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The development of gas permeability in magmas is a complex phenomenon that directly influences 
the style of a volcanic eruption. The emergence of permeability is linked to the concept of percolation 
threshold, which is the point beyond which gas bubbles are connected in a continuous network that 
allows gas escape. Measurements of the percolation threshold, however, range from ∼30 to 78 vol%. 
No known combination of parameters can explain such a wide range of threshold values, which affects 
our understanding of the relationship between percolation and permeability. We present permeability 
calculations on bubble-bearing rhyolitic melts that underwent experimental decompression. Samples 
were analyzed by X-ray microtomography to image the bubble networks in 3D. We develop a percolation 
threshold for magmas that depends on the bubble network characteristics of this sample set. This 
relationship recovers the behavior of a wide range of volcanic samples by separating permeable samples 
from impermeable ones with a success rate of 88%. We use this percolation threshold to propose 
simplified permeability relationships that rely on parameters widely used in numerical modeling of 
magma flow. These relationships are valid within one order of magnitude for the viscous permeability 
coefficient and within two orders of magnitude for the inertial coefficient. They recover the ranges of 
values previously covered by isolated relationships, reassembling them within a single framework. We 
test the implications of such unification on eruptive dynamics with a 1D, two-phase conduit flow model. 
This test shows that varying the percolation threshold has little influence on vertical gas loss and ascent 
dynamics.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

During a volcanic eruption, magma ascends towards the sur-
face and loses the volatiles it contains. In viscous magmas, volatiles 
are lost as gas bubbles that grow during ascent but hardly move 
relative to each other. The coalescence of the bubbles with each 
other transforms the bubbly magma into a connected network that 
is permeable to gas (e.g., Eichelberger et al., 1986). Permeability 
allows the gas to separate from the magma (e.g., Yoshida and Koy-
aguchi, 1999). An efficient separation promotes effusive eruptions, 
whereas bubble accumulation by growth promotes fragmentation 
and explosive eruptions (e.g., Jaupart and Allègre, 1991).

Studies aimed at understanding magma permeability have es-
tablished relationships that depend on material properties, such as 
bubble size, total and connected gas volume fraction, throat size 
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(aperture of inter-bubble connections), bubble aspect ratio, and 
network tortuosity (Klug and Cashman, 1996; Mueller et al., 2005;
Wright et al., 2009; Yokoyama and Takeuchi, 2009; Degruyter et 
al., 2010a). Focusing on natural data, permeability relationships 
went from the apparent simplicity of depending only on total gas 
volume fraction (Klug and Cashman, 1996) to larger degrees of 
complexity as more data were acquired and more degrees of free-
dom were needed to describe the relationships (Saar and Manga, 
1999). Another degree of complexity was reached when a sec-
ond permeability coefficient was introduced alongside the original 
coefficient entering Darcy’s law. While the first permeability coef-
ficient, k1, quantifies the effects of gas flow when viscous effects 
dominate, the additional coefficient, k2, takes into account the in-
ertial effects of turbulent flow (Rust and Cashman, 2004). It was 
also found that the relationships gain in accuracy of permeabil-
ity prediction when using connected gas volume fraction instead 
of total gas fraction (Saar and Manga, 1999; Mueller et al., 2005;
Gonnermann and Manga, 2007). The relationship between total 
and connected porosity is directly linked to the threshold at which 
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Table 1
Symbol list. The mean bubble diameter is based on the diameter distribution and 
the average bubble diameter is based on volume distribution (see Methods).

Symbol Description (unit)

A Proportionality constant
ai Semi-axes of ellipsoid (m)
aK C Constant in Kozeny–Carman equation (m2)
aM Constant in percolation equation (m2)
B Proportionality constant
bK C Exponent in Kozeny–Carman equation
bM Exponent in percolation equation
cd Percolation constant (m)
cφ Connected porosity constant
cp Connected porosity constant (m)
cτ Tortuosity constant
cz Percolation exponent
χi Bubble aspect ratio
da Average bubble diameter (m)
dm Mean bubble diameter (m)
dt Throat diameter (m)
εi Bubble elongation
f0 Inertial factor
φc Connected porosity
φp Percolation porosity
φt Total porosity
i,k Indices of spatial direction
k1 Viscous permeability (m2)
k2 Inertial permeability (m)
li Longest semi-axis of ellipsoid orthogonal to i (m)
m Exponent in Archie’s law
μ Fluid viscosity (Pa s)
n Exponent in Degruyter equation
Nm Bubble number density per unit melt (m−3)
P Pressure (Pa)
ρ Fluid density (kg/m3)
ri Radius of equivalent disk of ellipsoid cross-section orthogonal 

to i (m)
R1, R2, R3 Sum of residuals
σa Standard deviation of da (m)
σm Standard deviation of dm (m)
τi Tortuosity
vi Fluid velocity (m/s)
�w Vector of components ai

xi Spatial direction
z Calculated inter-bubble distance (m)
zm Measured inter-bubble distance (m)
Z Scaled inter-bubble distance (m)
Z p Percolation threshold on Z (m)

the magma ceases to be impermeable to gas. Drawing from perco-
lation theory (Sahini and Sahimi, 1994), this threshold has mostly 
been assumed to depend on a constant value of gas volume frac-
tion (Blower, 2001). Characterizing the percolation threshold in 
natural products (e.g., Eichelberger et al., 1986; Klug and Cash-
man, 1996; Saar and Manga, 1999; Mueller et al., 2005), exper-
imental magmas (e.g., Takeuchi et al., 2009; Martel and Iacono-
Marziano, 2015), and analogue materials (e.g, Namiki and Manga, 
2008) led to values ranging from ∼30 to 78 vol%. Several possi-
ble controls of such a wide range of values have been proposed: 
crystal volume fraction, melt viscosity, shear stress, decompres-
sion rate, differences in experimental methodology, and the in-
accuracy of theoretical models that do not take into account the 
time needed for interstitial film retraction (Okumura et al., 2013;
Rust and Cashman, 2011; Lindoo et al., 2016). Some parame-
ters, such as shear stress, give a partial explanation for the vari-
ability of measured percolation thresholds (Caricchi et al., 2011;
Okumura et al., 2013), whereas others, such as melt viscosity, do 
not seem to control this variability (Lindoo et al., 2016). None ex-
plain the full spectrum of threshold values.

The transition of magma from being permeable to impermeable 
controls when gas escape ceases. The amount of gas escape, on the 
other hand, is controlled by permeability, which directly influences 
the style of the volcanic eruption (Yoshida and Koyaguchi, 1999;
Kozono and Koyaguchi, 2009; Degruyter et al., 2012). Clarifying the 
relationship between percolation and permeability is thus an im-
portant issue.

Here we investigate the role of the bubble network geometry on 
the percolation threshold and on permeability. (See Table 1.) We 
use a subset of two series of experiments (Burgisser and Gardner, 
2004; Gardner, 2007) on silicate melts in which bubbles grew dur-
ing isothermal decompression and interacted to various degrees, 
sometimes creating a permeable network by coalescence. These 
crystal-free experiments were analyzed by X-ray Computed Tomog-
raphy (CT) to obtain 3D reconstructions of the bubble networks, as 
described in Castro et al. (2012). Bubble network parameters and 
both viscous and inertial permeability coefficients were calculated 
so as to test the relationship of Degruyter et al. (2010a) against our 
data set. That relationship assumes that the state of percolation 
and network parameters are known. We relax these assumptions 
by making the relationships depend on 1) a percolation threshold 
related to bubble network geometry and 2) magmatic parameters 
widely used in conduit flow models. We establish that the perco-
lation depends on bubble separation and on the degree of polydis-
persity of the bubble size distribution. The resulting relationship 
links inertial and viscous permeabilities to the average and stan-
dard deviation of the bubble size distribution, bubble aspect ratio, 
and total porosity. We show how the proposed percolation thresh-
old captures the behavior of previously published data sets. Finally, 
we explore some implications of having a unified framework pre-
dicting magma permeability on conduit flow model outputs.

2. Methods

2.1. CT volumes

We analyzed a subset of 36 samples from experimentally de-
compressed rhyolite melts. Briefly, the Burgisser and Gardner
(2004) and the Gardner (2007) experiments consisted of plac-
ing samples of rhyolitic glass in sealed Au-capsules with distilled 
water, and equilibrating them at 150 MPa for five days in order 
to saturate the melt with water. Some capsules were quenched, 
removed from the pressure vessel, and opened to extract the hy-
drated samples. These samples were reloaded into Au capsules 
without water, but with either silicate glass powder or MgO pow-
der to serve as a sink for expelled water during decompression, 
allowing open-degassing conditions. Each capsule was then re-
pressurized and reheated at the hydration conditions for 5 min 
before an applied sudden decompression nucleated small bubbles 
(mean radius <<10 μm). The other samples – i.e. those that had 
not been reopened and reloaded – remained in the pressure vessel 
until the nucleation step was performed, thus ensuring closed-
system conditions. All samples were maintained at the nucleation 
pressure until bubbles reached thermodynamic equilibrium, which 
was checked by determining the glass water content (Gardner, 
2007). Pressure was then released in increments to approximate 
a constant decompression rate until a final pressure was reached, 
at which samples were quenched rapidly.

All volumes analyzed by CT (Castro et al., 2012) come from hy-
drated and foamed cores that underwent decompression in either 
closed, or open degassing conditions. These samples were some-
times small pieces broken from the original cores and sometimes 
were parts of thin sections that were recut with a diamond saw 
so as to leave the smallest possible amount of thin section glass 
attached to the sample. As a result, while the former samples 
are often equant and yielded nearly cubic CT volumes, the latter 
samples were much thinner in one direction and yielded highly 
flattened volumes (details in Supplementary Text S1 and Fig. S1).

Connected bubbles have retained their original shapes. When 
these shapes are mostly spherical, we refer to the sample as be-
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ing isotropic. Some volumes contain ellipsoidal bubbles. They come 
from the top part of hydrated and foamed samples and we refer to 
these samples as being anisotropic. Sample deformation is likely 
due to volumetric expansion of the sample during decompression 
that forced the melt in the crimped ends of the capsule (Burgisser 
and Gardner, 2004). In these deformed areas, both bubble elonga-
tion amplitude and direction vary significantly. CT volumes were 
selected so that bubbles have clearly visible and homogeneous ori-
entation fabric. These anisotropic samples were rotated so that the 
principal directions of elongation correspond to those of the sam-
ple edges (x, y and z axes).

2.2. Bubble network parameters

The CT volumes were digitally thresholded in order to distin-
guish bubbles from glass. Some samples contain <1 vol.% of Fe–Ti 
oxides, which were grouped with the glass category. The software 
ImageJ (version 1.49) and associated plugins were used to quan-
tify the three-dimensional network of bubbles. Bubbles are not 
distributed homogeneously in space. The distance separating two 
neighboring bubbles is thus best measured by focusing on the glass 
phase. Bubble separation distance, zm , is the mean value given by 
the “Thickness” plugin of the BoneJ (version 1.3.11) bundle (Doube 
et al., 2010), which measures at each voxel of the glass phase 
the diameter of the largest sphere that fits within the glass phase 
and that contains that voxel. Connected porosity was measured by 
adding all the connected volumes given by the “3D object coun-
ter” plugin (Bolte and Cordelières, 2006) that had bounding boxes 
as large as the CT volume (i.e. that span the volume from side to 
side). In most samples, bubbles form an interconnected network. 
Original bubbles can nevertheless be separated because they con-
nect to each other by narrow throats (Supplementary Text S1 and 
Fig. S2). The software Blob3D (Ketcham, 2005) was used to sep-
arate bubbles either by erosion or planar cut. Bubble and throat 
shapes were measured for the whole sample whenever possible. 
When the number of bubbles in the CT volume was too large to 
be fully analyzed with Blob3D, a representative sub-volume was 
used to determine bubble and throat shape statistics. Throat di-
ameter, dt , was defined as the diameter of the disk equivalent to 
the measured throat surface. The throat diameter value used for 
calculation is the median for the sample and the standard devi-
ation gives the spread of this parameter. Bubble number density 
with respect to melt volume, Nm , was calculated using the to-
tal number of counted bubbles in the sample volume, except for 
samples where the total number of bubbles was not fully counted. 
Instead, Nm for those samples are the total bubble number densi-
ties reported in Burgisser and Gardner (2004) and Gardner (2007), 
corrected for sample porosity.

Bubble diameter, da , was calculated as the diameter of the 
equivalent sphere corresponding to the average bubble volume, 
which is the sum of all bubble volumes divided by the number 
of bubbles. The uncertainty on bubble diameter, σa , corresponds 
to half the difference between the 16th and 84th percentile of the 
volume distribution. This measure of standard deviation takes into 
account that the shape distribution spans from Gaussian to power 
law (Burgisser and Gardner, 2004). Most studies on bubble size 
distributions have used the mean bubble diameter, dm , instead of 
da as the characteristic bubble diameter (e.g., Burgisser and Gard-
ner, 2004; Takeuchi et al., 2009; Bai et al., 2010). We found that 
da yields generally better fits with the permeability relationships 
we consider herein. Formally, da corresponds to the ratio between 
the 4th and 3rd moments of the bubble diameter distribution, and 
dm is the arithmetic mean of the distribution. This ratio fits our 
measurements, but it needs the full size distribution to convert dm

into da . Because most studies report only dm , and its associated 
standard deviation, σm , we instead use empirical relationships that 
depend only on these two quantities to retrieve da from the pub-
lished dm:

da = Adm

(
1 + σm

dm

)
(1)

σa = ABσm

(
1 + σm

dm

)
(2)

These relations fit very well with our measurements when the 
proportionality constants, A and B , are set to 0.87 and 0.64, re-
spectively. We use the ratio of σa to da as a measure of the degree 
of polydispersity of the distribution: σa/da = Bσm/dm .

Some permeability relationships involve a cross-section shape 
factor, χi (Degruyter et al., 2010a):

χi =
(

l2i
r2

i

+ r2
i

l2i

)
(3)

where li is the longest semi-axis of the ellipsoid cross-section area 
orthogonal to direction i and ri is the radius of the equivalent disk 
of the ellipsoid cross-section area. Because the anisotropic samples 
were oriented so that the bubble major axes of elongation match 
the sample edge directions, we define ai as the semi-axes of the 
Blob3D best-fit ellipsoids of the bubbles. We assume that li corre-
sponds to the maximum of the ellipsoid semi-axes orthogonal to 
the selected direction i with k = x, y, z:

li = max(ak,k �=i) (4)

The parameter ri is:

ri =
√∏

(ak,k �=i) (5)

Equation (3) thus becomes:

χi =
(

max(ak,k �=i)

min(ak,k �=i)
+ min(ak,k �=i)

max(ak,k �=i)

)
(6)

Cross-section shape factors were calculated in three directions 
of space for each bubble in a given sample. The χi values of each 
sample correspond to the median values over all the bubbles. The 
single χ value of isotropic samples was averaged over the three 
directions of space.

The parameter εi is a measure of the bubble relative elongation 
in direction i. Considering the vector −→w composed by the bubble 
best-fit ellipsoid semi-axes, εi corresponds to the ith component 
of the unit vector co-linear with −→w :

εi = ai√
a2

k

(7)

For each sample, εi is the median value over all the bubbles. 
For spherical bubbles, εi = 3−0.5.

For all samples, directional tortuosity, τi , was measured using 
3dma-rock (Lindquist et al., 1996; Song et al., 2001). 3dma-rock 
first calculated the sample medial axis network (i.e. the network 
of paths through the center of bubbles and throats). The two sam-
ple faces orthogonal to the selected direction were then taken as 
entrance and exit faces. For each pair of voxels belonging to each 
respective face, the shortest path joining them using the medial 
axis network was calculated. The tortuosity of the voxel pair is the 
ratio between this shortest path length and the Euclidean distance 
between the two voxels. For all samples, τi is the median tortu-
osity of all these paths. For isotropic samples, the single tortuosity 
value, τ , corresponds to the average of the values weighted by the 
corresponding edge length in the same way as for the permeability 
values.
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2.3. Permeability

Permeability measurements were carried out by numerical sim-
ulations of fluid flow within the bubble network. This is now 
a standard method to measure permeabilities on millimeter-size 
samples scanned by CT (Wright et al., 2006; Degruyter et al., 
2010b; Bai et al., 2010; Polacci et al., 2014). The Lattice Boltz-
man solver used is Palabos (www.palabos.org), following the pro-
cedure described in Degruyter et al. (2010b). Briefly, the CT vol-
umes were considered as a permeable structure where the glass 
is solid and the bubble space is filled with a fluid of constant 
density and viscosity. Walls delimiting the porous space are de-
fined as non-slip boundaries. Each simulation was run by apply-
ing a pressure difference between two opposite sides orthogo-
nal to the direction of interest, sealing the remaining four sides, 
and solving for the flow field. The simulations were used to ob-
tain both the viscous, k1, and inertial, k2, permeability coeffi-
cients according to the Forchheimer equation (Ruth and Ma, 1992;
Rust and Cashman, 2004):

dP

dxi
= μ

k1
vi + ρ

k2
v2

i (8)

where dP/dxi is the pressure gradient between two opposite sides 
of the parallelepipedic sample along direction i, μ is fluid viscosity, 
ρ is fluid density, and vi is the average fluid velocity in direc-
tion i. Equation (8) is quadratic with respect to vi , so simulations 
with different pressure gradients were run in order to find k1 and 
k2. These gradients were such that the Reynolds numbers of the 
fluid flow through the permeable network were high enough to 
ensure that inertial effects were present (Table S2 and Supplemen-
tary Text S1). The associated Mach numbers were low enough to 
ensure that the incompressibility assumption was not violated. Six 
runs were carried out on sample G442 to find the optimal number 
of simulations. After three simulations, the k1 value is insensitive 
to the number of tested pressure gradients, changing by <0.03% 
when increasing from 3 to 4 simulations. The value of k2, how-
ever, is more sensitive to the number of tested pressure gradients, 
changing from 62% to 2% when going from 3 to 4 and then from 
4 to 5 simulations, respectively. We chose to interpolate k1 and k2
over 4 simulations, which introduces an uncertainty of less than a 
few percent on both permeability coefficients.

We separately tested the effects of voxel size and CT volume 
size on permeability (Supplementary Text S1). We used the char-
acteristic number of bubbles across the connected clusters to clas-
sify samples as permeable and impermeable. Whether CT volumes 
are large enough to be representative with respect to permeabil-
ity was tested following Bai et al. (2010). This analysis suggests 
that the uncertainty introduced by the finite size of the CT vol-
umes is within a factor 1.5 for k1 and within a factor 5 for k2; it 
is roughly of the same order as the uncertainty given by the three 
directions of space for nearly equant volumes. It also suggests that 
the voxel size of the isotropic samples was sufficiently small (edge 
length is 1–4 μm with bubbles containing an average of 43 vox-
els across, Table S1) to limit the effect of discretization to <10% 
of the permeability values. Because anisotropic samples contain 
fewer bubbles, the effect of discretization was tested systematically 
(Table S2). Overall, changing voxel size affects anisotropic perme-
ability values by a factor ranging from 1.4 to 20.

To be able to compare permeability values (k1 and k2, respec-
tively) of isotropic samples, regardless of CT volume shape, the 
three orthogonal directions were measured in turn and a single 
average value was obtained by weighting each direction by its di-
mension relative to the three others (i.e. avgk = (xk × x + yk × y +
zk × z)/(x + y + z), where avgk is the average permeability value, x, 
y, and z are the side lengths of the CT volume, and xk, yk, and zk
are the respective permeabilities). Positive error bars represent the 
Fig. 1. Viscous permeability (k1) as a function of inertial (k2) permeability. Black cir-
cles mark our measured values on experimentally decompressed rhyolitic melts, and 
other symbols represent data from Wright et al. (2006, 2007); Bouvet de Maison-
neuve et al. (2009), Yokoyama and Takeuchi (2009), Takeuchi et al. (2009), Bai et al.
(2010), Polacci et al. (2012), and Lindoo et al. (2016). Insets show 2D binary images 
(bubbles are white, glass is black) of an isotropic sample (lower right, G434, sides 
are 0.81 mm long, permeability indicated with an arrow is measured on a volume 
of much larger cross-section) and an anisotropic sample (upper left, ABG9b, long 
side is 0.83 mm, permeabilities along arrow direction indicated).

maximum value minus the weighted average and negative error 
bars represent the weighted average minus the minimum value. 
No weighting was done for anisotropic samples as permeability 
in each direction is considered separately. Errors on anisotropic 
samples represent the effects of grid size. In summary, a total 
of 4 × 3 = 12 simulations were carried out per sample. Simula-
tions were run on the CIMENT computer cluster “gofree” at ISTerre, 
France, with either 48 or 64 cores, depending on sample size, for 
a total running time of <3 days per sample.

Because k1 and k2 values span as many as 4 orders of mag-
nitude and include 0, fitting by minimizing the �2-norm (squared 
Pearson’s correlation coefficient, R2) on the log values of k1 and k2
is not possible. We chose instead cubic-root data transformation to 
calculate the residuals for these two variables and minimized the 
�1-norm so that residuals are not dominated by outliers (Horn and 
Johnson, 1985). The sums of residuals from each fitted equation 
were normalized by the maximum values of the respective mea-
sured variable to ensure that each equation was given comparable 
weight. Using m and c indices to differentiate between calculated 
and measured quantities, the residual sums are:

R1 =
∑ |(k1)

1/3
m − (k1)

1/3
c |

max((k1)
1/3
m )

R2 =
∑ |(k2)

1/3
m − (k2)

1/3
c |

max((k2)
1/3
m )

R3 =
∑ |(φc/φt)m − (φc/φt)c|

max((φc/φt))

(9)

where φc and φt are connected and total porosity, respectively.

3. Results

Fig. 1 shows the calculated viscous and inertial permeability co-
efficients (Eq. (8)). Viscous permeabilities range from 1.7 × 10−15

to 1.9 × 10−11 m2, whereas inertial coefficients range from 2.0 ×
10−14 to 1.4 × 10−6 m (Table S2). These permeabilities will be re-
ferred to as “measured permeabilities” although they are the result 
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Fig. 2. Measured versus calculated permeabilities (k1 and k2). Calculated permeabil-
ities are from Eqs. (10)–(11). The continuous gray line marks the 1:1 ratio and the 
two dashed gray lines mark the 1:10 and 10:1 ratios, respectively. The two axes la-
beled “Imperm.” represent permeability coefficients of zero and the filled circle with 
the label “21” represents 21 samples correctly identified as being impermeable.

of computations, so as to differentiate them from values calculated 
by simplified relationships, which are herein referred to as “cal-
culated permeabilities”. The coefficients are correlated and can be 
fitted by a power law (k2 = 4.73 × 1014k1.91

1 with R2 = 0.97 on the 
log values). Such a correlation is consistent with the findings of 
other studies on natural and experimental products (Fig. 1). This 
consistency has two consequences. First, it gives confidence in the 
permeabilities computed from CT volumes, and second it shows 
that even samples with low (<20) numbers of connected bubbles 
across one direction yield permeabilities that follow the trend de-
fined by samples that have many connected bubbles. This method 
is therefore applicable to experimental bubble studies with small 
sample volumes.

Relationships proposed by Degruyter et al. (2010a) link both 
permeability coefficients to physical parameters of the permeable 
network:

k1 = φn
c d2

t

16χτ 2
(10)

k2 = φ4n
c d2

t

2 f0τ 3
(11)

where dt is the characteristic diameter of the bubble connections 
(throats), χ is the channel circularity here measured on the bub-
bles, τ is the tortuosity of the connected bubble network, and f0 is 
an inertial friction coefficient. For anisotropic samples, φc , τ , and χ
should henceforth be replaced by φc−i , τi and χi , where i = x, y, or 
z is the direction considered. Compared to Degruyter et al. (2010a), 
we changed 1 into n in the exponent of φc in Eq. (10) and 2 into 4n
in the exponent of φc in Eq. (11) because, although k1 and k2 are 
related to first order by a power law, the ratio k2/k1 has a second-
order dependence on φ4

c (Fig. S3). Our measurements of the bubble 
network provide values for every parameters of Eqs. (10)–(11), ex-
cept n and f0. A two-parameter regression minimizing R1 + R2
(Eq. (9)) yields best fits values of n = 2.49 and f0 = 1.21 with 
R1 = 1.69 and R2 = 1.47 (Fig. 2). The fit is better for k1 than for 
k2, with 26 out of 28 samples having calculated values within one 
log unit of the measured k1 value and only 13 out of 28 calculated 
k2 being within one log unit of the measured k2. The k2 value 
of sample G437 is an outlier for which no explanation has been 
found.
The core of the percolation concept is that not all gas bubbles 
belong to the connected network. By depending on the connected 
porosity, Eqs. (10)–(11) assume that the percolation state of the 
sample is known. Were it not the case, φc would be unknown 
and no impermeable samples would be correctly identified as such. 
This implies that these equations correctly identify the permeabil-
ity state of only 57% of the samples if percolation information is 
missing. Equations (10)–(11) also rely on network parameters that 
are not traditionally available in most studies and in conduit flow 
models, such as bubble throat diameters or tortuosity. We relax 
these assumptions by linking the variables φc , dt , and τ to a com-
bination of φt , da , and σa .

Polacci et al. (2014) suggested that throat diameters can be re-
lated to average bubble diameters. In each of our samples, the dis-
tribution of the ratios of throat dimension over the diameter of the 
neighboring bubble is wide and mostly unimodal (Fig. S4), which 
drove us to characterize each sample by a median throat/bubble 
ratio. Bringing all samples together, these ratios have values clus-
tering around 0.4 (Fig. 3A): dt = 0.4 × da .

Tortuosity can be related to connected porosity by Archie’s law 
(Wright et al., 2009; Degruyter et al., 2010a):

τ 2 = φ1−m
c (12)

where m is a constant named the formation factor (m ≥ 1). Tor-
tuosity depends on bubble shape (Degruyter et al., 2010a). Bub-
bles elongated parallel to the main gas flow direction decrease the 
tortuosity in that direction. Conversely, bubbles elongated perpen-
dicular to gas flow increase tortuosity. Here we add an empirical 
pre-factor to Eq. (12) to take into account bubble anisotropy, using 
i indices for clarity:

τ 2
i = cτ χi

2
√

3εi
φ1−m

c (13)

where cτ is an empirical constant, εi is a measure of bubble elon-
gation in direction i, χi is the cross-section shape factor orthogonal 
to i, and the factor 2

√
3 is such that the pre-exponential factor is 

equal to cτ for isotropic samples. We find that the best-fit factor, 
cτ , and exponent, m, are 4 and 1, respectively (Fig. S5). Drop-
ping the i indices, tortuosity in a given direction is thus equal 
to:

τ 2 = (2χ)/(
√

3ε) (14)

with R2 = 0.64. Equation (14) no longer depends on φc . This 
fit thus ensures a better representation of the effect of bubble 
elongation on τ at the expense of capturing the influence of φc

on τ .
The lack of a single porosity threshold for percolation found 

by previous studies suggests that the threshold does not depend 
solely on porosity. The observation that bubble size distributions 
are more disperse in permeable samples than in impermeable 
samples (Burgisser and Gardner, 2004) led us to explore the idea 
that inter-bubble melt thickness may be a controlling parameter 
for bubble connectivity. We found that the measured bubble sep-
aration distance, zm , weighted by the normalized degree of poly-
dispersity of the bubble size distribution, σa/da , (i.e. the quantity 
zm(σa/da)

cz with cz a constant) is an excellent discriminant be-
tween permeable and impermeable samples (Fig. 3B). All samples 
but two can be correctly assigned to a permeability state, based on 
a critical value of zm(σa/da)

−1.
One difficulty is that the inter-bubble distance involved in the 

discriminatory quantity zm(σa/da)
−1 is not traditionally measured 

in magmatic products, because bubble spacing is generally de-
duced from bubble size and total porosity in different ways (e.g., 
Lensky et al., 2004; Castro et al., 2012; Mancini et al., 2016). Our 
data allow us to re-evaluate such relationships (Fig. 3C), and we 
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Fig. 3. Relationships between parameters of the bubble networks. A) Histogram of 
the median ratio da/dt . B) Sorting criteria in μm (inter-bubble distance, zm , divided 
by σa/da) as a function of connectivity (φc/φt ). Samples are sorted in decompres-
sion style (“open” vs. “closed” system) and bubble shapes (“isotropic” vs. “anisotrop-
ic”). The shaded vertical area suggests a limit between permeable and impermeable 
samples. C) Measured inter-bubble distance as a function of calculated inter-bubble 
distance. Symbols mark three calculation methods: “z” is that of Eq. (15), “Mancini” 
is that of Mancini et al. (2016) (their z1 with o = 6 and αp = 0.63), and “Lensky” is 
that of Lensky et al. (2004).

found that the following expression is a good compromise between 
algebraic simplicity and accuracy:

z = 1.5da(φ
−1/3
t − 1) (15)

which fits our data with R2 = 0.8. A percolation threshold can thus 
be defined using Z = z(σa/da)

cz , instead of zm(σa/da)
−1. More-

over, the behavior of φc/φt can be described by a logistic function 
that tends to 1 for small values of Z and to 0 for large Z val-
ues:
φc

φt
= 1

1 + exp(−cφ(Z − cp))
(16)

where cφ and cp are fit parameters.
Summarizing these simplifications, we can write a viscous per-

meability relationship that depends only on the average and stan-
dard deviation of the bubble size distribution, the average bubble 
aspect ratio, and the total porosity:

k1 = φn
c d2

a

√
3ε

200χ2
(17)

where tortuosity is derived using Eq. (14), and n is a constant to be 
determined. Similarly, the inertial permeability can be expressed 
as:

k2 = φ4n
c da

5 f0

(√
3ε

2χ

)3/2

(18)

The connected porosity is obtained by using Eq. (16) with the 
inter-bubble distance z from Eq. (15):

φc = φt

1 + exp(−cφ(1.5da(φ
−1/3
t − 1) − cp))

(19)

There are thus five parameters (cz , cφ , cp , n, and f0) that 
need to be determined, whereas five measured geometric quanti-
ties (φt , da , σa , χ , and ε) can be entered into Eqs. (17)–(19) to 
calculate three quantities (φc/φt , k1, and k2) that can be com-
pared with their measured counterparts. Five parameters to be 
regressed simultaneously are too many degrees of freedom for the 
two-parameter linear regression used to fit Eqs. (10)–(11) in Fig. 2. 
We instead used a grid search technique to minimize the �1-norm 
(Eq. (9)). The sum R1 + R2 + R3 was minimized by nested grid 
search within the bounds −1 < cz < 0, −106 < cφ < 0, 10−5 <

cp < 10−4, 2 < n < 4, and 10−2 < f0 < 102. To keep grid points 
within a computationally manageable number, the grid search was 
conducted with a precision on each parameter that yielded three 
significant digits, which gave cz = −0.128, cφ = −0.342 ×106, cp =
33.2 × 10−6, n = 2.73, and f0 = 0.790 with R1 = 2.59, R2 = 1.73, 
and R3 = 5.65.

Fig. 4A shows φc/φt as a function of Z and the fit of Eq. (19)
with the above values of cz , cφ , and cp (the goodness of fit of φc is 
shown on Fig. S6). By definition, φc/φt = 0.5 when Z = cp , and 
the absence of percolation corresponds to φc/φt approaching 0. 
A percolation threshold can thus be defined as a critical value of 
either φc/φt or Z . For simplicity, we chose to define the percola-
tion threshold as Z p = cp +cd , where cd is an additional parameter 
to be determined. This implies that the threshold value of φc/φt is 
(1 + exp(−cϕcd))

−1. We varied cd to maximize the number of suc-
cessfully attributed permeability states and found that cd values 
from 3 × 10−6 to 8 × 10−6 ensure that the permeability state of all 
samples but two are correctly identified (Fig. 4A). Using Eq. (15) in 
conjunction with the discriminant Z p = z(σa/da)

cz we can define 
the percolation porosity threshold, φp , as:

φp =
[

1 + cp + cd

1.5da

(
σa

da

)0.128]−3

(20)

where cp +cd = 39.2 ±3 ×10−6 m marks the percolation threshold 
for our samples that correctly identifies the permeability state of 
96% of the samples.

Fig. 4B compares calculated and measured permeabilities for 
the fitted relationships (Eqs. (17)–(19)). Overall, Fig. 4B suggests 
that most viscous permeability coefficients are predicted within 
one order of magnitude (88% of the cases), but that only 54% 
of the inertial permeability coefficients are predicted within one 
order of magnitude (88% within a factor 100). The same k2 out-
lying value as in Fig. 2 is present because the calculated values 
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Fig. 4. Results of the fitting procedure. A) Sorting criteria in μm (calculated inter-
bubble distance, z, times a power law of σa/da) as a function of connectivity 
(φc/φt ). Samples are sorted in decompression style (“open” vs. “closed” system) and 
bubble shapes (“isotropic” vs. “anisotropic”). The bold curve is Eq. (19). The verti-
cal dashed line marks the critical value that defines percolation and distinguishes 
all impermeable samples from permeable samples except two. B) Measured ver-
sus calculated permeabilities (k1 and k2). The continuous gray line marks the 1:1 
ratio and the two dashed gray lines mark the 1:10 and 10:1 ratios, respectively. 
The two axes labeled “Imperm.” represent permeability coefficients of zero and the 
filled circle with the label “21” represents 21 samples correctly identified as being 
impermeable. Two samples incorrectly identified as being impermeable are on the 
horizontal impermeable axis.

of φc , dt , and τ for that sample (G437) are close to the corre-
sponding measurements. For isotropic samples, permeabilities can 
simply be expressed as k1 = φ2.73

c d2
a/800 and k2 = φ10.92

c da/(8 f0). 
For strongly anisotropic samples, k1 could be more than one or-
der of magnitude below the isotropic equivalent value (at most by 
a factor 20 if χ and ε have the highest measured values of 6 and 
0.25, respectively).

4. Discussion

4.1. Comparison of permeability relationships

We evaluate our results against two widely used relation-
ships that aim at quantifying permeability from geometrical 
measurements of the porous network. The first is a Kozeny–
Carman relationship between viscous permeability and poros-
ity (e.g., Eichelberger et al., 1986; Klug and Cashman, 1996;
Rust and Cashman, 2011):

k1 = aK C φ
bK C
c (21)
Fig. 5. Measured versus calculated permeability (k1) from Eq. (21) (“Kozeny–
Carman”) and Eq. (22) (“Percolation”). Errors are only reported for measured quan-
tities. The continuous gray line marks the 1:1 ratio and the two dashed gray lines 
mark the 1:10 and 10:1 ratios, respectively. The two axes labeled “Imperm.” rep-
resent permeability coefficients of zero and the filled circle with the label “21” 
represents 21 samples correctly identified as being impermeable. Two samples in-
correctly identified as being impermeable are the horizontal impermeable axis.

where aK C and bK C are fitted constants. Using Eq. (19) to ex-
press φc , a two-parameter best fit yields aK C = 8.27 × 10−11 m2

and bK C = 6.02 with R1 = 2.75 (Fig. 5).
The second relationship highlights that total porosity and con-

nected porosities are distinct by explicitly depending on total 
porosity, φt , and the percolation threshold, φp (e.g., Feng et al., 
1987; Sahini and Sahimi, 1994; Saar and Manga, 1999; Mueller et 
al., 2005):

k1 = aM(φt − φp)bM (22)

where aM and bM are fitted constants. Setting φp = 15 vol.% en-
sures that all permeable samples are correctly identified as such, 
but only 2 out of the 21 impermeable samples are correctly identi-
fied. Conversely, setting φp = 60 vol.%, only 2 out of 28 permeable 
samples, yet all impermeable samples, are correctly identified. This 
illustrates that no single value of φp explains the variation of our 
data (Mueller et al., 2005). Using Eq. (20) to express φp , all samples 
but two are correctly identified and a two-parameter best fit yields 
aM = 1.85 × 10−11 m2 and bM = 2.49 with R1 = 3.64 (Fig. 5).

In summary, the original Degruyter Eq. (10) yields the best fits 
for the viscous permeability, followed by our simplified Eq. (17), 
the Kozeny–Carman relationship, and the percolation relationship 
(R1 values of 1.69, 2.59, 2.75, and 3.64, respectively). Much of the 
predictive capability is lost when network parameters such as φc

or τ are not available. When these parameters are missing, regres-
sion results give a slight advantage to our relationship compared 
to that of Kozeny–Carman.

4.2. Testing the percolation threshold against other data sets

Our percolation threshold can be evaluated against published 
data sets by comparing the calculated threshold to measured val-
ues of φc/φt . We selected five studies on natural and experimental 
magmas with various crystal contents and bubble elongations that 
provide independent estimates of φc , φt , da , and σa (Burgisser and 
Gardner, 2004; Bouvet de Maisonneuve et al., 2009; Takeuchi et 
al., 2009; Okumura et al., 2012; Lindoo et al., 2016). Values of 
da and σa were recalculated from the original size distributions 
when necessary. The percolation threshold depends on an empir-
ical constant, cp , that our data constrain to be between 3 × 10−6
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Fig. 6. Applications of the percolation relationship. Data are from Okumura et al.
(2012), Burgisser and Gardner (2004), Lindoo et al. (2016), and this study. A) Total 
porosity (φt ) as a function of percolation porosity (φp ). The dotted line indicates 
the 1:1 ratio that separates permeable (upper left) from impermeable (lower left) 
fields. Open symbols are permeable samples and closed symbols are impermeable 
samples. B) Measured vs. calculated connected porosity (φc ).

and 8 × 10−6 m. This range of cp values correctly discriminates 
>87% of all the data points (88% when cd = 4 × 10−6, Fig. 6A) 
and Eq. (19) recovers the φc values of the permeable samples with 
R2 = 0.77 (Fig. 6B). A global permeability relationship can thus be 
defined by setting that φc is given by Eq. (19) when φt ≥ φp (or 
z × (σa/da)

−0.128 ≤ 3.72 × 10−5) and zero when φt < φp . The fact 
that a success rate of 100% cannot be achieved is partly due to 
the extreme simplicity of Eqs. (19)–(20), which seek to character-
ize with a single scalar the percolation state of a complex bubble 
network where bubbles have heterogeneous shapes and spatial dis-
tributions.

Our simplified relationships are more accurate for k1 than 
for k2. Unfortunately, we found no published data set providing 
independent measures of all the parameters used in Eqs. (17)–(18)
to conduct a rigorous evaluation of our relationships. We note, 
however, that no technical obstacle prevents collecting the rele-
vant data using CT imaging (e.g., Castro et al., 2012), traditional 
image analysis (e.g., Gardner et al., 1999), or stereology methods 
(e.g., Martel and Iacono-Marziano, 2015). Because k2 involves an 
additional independent parameter, f0, the lower accuracy on k2
suggests that considering f0 as a constant is an oversimplification. 
This is in agreement with the findings of Degruyter et al. (2010a)
and Bouvet de Maisonneuve et al. (2009), which not only indicate 
that 0.8 is in the low range of inferred f0 values but also suggest 
that f0 should be linked to measurable parameters of the perme-
able network.
Fig. 7. Total (φt ) and percolation (φp ) porosities as a function of bubble size. Tri-
angle are experimental samples. Dotted curves are total porosities for three bubble 
number densities (labels 1010, 1012, and 1016). Thick solid curves are percolation 
porosities for three σa/da values (labels 0.1, 1, and 10). The light gray field is above 
the percolation threshold corresponding to σa/da = 1 (“permeable”) and the dark 
gray field is below that threshold (“impermeable”).

In summary, the simplified relationships we propose give a 
close representation of the percolation threshold in both experi-
mental and natural products at the expense of a moderate preci-
sion on the permeability values compared to laws depending on 
bubble network parameters. Our laws are related to the connec-
tion between gas bubbles in magmas, which means that they are 
not valid when brittle fracturing occurs (Farquharson et al., 2016;
Heap and Kennedy, 2016; Kushnir et al., 2016).

4.3. Implications for magma degassing and eruptions

Having a relationship that estimates percolation has implica-
tions for determining at which point gas escapes from magma 
during ascent. Total porosity and bubble size can be related to 
the bubble number density per amount of melt, Nm , if the bub-
ble size distribution is monodisperse. The percolation porosity, on 
the other hand, depends on bubble size and σa/da . Fig. 7 shows 
the evolution of φp and φt as a function of bubble size for dif-
ferent values of Nm and σa/da . One trend of percolation porosity 
is shown for Nm = 1012 m−3 and three values of σa/da (0.1, 1, 
and 10), which approach the conditions of a subset of our data that 
underwent closed-system decompression and remained imperme-
able until very large (∼80 vol%) porosities. Fig. 7 illustrates how 
percolation is expected to vary in natural cases. The natural range 
of Nm is 1010–1016 m−3 (Rust and Cashman, 2011). The lower 
bound of σa/da is 0.1 (our data; Gardner et al., 1999), and the 
upper bound can be set to 10 by considering that natural pumice 
often have log normal to exponential distributions (e.g., Polacci et 
al., 2014). The natural range of parameters can thus be represented 
by the three φp curves of Fig. 7 and two additional φt curves for 
Nm = 1010 and 1016 m−3. Fig. 7 shows that high bubble number 
densities favor percolation at low porosity and early gas loss dur-
ing ascent whereas low number densities hinder percolation and 
yield late gas leakage during ascent. The transition predicted by 
Eq. (20) between impermeable behavior at depth and permeable 
behavior more shallowly thus spans the full range of percolation 
porosities inferred in previous studies (Rust and Cashman, 2011;
Lindoo et al., 2016).

Fig. 8A represents k1 versus φt for our permeability formulation 
alongside four relationships that are representative of those cur-
rently used in conduit flow modeling (Klug and Cashman, 1996;
Mueller et al., 2005; Kozono and Koyaguchi, 2009). Increasing Nm
in our relationship causes both the percolation threshold and per-
meability to decrease, whereas, at constant Nm , decreasing σa/da
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Fig. 8. Influence of various permeability relationships on conduit flow modeling. A) Permeability versus total porosity. B) Model outputs (ascent velocity vs. depth) from 
the 1D conduit flow model with a conduit radius of 2 and 15 m (labels rc ) and a conduit length of 5 km, a lithostatic pressure at the conduit base with 5 wt.% total 
water in the magma, and a magma temperature of 950 ◦C with 45 vol.% crystals. Only liquid velocities are shown. Gas and liquid have velocities that very similar for all 
runs except effusive runs at depth <1 km, where gas velocities sharply increase to 1–10 m/s. Permeability relationships are from Mueller et al. (2005) for effusive samples 
(aM = 6.3 × 10−11 m2, bM = 3.4) and explosive samples (aM = 9 × 10−12 m2, bM = 2), Klug and Cashman (1996, aK C = 2 × 10−12 m2, bK C = 3.5), Kozono and Koyaguchi
(2009, k1 = 10−11 m2 if φt > 0.7 with a smooth increase to that constant value when 0.6 < φt < 0.7), and this study (labels indicate respective values of Nm and σa/da).
increases the percolation threshold. Setting, for instance, Nm to 
1015 m−3 and σa/da to 0.5 results in a permeability–porosity rela-
tionship that is close to that of Eq. (21). Fig. 8A shows that varying 
both Nm and σa/da results in permeability–porosity relationships 
that cover the same range as those currently used in conduit flow 
models, except at low porosities (φt < 0.2).

Because our relationship depends on parameters widely used 
in conduit flow modeling, it can be integrated to such numer-
ical models. We implemented it in a 1D two-phase (gas and 
liquid) conduit flow model tailored to the eruptive conditions 
prevailing at Merapi volcano in 2010 (e.g., Costa et al., 2013;
Erdmann et al., 2016). We used the Kozono and Koyaguchi (2009)
model, as modified by Degruyter et al. (2012), to include inertial 
permeability and the effect of dissolved water on melt viscosity. 
The effect of crystals on magma viscosity was calculated using 
Krieger and Dougherty (1959) with a maximum packing 0.65 and 
an Einstein coefficient of 2.5. Equations (17)–(20) require the spec-
ification of da , φt , ε, χ , and σa/da . Bubble diameter and φt were 
calculated from Nm and the melt water content. To be consistent 
with Fig. 8A, Nm was varied from 1012 to 1015 m−3 and σa/da was 
varied from 0.1 to 1. Parameters ε and χ can be estimated using 
relationships between flow conditions and bubble elongation and 
orientation (e.g. Rust et al., 2003). In 1D modeling, however, as-
signing a single preferential orientation at each depth is complex, 
because the amounts of simple and pure shear have to be aver-
aged over the conduit cross-section. Using the constant values of 
ε = 3−0.5 and χ = 2 is acceptable because ε and χ have only a 
second-order influence on permeability. We assume that gas flow 
was laminar for the four published permeability relationships be-
cause they do not include k2.

Fig. 8B presents model results as liquid (melt + crystals) ve-
locities versus depth. Although we used permeability relationships 
that cover a wide range of percolation thresholds and permeabili-
ties, model outputs are similar for the eruptive conditions we con-
sidered. When the conduit radius is set to 15 m, all runs are in the 
explosive regime with differences in velocity profiles within 0.15 
log units of each other. They have similar fragmentation depths 
of 2580 ± 170 m and mass fluxes of 5.21–6.91 × 106 kg/s. When 
conduit radius is set to 2 m, all runs are effusive with mass fluxes 
ranging from 157 to 185 kg/s, except for the run corresponding 
to Nm = 1015 m−3 and σa/da = 0.5, which is explosive with a 
mass flux of 5.67 × 104 kg/s and a fragmentation depth of 4800 
m. With only one run over sixteen having a distinct behavior, the 
influence of permeability and percolation is thus small under such 
conditions. The model we use assumes that gas separates from the 
magma by flowing only in the vertical direction, although a signif-
icant part of gas losses during ascent could occur through leakage 
at the conduit walls (Jaupart and Allègre, 1991; Collombet, 2009). 
Although such a characterization is beyond the scope of this work, 
we intuit that our percolation and permeability relationships have 
more influence in other types of conduit flow models.

In the anisotropic samples we use to establish the percolation 
threshold, the deformation is due to sample decompression that 
induced pure shear (Burgisser and Gardner, 2004). The amplitude 
of this deformation remains relatively low (maximum aspect ratio 
of 6). Several studies have shown that simple shear can signif-
icantly decrease the percolation threshold when it reaches high 
amplitudes (e.g., Caricchi et al., 2011; Okumura et al., 2009, 2013). 
Unlike pure shear, simple shear involves bubble rotation that en-
hances bubble interaction and coalescence. As simple shear is ex-
pected to occur in volcanic conduits during magma ascent, it may 
affect percolation and permeability development in a way that is 
not captured by our data set.

5. Conclusions

We present results on permeability and bubble network de-
terminations of experimental samples that were decompressed at 
6 × 10−3−10 MPa/s from 150 MPa down to 60–15 MPa. Samples 
were crystal-free rhyolitic melts bearing 10–64 vol% of H2O bub-
bles with aspect ratios of 2–6, sizes of 4–350 μm, and number 
densities of 5 × 1010−5 × 1013 m−3. Samples were analyzed by 
X-ray microtomography to image the bubble networks in 3D. From 
measurements of the 3D images and geometrical considerations, 
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we develop a percolation threshold for magmas that depends on 
the bubble network characteristics. This relationship, which is cal-
ibrated on our sample set, recovers the behavior of a wide range 
of experimental and natural volcanic samples, from basaltic an-
desite to rhyolite, and from crystal-free to crystal-rich. It separates 
permeable samples from impermeable ones with a success rate 
of 88%.

We propose simplified permeability relationships based on the 
percolation threshold that rely on parameters widely used in 
magma flow numerical modeling. They are calibrated on our sam-
ple set and they are valid within one order of magnitude for the 
viscous permeability coefficient and within two orders of mag-
nitude for the inertial permeability coefficient. They recover the 
ranges of values previously covered by isolated relationships, re-
assembling them within a single framework. The implications of 
such a unification on eruptive dynamics is tested by using a 1D, 
two-phase conduit flow model constrained by conditions prevail-
ing during the 2010 eruption of Merapi volcano. Results suggest 
that varying the percolation threshold has little influence on verti-
cal gas loss and ascent dynamics.
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