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Numerical Source Implementation in a 2D Finite Difference Scheme 

for Wave Propagation 

by O. Coutant, J. Virieux, and A. Zollo 

Abstrac t  We describe how to implement seismic sources in a 2D staggered grid 
of  a finite difference scheme of  P - S V  wave propagation. By comparison with ana- 
lytical solutions in a homogeneous  medium, we show that a very simple numerical 
description of  sources in a second-order scheme provides good accuracy for radiated 
waves if  one takes the elementary length where 2D stresses are applied as the grid 
step of  the numerical scheme. The accuracy will depend on the grid step and the 
time step. The error is less than 10% and depends on the azimuth to the station. 

Introduction 

Finite difference modeling of wave propagation has 
been improved in the last 10 years. Second-order accurate 
finite difference of derivative operators (Kelly et al., 1976; 
Virieux, 1984; Virieux, 1986) has been replaced by schemes 
of higher order (Bayliss et al., 1986; Dablain, 1986; Lev- 
ander, 1988; Crase, 1990), by schemes with precision in a 
limited frequency band (Holberg, 1987), or by pseudospec- 
tral schemes (Kosloff and Baysal, 1982; Kosloff et al., 1984; 
Kosloff et al., 1989). While these works describe the nu- 
merical scheme for wave propagation, the numerical exci- 
tation of the grid by a seismic source has never been com- 
pletely presented, and published examples often reduce to 
the computation of seismograms for an explosive source. 
Since the work of Vidale and Helmberger (1987) for more 
complex types of seismic sources based on a numerical im- 
plementation of Alterman and Karal (1968) and used by A1- 
ford et aL (1974), very little attention has been focused on 
numerical source description. We shall present in this note 
a numerical implementation of seismic sources with special 
attention to earthquake double-couple sources much simpler 
than the numerical scheme of Vidale and Helmberger 
(1987). By comparison with complete analytical solutions in 
a homogeneous medium, we shall check the accuracy of this 
implementation. 

Force and Dislocation Source Implementation 

Since the work of Alterman and Karal (1968), in which 
the incident analytical wave is subtracted from the numerical 
solution in the homogeneous source region in order to avoid 
artificial reflections, many researchers have implemented 
seismic sources differently. For example, Kosloff et al. 
(1989) added external forces through the time evolution of 
the velocity as usual in elastodynamic equations given by 
the following: 
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where (ox, o~) is the 2D velocity vector and (z=, zzz, rxz) are 
the components of the stress tensor. The medium is char- 
acterized by density p and Lam6 coefficients 2 and/t.  Ex- 
ternal forces are described by the vector fix, fz). Virieux 
(1986) preferred to increment the rx~, rzz components of the 
stress tensor related to an explosive source because these 
components were at the same node of the staggered numer- 
ical grid (Fig. 1). We propose to follow the same strategy as 
Virieux (1986), and we start by detailing his implementation 
of an explosive source. 

Let S be the infinitely small square surface surrounding 
the z~, r= location at the (xi+m, zj) node (dashed lines in 
Figure 1). This surface is in equilibrium under the applica- 
tion of internal forces per unit length on its faces. For hori- 
zontal faces, force strength is given by: f = x • r j 1 L  + 
z • rzzdL, where dL is the S square side length. 

If we apply a Azzz increment to rzz, the corresponding 
Afz force increments applied onto S horizontal faces are 
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Figure 1. Discretization of the medium on a stag- 
gered grid (after Virieux, 1986). The elementary vol- 
ume S is represented by dashed lines. The arrows 
point from the Four adjacent % sources added to ob- 
tain a resulting z~z source located at the (i+ 1/2, j) 
node. 

+ + Af, + = z • ATz+dL = z • n AzzzdL = Az=dL (z 

= vertical and downward unit vector), (6) 

Aft- = z • A T z d L  = z "  n -Az ( zdL  = - A z z f l L ,  (7) 

where the + (-)  superscript refers to the downward (upward) 
horizontal face of  S on which T~ stress is evaluated. Thus, 
superposing a Azzz increment results in applying Afz + - 
Aft- = 2AzzzdL vertical force discontinuity across the hori- 
zontal faces of  S, that is, a Az=dL vertical dipole across z = 
zj surface with an a distance (or arm) between opposite 
forces. The same argument must be performed for A %  on 
an elementary length dL related to the corresponding grid 
step. Often, we use the same 2D finite grid step Dx for both 
directions, and we approximate the infinitely small surface 
S element by the numerical finite one. The value of the cor- 
responding length element, dL, as well as the value of  the 
dipole arm, a, must be estimated through comparison with 
exact solutions presented in the next section. 

Implementing more general sources follows simply 
from the previous scheme but now involves stress discon- 
tinuities. Let us consider the case of  a force f~, applied at the 
(x~+ 1/2, z)  node, the Zzz location. This is equivalent to apply- 
ing the same force increments Af~ + = Aft- = Af, on the two 
horizontal faces of  S. The stress increment, Azzz, is then dis- 
continuous across the faces of  S and is equal to (equations 
6 and 7) the following: 

Az  + = fJdL, (8) 

Az m = - A f J d L .  (9) 

Introducing this stress discontinuity into a second-order FD 
scheme is quite natural. The term z= is used to compute the 
Vz velocity component [see equation 5 of  Virieux (1986)]. 
The Az~z stress increment is set to - Afz/dL when the upward 
zz~ stress is employed to compute the vz velocity at the 
(xi+ 1/2, zj_ 1/2) node, and set to + AfJdL when the downward 
zS stress is used to compute the v, velocity at the (x/+1/2, 
zj+ i/2) node. The same strategy can be applied for the x di- 
rection, and we end up with symmetric sources with higher 
order of  singularities than an explosive source. 

Thus, in addition to the classical dipoles dx and d z, a 

dilatational source (dx + dz), and a 45 ° dip-slip source (dx 
- dz), we can introduce a zxz stress increment and %, z=, or 
zxz stress discontinuities. A Zxz stress increment can be iden- 
tified as the sum of two % and % couples applied across the 
faces of  S with opposite sign and with a moment arm of  a. 
This represents the double-couple 90 ° dip-slip source. A % 

stress discontinuity, however, represents the sum of two % 
and % couples of  same sign, that is, an isotropic source of  
S waves. All possible sources are shown in Figure 2. Because 
the three elementary moment tensor combinations are in- 
cluded, we should be able to compute any 2D dislocation of 
interest in seismology. However, since %, Vzz, and % are not 
evaluated at the same position in the staggered grid, adding 
dipoles and double-couple sources will not result exactly in 
superposing the elementary moment tensor elements. Be- 
cause the point (i + 1/2, j)  plays a central role, we can, how- 
ever, interpolate the four adjacent Zxz values in order to ob- 
tain a symmetric solution (Fig. 1). We shall see that a careful 
handling of the source or receiver positions will provide an 
accurate symmetrical solution, and we shall give examples 
where this symmetry is not verified by a quantitative esti- 
mation of  discrepancies induced by staggered locations. 

Finally, the availability of  single-force sources allows 
the use of  reciprocal geometry in those configurations where 
the number of  sources is much larger than the number of  
receivers. For a dislocation source for instance, we can com- 
pute the stress field time derivative created by a vertical (re- 
spectively horizontal) single force, instead of  the vertical 
(respectively horizontal) velocity created by a dislocation. 

Compar i son  with Analy t ica l  Solut ions  

We compare the solutions obtained by the finite differ- 
ence (FD) method for dislocation sources in a homogeneous 
medium with exact solutions computed analytically in the 
frequency domain. The parameters used for computation are 
Vp = 6 Km/sec, Vs = 3.46 Km/sec, FD x and z grid steps 
= 50 m, and time step = 5 ms. The source time function 
is the first derivative of  a Gaussian pulse, and output is given 
in velocity (m/sec). The geometry that we used is depicted 
in Figure 3. Eight receivers are distributed circularly around 
the source at a 500-m distance. They are located so that the 
receiver numbered 1, 3, 5, and 7 (respectively 2, 4, 6, and 
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Figure 2. Diagrams showing the (a) possible stress 
and (b) stress-discontinuity increments with their re- 
lated seismic sources and P,S far-field radiation pat- 
terns. 

8) should exhibit identical seismograms once a sign correc- 
tion is applied. The source is located at node (x~ = 200, 
z~ = 200), which corresponds to the location (x = 1000m, 
z = 1000m) in the analytical case. 

In the first comparison, we have computed the velocity 
field radiated by a 45 ° dip-slip source obtained by subtract- 
ing dx and d z dipoles (Fig. 2). The FD exact source location 
is x =- 1000 + Dx/2 = 1002.5m, z = 1000m (Fig. 1). 
Figure 4 shows the seismograms obtained for the vertical 
and horizontal components. Sites 1, 3, 5, and 7 are located 
in the S-wave nodal direction, while sites 2, 4, 6, and 8 are 
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Figure 3. FD method grid size and source-receiver 
configuration used for computation. The source is de- 
noted by a star, receivers by triangles. 
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along the P-wave nodal direction. Two characteristic misfits 
can be observed on these comparisons. The first is on arrival 
time discrepancy that comes essentially from the staggered 
grid. Velocity is not evaluated at the same location for each 
component, and the dx - dz source is shifted by Dx/2 with 
respect to the analytical source location. This discrepancy 
can be reduced drastically, as shown in the last case, by 
averaging the vertical component at the horizontal compo- 
nent point. Second, amplitude differences are due to the nu- 
merical dispersion of  the FD method and are visible mainly 
on the two components at sites 2, 4, 6, and 8. Notice that 
near-field terms are correctly evaluated in the nodal direc- 
tions. An example of reciprocal computation is also shown 
for the vertical component at station 2. In this case, the 
r~ - rzz stress time derivative, radiated by a vertical force 
at site 2, is computed at origin and scaled to match direct 
calculations. It is equivalent to the velocity computed at lo- 
cations 6 and 8 due to the staggered grid. 

For the second comparison, we compute the vertical and 
horizontal seismograms due to a dip-slip source or Txz stress 
increment (Fig. 5). The results are similar to the previous 
case. The major discrepancies arise because of  time shifts 
due to the staggered position of  the source and receivers and 
because of  numerical dispersion. We show again an example 
of  reciprocal calculation obtained by computing the time de- 
rivative of T~ stress at origin, radiated by a vertical source 
located at site 2. 

The last comparison corresponds to a dislocation source 
computed by superposing the two previous sources with co- 
efficients chosen to obtain a 60 ° dislocation (Fig. 6). In this 
situation, we should add the contribution of  two sources with 
position differing by Dx/x/2 (Fig. 1). We circumvent this 
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Figure 4. Results obtained for a d, - d z, 45 ° dip-slip source with FD and analytical 
methods. Time scale in seconds, amplitudes arbitrary unit. Curves having similar shape 
are plotted with the same pattern. 
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problem by averaging the four adjacent symmetrical %z 
sources, as denoted by arrows on Figure 1. In the same way, 
we average the four symmetrical vertical components to 
evaluate them at the (xi, zj) location. Seismograms are com- 
puted for the vertical and horizontal components at sites 1 
and 2, and the analytical source is shifted by an amount Dx/  

2 to account for the FD exact source location. The results 
shown on Figure 6 present an excellent agreement where the 
only misfits are due to FD numerical dispersion. 

The output of the analytical computations have been 
obtained as the velocity produced by normalized dipoles or 
couples of 1 Nm. The source in FD, however, is introduced 
as a stress or stress discontinuity. Thus, scaling FD ampli- 
tudes to analytical amplitude involves the following conver- 
sion: from stress to force, multiplying by the dL length; from 
force to dipole/moment, multiplying by the a moment arm. 
We found that the results scale through a Dx 2 proportionality 

coefficient. The lengths of both couple and dipole arms and 
surface elements in the (Ox, Oz) plane are thus equal to the 
grid step Dx. 

Discussion and Conclusions 

We have studied the numerical implementation of seis- 
mic sources in the staggered numerical grid for an FD 
scheme of second order. 

We have shown that the numerical solution agrees with 
the analytical solution when the elementary surface on which 
we apply the stress is taken as the grid step Dx and when 
the elementary dipole/couple ann when needed is also equal 
to the grid step Dx. Of course, this estimation depends on 
the order of the FD scheme, or in other words, it depends on 
the interpolation used to estimate any field between nodes. 
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Figure 5. Same as Figure 4 for a Zxz dip-slip source. 

This result is a new result coming from a careful comparison 
between numerical and analytical seismograms. 

Moreover, selecting the z= and Zzz node as the source 
node reduces significantly the grid asymmetry. A linear 
weighting between the four adjacent nodes where the stress 
component Zxz is preserves the symmetry of the point source 
excitation. 

Application to real data set requires a conversion from 
the 2D geometry toward a 3D geometry. While this trans- 
formation can be performed quite accurately for horizontally 
layered media, as proposed by Amundsen and Reitan (1994), 
investigation for more complex structures has to be designed 
and will be the purpose for a future work. 
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