2000-year-long simulation that
roughly mimics seismicity in the northern Japanese subduction
zone (compare to Fig. 1). We follow the parameters used and
obtained by Marsan et al. (2017) in their study of the 1990–
2011, m ≥ 3, subduction-related activity (138° < longitude
< 145°, 34° < latitude < 42°, and depth within 20 km of the
upper surface of the Pacific plate, as given by Hayes et al.,
2012): m0 � 3, α � 2, p � 1:1, c � 10−5 days, b � 0:95, and
μ � 0:33 per day when averaged over the 21 yr. A more
thorough explanation about how model parameters can be
estimated from the data is given in the Estimating Model
Parameters section. The moment rate M

:
0 is taken as identical

to the Honshu region of Scholz and Campos (2012), where it is
assumed that a 8:3 cm=yr convergence is accommodated with a
seismic coupling of 0.6, a rigidity of 4 1010 Pa, and a coupling
width of 110 km, yielding M

:
0 � 3:75 1017 N · m=day. Taking

n0 � 0:106 gives an expected mean rate λ∞ of 2.17 per day, close
to the observed 1990–2011 average of 2.15 per day. The mean
branching ratio is then n̄ � 0:85, and the mean maximummag-
nitude is Ω̄ � 9:17 (see later on how these quantities are
inferred from the model parameters).

We count two earthquakes of magnitude 9 and above, and
24 withm ≥ 8 within the simulated 2000 yr. The evolution with
time of Ωt is also shown: we find that its average is Ω̄ � 9:03,
close to the expected long time average of 9.17, in agreement
with the estimate of Stevens and Avouac (2017). The branching
ratio of equation (5) is found to be equal to 0.83 on average
more than 2000 yr, whereas the expected long-term average
is 0.85. If the G-R law were effectively unbounded, replacing
Ωt → ∞ in equation (5) would give n̄ � βn0

β−α � n0=nc � 1:24,
hence a time series with a rate growing to infinity. The bound-
ing of the G-R law constrained by the maximum mobilizable
slip therefore provides a way to stabilize the model.

The mean return time for m > Ω̄ earthquakes (with
Ω̄ � 9:17, the long term expected average) is 926 yr, so that
using equation (1) to estimate a maximum magnitude should
be sufficiently robust only if observation is sufficiently longer
than these 926 yr. As a matter of fact, injecting the observed
λ̄ � 2:15 per day in equation (1) yields Ω � 9:18. However,
taking shorter and more realistic observation durations helps
pointing out the undersampling issue that is typically encoun-
tered when exploiting the raw seismicity rate. As an example,
we split the simulation into 50 intervals of 40 yr, and show
in Figure 1 how the equation (1) estimate varies, in relation
to the maximum magnitude effectively observed in the sample.

A negative correlation is expected given the Ω ∼ − 1
γ−β ln λ

dependence of equation (1).

OBSERVED UPPER CUTOFF IN MAGNITUDE
We now show that in this model the magnitude distribution
over long periods departs from the G-R law at large magnitudes,

Figure 1. Synthetic earthquake time series generated over 2000 yr, with
parameters intended to mimic the northern Japanese subduction zone
seismicity: m0 � 3, α � 2, b � 0:95, p � 1:1, c � 10−5 days,
n0 � 0:106, μ � 0:33 per day, and M

:
0 � 3:75 1017 N · m=day. (a) The

maximum magnitudeΩt is shown in magenta, and averages 9.02 (the value
expected when averaging over an infinitely long time is Ω̄ � 9:12, compare
to the Observed Upper Cutoff in Magnitude section). (b) The moment deficit
ΔM0�t� of equation (4) can be transformed into a equivalent time
tacc � ΔM0�t�=M

:
0, called here the accumulation time, proportional to the

average shear loading stress acting on the faults. (c) Mean maximum
magnitude Ω estimated from equation (1) for 40-year-long windows versus
the sample maximum magnitude; Ω varies from 8.38 to 9.60. The color
version of this figure is available only in the electronic edition.
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the cutoff being characterized by a location that can be predicted
from the model parameters. Most of the derivation is given in
Appendix A, where we prove that (1) the model follows the
moment conservation principle λ̄ × M̄0 � M

:
0 even though it

is not imposed a priori; (2) the long-term average maximum
magnitude Ω̄ can be computed knowing the model parameters;
and (3) the departure at large magnitudes of the observed G-R
law from a simple exponential law is directly related to the
distribution of Ωt .

Provided that the observation time is long enough, the
departure of the observed G-R law with an unbounded one
can be clearly seen in simulations. We show this departure in
Figure 2 for a synthetic catalog generated with μ � 1 per day,
α � 2, b � 1, n0 � 0:2, m0 � 3, p � 1:1, c � 10−5 days, and
M
:
0 � 1017 N · m=day. The high n0 value (1.66 times the criti-

cal nc value) implies strong aftershock triggering, hence a
relatively low Ω̄ � 6:97 and a characteristic return time well
shorter than Tobs (we here define the characteristic return time
as the mean return time for m > Ω̄ events, here equal to
2.22 yr). The observed magnitude distribution is related to the
distribution of Ωt , which is unknown to the observer. The
relationship between these two distributions is described in
Appendix A, item (3). We checked in Figure 2b the validity
of equation (A7), see Appendix A, on the simulation of
Figure 2a.

Looking at a simulated catalog like those of Figures 1 and 2,
it can be seen that Ωt mostly stays within a limited range cen-
tered on the averaged Ω̄, so that g�Ω� can be at first order mod-
eled by a Gaussian with mean Ω̄ and standard deviation σ. Our
simple dΦ�M�

dM ≃ −g�M� result of Appendix A, which is valid
here (we indeed have β�Ω̄ −m0� ≫ 1), indicates that this a
priori unknown distribution g�Ω� directly translates into the
observed departure from the G-R law at large magnitudes, with
Φ�M� the complementary error function (erfc) with mean Ω̄
and standard deviation σ. This two-parameter model is differ-
ent from the simpler (one parameter), tapered G-R law found
by Kagan (2002a) to be a good model for global seismicity
(Global Centroid Moment Tensor catalog up to 1999;
Dziewonski et al., 1981; Ekström et al., 2012). We, however,
note that (1) the erfc cutoff model found here could emerge
from the somewhat arbitrary choice of a strict magnitude cut-
off Ωt ; (2) the estimates of Kagan (2002a) are obtained for a
worldwide catalog, so for tectonic regions that have very differ-
ent seismic moment rates. This mixing is likely to change the
overall shape of the magnitude–frequency relationship, that is,
one could possibly have different cutoff shapes at small and
large scales. These two arguments suggest that a direct com-
parison with the results of Kagan (2002a) is not straight-
forward.

As explained previously, Ω̄ can be readily predicted from
the model parameters; however, the standard deviation σ can-
not, or at least we could not find a way to do so. This unfortu-
nately implies that the value of σ can only be obtained by

running simulations and quantifying the observed departure
from the G-R law, with (so far) little understanding on how
σ effectively depends on model parameters. We fitted the erfc
cutoff to the simulated dataset of Figure 1; namely, we estimated
the mean and standard deviation of the best Gaussian density g
such that dΦ�M�

dM is given by −g�M�. Because b and λ̄ are known,
these estimates of Ω̄ and σ allow to compute the mean return
time for large (m > Ω̄) earthquakes. Compared to the approach
reviewed in Avouac (2015), this estimation can help con-
straining the probability and return times of unexpectedly very
large earthquakes, that is, with magnitudes greater than the
mean Ω̄, therefore refining seismic hazard evaluations.

DEPENDENCE OF SEISMICITY RATE λ̄ ON
BACKGROUND RATE μ AND ON SEISMIC MOMENT
RATE M

:
0

The mean earthquake rate in a given region is a direct observ-
able that carries information about how the fault system is
loaded, how strong the seismic coupling is, and how the faults
mechanically interact. However, a relationship that link the
mean earthquake rate to stress rate, and so on, is largely miss-
ing. In the framework of the present model, such a relationship
can however be investigated, although a systematic study of
how the two key quantities (mean seismicity rate λ̄ and mean
maximum magnitude Ω̄) depend on model parameters

0 2 4 6 8 10

yr

3

4

5

6

7(a)

(b)

M
ag

ni
tu

de

3 3.5 4 4.5 5 5.5 6 6.5 7

Magnitude

10 0

10 5

N
um

be
r 

N
(>

m
)

Observed
Equation (27)
erfc cutoff

Figure 2. (a) Simulated time series, for m0 � 3, α � 2, b � 1, p � 1:1,
c � 10−5 days, n0 � 0:2, μ � 1 per day, andM

:
0 � 1017 N · m=day, and

(b) number of occurrences versus magnitude, showing the departure of a
straight unbounded Gutenberg–Richter law at large magnitude. The black
curve gives the best fit using an error function. The color version of this
figure is available only in the electronic edition.
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fμ; α; n0;M
:
0; βg is beyond the scope of this work. We note that

the two extra parameters p and c only affect the aftershock trig-
gering kernel shape, and have no impact on the time-averaged λ̄
and Ω̄. We recall (compare to Appendix A, equations A2–A5)
that a set of four equations provides constraints on the four var-
iables fλ̄; M̄0; n̄; Ω̄g, for sufficiently long observation times. We
rewrite these equations assuming that Ω̄ is sufficiently greater
than m0, and β is sufficiently smaller than γ (which is the case
for b � 1):

EQ-TARGET;temp:intralink-;df9;41;627λ̄ × M̄0 � M
:
0 �9�

EQ-TARGET;temp:intralink-;df10;41;589λ̄ � μ

1 − n̄
�10�

EQ-TARGET;temp:intralink-;df11;41;541n̄ ≃ n0
β

β − α
�1 − e�α−β��Ω̄−m0�� �11�

EQ-TARGET;temp:intralink-;df12;41;495M̄0 ≃M0�m0�
β

γ − β
e�γ−β��Ω̄−m0�: �12�

A numerical solution can be computed, given the model param-
eters. However, the exploration of a 5D space is practically non-
trivial. Instead, we here more particularly (1) study the specific
dependence of λ̄ (which can be partly constrained directly from
observed earthquake rates) on μ and M

:
0, allowing us to isolate

distinct relationships of interest, and (2) further explore the
model by pointing out remarkable regimes.

Dependence of λ̄ on μ
The λ̄ � μ

1−n̄ relationship of Helmstetter and Sornette (2003) is
valid for infinitely long observation times, and implies a simple
proportionality between μ and λ̄. However, introducing the
additional constraint of a fixed seismic moment release rate
adds an extra layer of complexity, as changing μ, hence λ̄, also
affects n̄ through its dependence on Ω̄. As an example, coming
back to the simulation shown in Figure 1, we found that λ̄ �
2:17 per day; a 10-fold decrease in background rate μ would
yield λ̄ � 0:46 per day, hence a decrease by a factor of 4.7 in
λ̄, clearly distinct from the simple proportionality.

Equations (9)–(12) can be solved to infer the dependence of
λ̄ on μ. From there, some algebra (compare to Appendix B)
gives the nonlinear dependence

EQ-TARGET;temp:intralink-;df13;41;158μ � Aλ̄� Bλ̄δ ; �13�

with A, B, and δ depending on the model parameters (these
dependencies are given in Appendix B). An important point
is that A can be either negative (if n0 > nc, in which nc � 1 −
α
β is the stability threshold in classical ETAS models) or positive
(if n0 < nc). These two cases correspond to strong or weak

aftershock triggering cases, respectively. It is worth emphasiz-
ing that n0 > nc is not allowed in classical ETAS models. This
constraint is relaxed in our model: taking n0 > nc yields a
regime in which there exists periods of high n̄t , leading to
increased activity, hence more large shocks that reduce the
moment deficit, hence lowering n̄t . This stabilizing loop
ensures that whatever the value of n0 > nc, the model is stable
and does not produce running-off sequences.

The case A < 0 (i.e., n0 > nc) is worth further examination.
In the limit μ → 0, equation (13) gives that λ̄ → λc, with

EQ-TARGET;temp:intralink-;df14;308;614λc �
�
−
A
B

� 1
δ−1 �

�
1 −

nc
n0

� 1
δ−1 M

:
0

M0�m0�
×
γ − β

β
; �14�

which is finite (and nonzero). This regime is obtained for n0 >
nc and μ ≪ μc with μc � λc�n0nc − 1�. It implies that the seismic-
ity rate becomes practically independent of μ. This is a critical
regime in which aftershock triggering sustains itself over infi-
nitely long periods of time. Then, very little spontaneous
(background) activity can maintain potentially very high seis-
micity rates. Remarkably, the model naturally reaches n̄ → 1
without having to precisely tune model parameters, in a way
similar to a self-organized critical system.

Still for n0 > nc and μ ≪ μc, we find that

EQ-TARGET;temp:intralink-;df15;308;431Ω̄ � m0 �
1

α − β
ln

�
1 −

nc
n0

�
; �15�

which implies an undesirable dependence of the mean
maximum magnitude Ω̄ on m0. This issue can be addressed
by considering that among all model parameters
fα; β; p; c; n0;M

:
0; μ;m0g both n0 and μ depend on the choice

ofm0. Namely, changing the lower cutoffm0 requires changing
n0 so that

EQ-TARGET;temp:intralink-;df16;308;302n0 �
nc

1 − e�α−β��Ω̄−m0�
: �16�

The seismicity rate λ̄ then follows the expected G-R scaling,
that is, λ̄ ∼ e−βm0 . We note that, in the limit m0 → −∞, equa-
tion (16) gives that n0 → nc, independently of Ω̄. We summa-
rize in Figure 3 the various regimes in the �n0; μ� parameter
space. Figure 4 shows how λ̄ depends on μ, for the parameters
of Figure 1.

Dependence of λ̄ on M
:

0
We now examine how λ̄ depends on M

:
0, with all other vari-

ables (including the background rate μ) fixed. Building on the
same set of equations as earlier, that is, equations (9)–(12), we
again find that two cases must be distinguished:

1. for n0 < nc, then λ̄ asymptotically saturates at λ̄∞ � μ
1−n0=nc

when M
:
0 → ∞. Because a large moment rate must be
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released with a finite seismicity rate, this implies that
Ω̄ → ∞ when M

:
0 → ∞;

2. for n0 > nc, then M
:
0 → ∞ causes λ̄ → ∞, which implies

n̄ → 1 as already commented (critical case). Because n̄
depends on Ωt (hence Ω̄) but not on M

:
0, see equations (5)

and (11), this implies that Ω̄ does not depend on M
:
0, and

thus neither does M̄0. As a consequence, the budget of
equation (9) imposes that λ̄ is simply proportional to M

:
0.

In both cases, λ̄ ≃ μ when M
:
0 → 0. The separation between

the low (λ̄ ≃ μ) and high (λ̄ → ∞) regimes at n0 > nc occurs
when M

:
0 is of the order of μ

βM0�m0�
γ−β �1 − nc

n0
�1=1−δ . This transi-

tion value decreases to a low rate when n0 is kept increasing: for
n0 → ∞, this value is μ βM0�m0�

γ−β , hence only a factor β
γ−β greater

than the rate dissipated by just the background earthquakes.
A third transitional regime is found for n0 greater but suf-

ficiently close to nc that marks the transition between the two
λ̄ ≃ μ (when M

:
0 → 0) and λ̄ ∼M

:
0 (at greater M

:
0 values)

regimes, in which λ̄ is proportional to the 1 − 1
δ � β−α

γ−α power of
M
:
0. For typical β and α values, that is, b � 1 and α � 0:6 ln 10

to 0:9 ln 10, compare to Hainzl et al. (2013), this power ranges
from 0.16 to 0.44, implying a relatively weak dependence of
λ̄ on M

:
0. This transitional regime only applies to an ever-

narrower interval of M
:
0, as n0 is increased. Figure 5 shows

examples of the various λ̄ versus M
:
0 regimes for three cases:

(1) n0 < nc, (2) n0 greater but close to nc, and (3) n0 > nc.

Dependence on both M
:

0 and μ
So far only M

:
0 or μ have been left to vary, the other quantity

being held constant. However, it is clear that bothM
:
0 and μ are

related; for example, increasing the area A under study implies
increasing (1) M

:
0 in direct proportion of A (provided that the

average tectonic slip rate and seismic coupling do not change

when including the new area), and (2) μ as the number of
nucleation sites must necessarily grow with A. Moreover, both
quantities depend on the slip rate δ

:
, this dependence being a

Figure 3. Summary of the μ ≪ μc and μ ≫ μc regimes, function of n0.
We recall that the critical nc is nc � 1 − α

β. These regimes require that
Ω̄ ≫ m0 � 1

β; this condition does not hold true any longer when M
:
0 is

too small.
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Figure 4. Top graph: dependence of the seismicity rate λ̄ on the background
rate μ, for model parameters m0 � 3, α � 2, b � 0:95, n0 � 0:106
(hence greater than nc � 0:086), and M

:
0 � 3:75 1017 N · m=day (same

as in Fig. 1). The inset shows a zoom in at small values of μ, with λ →
λc � 0:53=day when μ → 0, corresponding to a self-organized critical
regime. Bottom: relative increase of λ̄ vs the relative increase of μ (i.e.,
�Δλ̄
λ̄
�=�Δμμ �, function of μ, for the same set of parameters. The sensitivity of λ̄

on μ becomes null at very low μ-values, in this regime (n0 > nc), and
saturates at 1

δ � 0:86 large μ. The color version of this figure is available
only in the electronic edition.

10 5 10 10 10 15 10 20 10 25 10 30

Seismic moment rate (N·m/day)

10 0

10 2

10 4

10 6

10 8

10 10

10 12

10 14

/

1

0.13

 = 15.0 

n0 = 0.1

n0 = 0.088

n0 = 0.08

Figure 5. Dependence of λ̄ (in units of μ) on M
:
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used the same parameters as in Figure 1, with μ � 0:01 per day. The
critical nc is 0.085. For n0 < nc, λ̄ ranges between μ and λc (dashed lines).
For n0 > nc , an intermediate nonlinear regime λ̄ ∼M

: 0:13
0 is found (best

seen for n0 � 0:088), followed (at large M
:
0) by a simple linear regime. The

color version of this figure is available only in the electronic edition.
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simple proportionality forM
:
0. The dependence of μ on δ

:
is less

trivial: a linear μ ∼ δ
:
relationship was found for subduction

zones by Ide (2013), and to characterize changes during
slow-slip events in Boso (Reverso et al., 2016), but previous
work by Bird et al. (2009) suggests that more complex nonlin-
ear relationships could emerge owing to nonelastic effects (e.g.,
thermal, poroelastic, or viscous). If μ is in proportion of the
number of velocity-weakening patches that are big enough
to nucleate slip accelerating to seismic velocities, then increas-
ing the loading rate is known from laboratory friction experi-
ments to shrink the size of the nucleation zones of future
dynamic instabilities, so that more patches could nucleate
earthquakes (McLaskey and Yamashita, 2017; Guerin-Marthe
et al., 2019). This effect would result in a nonlinear dependence
of μ with δ

:
, as the number of sites increases and as the rate of

sites reaching the nucleation threshold and starting the nucle-
ation phase grows proportionally with δ

:
. This dependence is,

however, likely only weakly nonlinear, Guerin-Marthe et al.
(2019) finding that the nucleation radius decays in − ln δ

:
.

The μ ∼ δ
:
case leads to a particularly simple result. Then, all

regimes of Figure 3 give that λ̄ ∼ δ
:
. We emphasize that this

simple relationship is only strictly valid for a fault undergoing
a change in slip rate (all other model parameters being the
same), but cannot be used to relate distinct faults that could
be characterized by different values of the model parameters.

A similar simple conclusion is obtained when considering
the dependence of the model on the area A. Extending the area
implies increasing both M

:
0 and μ. If we neglect the variations

of other model parameters (i.e., α, β, n0) with the spatial extent,
and assume that both M

:
0 and μ are simply proportional to A,

then λ̄ becomes also proportional to A, so that the ratio λ̄=M
:
0

and λ̄=μ are independent of the spatial extent. According to
equations (9) and (12), a constant ratio λ̄=M

:
0 implies a con-

stant M̄0, hence a constant Ω̄: over infinitely long observation
times, the G-R cutoff remains the same whatever the size of the
considered area.

Repeating earthquakes
We have assumed that α < β, as is observed at regional scale
when inverting ETAS parameters. Relaxing this constraint, we
now discuss the specific case of the α ≥ β and μ → 0 regime.
Developing the same argument as above (compare to
Appendix B), we obtain that, in this μ → 0 limit, λ̄ → λc with

EQ-TARGET;temp:intralink-;df17;41;185λc �
�
1 −

nc
n0

�γ−β
β−α M

:
0

M0�m0�
γ − β

β
; �17�

if α > β, or

EQ-TARGET;temp:intralink-;df18;41;120λc � e
β−γ
n0β

M
:
0

M0�m0�
γ − β

β
; �18�

if α � β. This is a self-organized critical regime, as discussed
earlier, but here without any requirement on n0. We recall that

this regime was found in the β > α case when n0 > nc; here,
α ≥ β implies that nc ≤ 0, so that this n0 > nc condition is
always verified, and the self-organized regime is thus found
whatever the value of n0.

Interestingly, this regime exhibits a relatively simple
dynamics, in which characteristic earthquakes occur quasi-
periodically. As an example, we show in Figure 6 results from
a simulation ran for m0 � 3, μ � 10−3 per day, n0 � 0:02,
b � 1, α � 4, and M

:
0 � 1014 N · m=day, for which the

expected Ω̄ is 5.13. Considering all m > Ω̄ earthquakes, the
interevent times display a clear bimodal distribution with after-
shock triggering at short timescales (about 3% of the events)
and a well-peaked mode centered at ≃9:5 yr. Such a bimodal
distribution and proportion of aftershocks are similar to what
Lengliné and Marsan (2009) found for repeating earthquake
interevent times in Parkfield. Here, this quasi-periodic dynam-
ics naturally arises because α ≥ β allows for very large n̄t values,
which cause the earthquake interactions to quickly cascade
during aftershock sequences, exhausting the moment deficit
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Figure 6. Results of a simulation ran over 105 yr, for m0 � 3, μ � 10−3 per
day, n0 � 0:02, b � 1, α � 4, and M

:
0 � 1014 N · m=day. The expected

Ω̄ is 5.13. (a) Time series zoomed over 500 yr of m > Ω̄ earthquakes,
which are considered as “asperity-sized,” displaying quasi periodicity. The
coefficient of variation is 0.65. (b) Distribution of the interevent times for
these asperity-sized earthquakes. The regime at short timescales gives a
density in 1/time gap (black line) and accounts for 3% of these earthquakes.
The second regime is the quasi-periodic mode centered at ≃9:5 yr. The
color version of this figure is available only in the electronic edition.
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and resetting the loading near zero. Equation (17) implies a
simple λ̄ ∼M

:
0 scaling; because this regime displays vanishing

dependence on μ, this directly translates into a λ̄ ∼ δ
:
relation-

ship, so that the repeating failure of such an asperity allows to
gauge possible changes in local slip rates, as initially proposed
by Nadeau and McEvilly (1999).

This model of a repeating earthquake thus assumes that
(1) the asperity is isolated (it must accommodate a constant
M
:
0 on its own); (2) it constantly undergoes partial ruptures,

with sizes smaller than the asperity size; (3) this inner dynamics
is controlled by “regular” earthquake laws, that is, the Omori
law, the G-R law, the productivity law, albeit with a large pro-
ductivity exponent α (or, alternatively, a small b-value, because
the key requirement is α ≥ β). Then, the branching ratio can
temporally be much greater than 1, causing episodes of cascad-
ing stress release, which culminate with an asperity-size failure.
Remarkably, the critical regime of such an asperity implies that
all its failures, either partial or complete, are effectively after-
shocks of previous failures, because μ → 0. This inner dynamics
model of an asperity complements the frictional model of
Dublanchet et al. (2013) that sees the failure of an asperity as
resulting frommicrofailures of microasperities, provided the lat-
ter have a high enough density; see also Cattania (2019) for a
similar approach at the scale of an isolated fault.

ESTIMATING MODEL PARAMETERS
As already evidenced by van der Elst (2017), it can be difficult to
distinguish between background earthquakes and aftershocks
from long past mainshocks, the more so as Tobs is short and
p is close to 1. This has undesirable consequences regarding
to our capacity at estimating model parameters from the data.

Based on the model of equations (7) and (8), the maximum-
likelihood estimation of parameters fμ; α; n0; p; cg from an
earthquake dataset—assuming that bothM

:
0 and β can be inde-

pendently estimated on their own—implies minimizing the
cost or misfit function (Ogata, 1998)

EQ-TARGET;temp:intralink-;df19;53;276J �
Z

Tobs

0
dt λt −

X
i=0<ti<Tobs

ln λt : �19�

For p ≃ 1, νt of equations (7) and (8) decays very slowly with
time, and its temporal signature becomes practically indistin-
guishable from the constant background rate μ. The model can
then be simplified by defining μeff � μ� ν as an effective
background rate, with ν being for example the time average
of νt over the observed time interval, or its initial λ∞n̄ value
(taking ν � λ∞n̄ implies that μeff � λ∞). However, this pre-
vents a definite determination of μ itself, which only accounts
for an unknown portion of μeff . This is an issue, as the μ-value
is required to estimate λ∞, n̄, and Ω̄, as well as the standard
deviation σ of the erfc cutoff model.

As an illustration, we refer to the simulation of Figure 1, for
which μ � 0:33 per day, λ∞ � 2:15 per day, and n̄ � 0:85. The

initial (maximum) value of νt is then λ∞n̄ � 1:82 per day,
hence about five times the background rate. Based on data
alone, one could therefore find that μeff � λ∞ � 2:15 per
day, but would not be able to isolate μ. Taking extreme guesses
μ → 0 and μ � μeff , we would estimate that Ω̄ ranges between
8.0 and 11.8, hence a very large, unuseful spread that includes
seemingly unrealistic values. Likewise, the estimated λ∞ would
range between 0.077 and 8.9 earthquakes per day. In the μ → 0
scenario (giving λ∞ � 0:077 and Ω̄ � 11:8), all the observed
earthquakes would be aftershocks of long past mainshocks
(critical regime, see the Dependence of λ̄ on μ section).
Extra independent knowledge could help better constraining μ,
although this information is generally missing or incomplete.
We recall that a direct estimate of Ω̄ based on the raw seismic-
ity rate (see equation 1) would yield 8:38 < Ω̄ < 9:60 if split-
ting the 2000 yr into 40-year-long windows. This shows that,
at least, for the purpose of estimating Ω̄ and in the p → 1 limit,
the use of the background rate rather than the raw seismicity
rate is questionable: the undersampling issue when taking the
observed λ is replaced by an estimation issue for μ (again, in the
p → 1 limit). Further work is required to better understand
these limits and point to solutions.

CONCLUSIONS
We have defined a seismicity model that can effectively
account for earthquake clustering, and which verifies the
moment conservation principle at long timescales. This can
be done by simply adding the requirement that no earthquake
can have a moment greater than the current moment deficit at
the time of its occurrence. We have explored how this require-
ment affects the seismicity. The important consequences are
listed as follows:

1. The G-R law observed over long times has a smooth upper
cutoff, even though the instantaneous G-R law has a sharp
cutoff. This smooth cutoff has a location that can be pre-
dicted from the model parameters.

2. The seismicity (ETAS) model becomes stable over the
whole parameter space, thanks to the existence of a
(time-varying) maximum magnitude.

3. A remarkable regime in which earthquake occurrence is
dominated by aftershock triggering can be spontaneously
reached by the model, provided that μ → 0 and n0 > nc (this
μ → 0 regime is always found, whatever the value of n0, if
α ≥ β). This regime is characterized by a mean branching
ratio that naturally tends to 1, without having to tune it pre-
cisely with the model parameters. We recall that a branching
ratio of 1 implies that every earthquake on average (i.e., tak-
ing the average over all the possible mainshock magnitudes)
triggers exactly one aftershock, so that the earthquake activ-
ity never dies off and remains permanent over infinitely long
durations. This occurs without having to reactivate the sys-
tem by adding new background earthquakes (as μ → 0).
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Because of this spontaneous n̄ → 1 behavior, this regime is a
self-organized critical regime.

4. Provided that M
:
0 is proportional to the tectonic displace-

ment rate δ
:
, and keeping all other parameters fixed, it is

expected that the seismicity rate becomes simply propor-
tional to δ

:
over the whole parameter space. This is only

valid if μ ∼ δ
:
, which, given our current knowledge, appears

to be a reasonable assumption. Transient changes in δ
:
, or

alternatively in seismic coupling, must therefore translate
on average into proportional changes in seismicity rate.

Several questions naturally stem from these consequences.
First of all, it is still unclear whether the description of seismic-
ity with a clustering model and a background rate brings a sig-
nificant gain with regard to estimating the mean maximum
magnitude, as compared to already existing methods that more
simply use the observed (raw) seismicity rate. This issue is
potentially severe in the p → 1 limit, as the estimation of
the background rate μ becomes challenging.

A daring working hypothesis is that earthquake systems
could be in the self-organized critical regime n̄ → 1 described
earlier. This would much simplify the modeling and estimation
as the seismicity would then become insensitive to μ, as long as
it remains small enough. This hypothesis will be tested on
actual datasets in a future work.

Finally, although the location of the upper cutoff of the G-R
law can be predicted from the model parameters, its shape and
width cannot. Further work would be required to investigate
this issue, which, in terms of seismic hazard estimation, is of
importance.
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APPENDIX A
Conservation of moment
We here show that the existence of a cutoff magnitudeΩt , even
if it is time-varying, imposes that seismic moment is conserved,
that is, λ̄ × M̄0 � M

:
0, in which the :̄ symbol denotes long-term

averaged quantities. We recall that this conservation is not
a priori imposed in the model (we only constrain every
earthquake to have a magnitude less than Ωt , in which
ΔM0�t� � 101:5Ωt�9:1 is the moment deficit at time t).

The mean seismic momentM0;t for an earthquake drawn at
random from the strictly bounded density of equation (3) is

EQ-TARGET;temp:intralink-;dfa1;320;666M0;t �
Z

Ωt

m0

dmM0�m�f t�m�

� M0�m0�
β

β − γ
×
e�γ−β��Ωt−m0� − 1

e−β�Ωt−m0� − 1
; �A1�

in which γ � 1:5 log 10. This mean depends on time through
Ωt . As already commented, when β < γ, that is, b < 1:5, then
limΩt→∞ M0;t � ∞. Suppose that the model is run from t � 0
to t � Tobs. Then, because the moment deficit stays finite,

the difference 1
Tobs

R Tobs
0 dtλtM0;t −M

:
0 must tend to 0 as

Tobs → ∞. Approximating the integral by 1
Tobs

R Tobs
0 dtλtM0;t

≃ 1
Tobs

R Tobs
0 dtλt ×

1
Tobs

R Tobs
0 dtM0;t � λ̄ × M̄0, then this product

λ̄ × M̄0 → M
:
0 for infinitely long Tobs, so that moment is con-

served over sufficiently long time periods.

Estimation of Ω̄
We further approximate M̄0 as M0�m0� β

β−γ ×
e�γ−β��Ω̄−m0�−1
e−β�Ω̄−m0�−1

,
that is, equation (A1) with Ωt replaced by the time-
averaged Ω̄ � 1

Tobs

R Tobs
0 dtΩt . This Ω̄ can be estimated

directly from the model parameters: the mean rate being
λ̄ � μ

1−n̄ (Helmstetter and Sornette, 2003), with
n̄ � 1

Tobs

R Tobs
0 dt n̄t ≃

n0β
β−α ×

e�α−β��Ω̄−m0�−1
e−β�Ω̄−m0�−1

, the condition
λ̄ × M̄0 � M

:
0 provides a closure on Ω̄, as both λ̄ and M̄0

depend on model parameters fμ; α; β; n0;m0; p; cg and Ω̄.
We effectively must verify a closed set of four equations, with
λ̄, M̄0, n̄, and Ω̄ the four unknowns:

EQ-TARGET;temp:intralink-;dfa2;320;293λ̄ × M̄0 � M
:
0 �A2�

EQ-TARGET;temp:intralink-;dfa3;320;253λ̄ � μ

1 − n̄
�A3�

EQ-TARGET;temp:intralink-;dfa4;320;206n̄ � n0
β

β − α
×
1 − e�α−β��Ω̄−m0�

1 − e−β�Ω̄−m0�
�A4�

EQ-TARGET;temp:intralink-;dfa5;320;152M̄0 � M0�m0�
β

β − γ
×
1 − e�γ−β��Ω̄−m0�

1 − e−β�Ω̄−m0�
: �A5�

All other parameters (μ, n0, α, β, m0, M
:
0) are (fixed) model

parameters. The numerical estimation of Ω̄ is thus straightfor-
ward. Note that approximating M̄0 as M0�m0� β

γ−β e
�γ−β��Ω̄−m0�,
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which is valid if γ > β and Ω̄ ≫ m0, implies that the slip
budget λM̄0 � M

:
0 directly leads to equation (1).

Departure from the Gutenberg–Richter (G-R) law at
large magnitudes
Denoting byΩi the maximummagnitude at the time ti of the ith
earthquake, that is,Ωi � Ωti , the probability that any earthquake
among N observed events has a magnitude greater than M is

EQ-TARGET;temp:intralink-;dfa6;41;640P�m > M� � 1
N

XN
i�1

P�mi > MjΩi > M� �A6�

EQ-TARGET;temp:intralink-;dfa7;41;585 � 1
N

XN
i�1=Ωi>M

e−β�Ωi−m0� − e−β�M−m0�

e−β�Ωi−m0� − 1
: �A7�

In real data,Ωt is unknown, thus the question remains as to how
the observed cutoff on earthquake magnitudes could carry infor-
mation on the distribution of Ωt . Calling g�Ω� the density of Ωt ,
equation (A7) can be rewritten as

EQ-TARGET;temp:intralink-;dfa8;41;471P�m > M� �
Z

∞

M
dΩ g�Ω� e

−β�Ω−m0� − e−β�M−m0�

e−β�Ω−m0� − 1
; �A8�

and the corresponding density f �M� on magnitudes is thus

EQ-TARGET;temp:intralink-;dfa9;41;406f �M� � −
P�m > M�

dM
� −

Z
∞

M
dΩ g�Ω� βe−β�M−m0�

e−β�Ω−m0� − 1
; �A9�

or equivalently

EQ-TARGET;temp:intralink-;dfa10;41;342f �M� � βe−β�M−m0� ×
Z

∞

M
dΩ

g�Ω�
1 − e−β�Ω−m0� �A10�

EQ-TARGET;temp:intralink-;dfa11;41;280 � βe−β�M−m0� ×Φ�M�; �A11�

in whichΦ�M� is a cutoff function continuously decreasing from
1 (at small M) to 0 (at large M). Its derivative is

EQ-TARGET;temp:intralink-;dfa12;41;227

dΦ�M�
dM

� −g�M�
1 − e−β�M−m0� ; �A12�

which, when β�M −m0� ≫ 1, gives dΦ�M�
dM ≃ −g�M�. This proves

that the modulation Φ�M� of the G-R law at large magnitudes is
directly related to the integral of the density of Ωt . Constraining
this modulation from the data should therefore help estimating
g�Ω�. It must be noted that equation (A12) relates two distribu-
tions; to infer g�Ω� from Φ�M�, the latter must be well
constrained by the data, which requires a sufficiently long obser-
vation span.

APPENDIX B

We here detail how the dependence of λ̄ on μ can be calculated
from the set of equations (A2)–(A5). We will make the sim-
plifying assumption that e−β�Ω̄−m0� ≪ 1 and e�γ−β��Ω̄−m0� ≫ 1,
which is true if Ω̄ is sufficiently greater than m0 and b is
not too close to 1.5.

Starting with equation (A3), we have that λ̄ − n̄ λ̄ � μ.
Using equation (A4), this can be rewritten as

EQ-TARGET;temp:intralink-;dfb1;308;627λ̄ − n0
β

β − α
�1 − e�α−β��Ω̄−m0��λ̄ � μ: �B1�

Equations (A2) and (A5) can be combined to find that

EQ-TARGET;temp:intralink-;dfb2;308;567e�Ω̄−m0� � � M
:
0

M0�m0�
×
γ − β

β
×
1

λ̄
� 1
γ−β: �B2�

Inserting this in equation (B1), we finally get that

EQ-TARGET;temp:intralink-;dfb3;308;504μ � Aλ̄� Bλ̄δ ; �B3�

with

EQ-TARGET;temp:intralink-;dfb4;308;456A � 1 −
n0
nc

; �B4�

which can be either positive or negative

EQ-TARGET;temp:intralink-;dfb5;308;401B � n0
nc

�
M
:
0

M0�m0�
×
γ − β

β

�
1−δ

; �B5�

so that β > α implies B > 0, and

EQ-TARGET;temp:intralink-;dfb6;308;338δ � 1 −
α − β

γ − β
; �B6�

so δ > 1 for β > α. The sign of A is conditioned on whether
n0 < nc or not. We recall that the critical value nc � 1 − α

β is
equal to the stability threshold in classical ETAS models, so
in these models n0 > nc is not allowed.

In the α > β case, these results remain valid, but we notice
that nc � 1 − α

β is then negative, so that n0 is always greater than
nc: the only regime is the self-organized critical one. Noting that
A < 0, we get for μ � 0 that equation (B3) yields jAjλ̄ � Bλ̄δ ;
replacing A and B by their expressions, we obtain that

EQ-TARGET;temp:intralink-;dfb7;308;174λ̄ �
�
1 −

nc
n0

� 1
δ−1 M

:
0

M0�m0�
×
γ − β

β
: �B7�
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