
Journal of Volcanology and Geothermal Research 392 (2020) 106790

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

j ourna l homepage: www.e lsev ie r .com/ locate / jvo lgeores
Numerical simulations of magmatic enclave deformation
Alain Burgisser ⁎, Alexandre Carrara, Catherine Annen
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
⁎ Corresponding author.
E-mail address: alain.burgisser@univ-savoie.fr (A. Bur

https://doi.org/10.1016/j.jvolgeores.2020.106790
0377-0273/© 2020 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 8 October 2019
Received in revised form 11 January 2020
Accepted 15 January 2020
Available online 17 January 2020

Keywords:
Pluton
Magma chamber
Adamello batholith
Viscosity contrast
CDF-DEM
Force chains
Present in both plutonic and volcanic rocks, enclaves are inclusions of magma into a compositionally distinct
magmatic host. Classical relationships between their shapes and the dynamical conditions that prevailed during
their formation have been drawn from fluid–fluid analogies and from solid rock mechanics. Magmas, however,
are hydrogranular suspensionswith a rheologydistinct from these two-end-members. Thiswork presents results
from computational fluid dynamics with discrete element modeling (CFD-DEM) aimed at deforming crystal-rich
enclaves in pure shear. The CFD-DEM approach explicitly resolves solid–solid interactions such as contact and
friction while taking into account fluid coupling. The first series of deformation involved only pure fluids to val-
idate the setup. The second series comprised seven runs aimed at reproducing magmatic conditions. Enclaves
were made of a cylindrical suspension of particles embedded into a host with different characteristics. In both
media, particles and fluids had densities, viscosities, elastic characteristics, and sizes tailored to the geological
constraints of the Adamello batholith, Italy. Each run corresponds to a temperature along the two respective crys-
tallization paths and span crystal contents from 10 to 62 vol%. Results show that, to first order, deformation does
not depend on differences inmelt viscosities, crystal contents, or bulk viscosity contrast. This is due to the forma-
tion of force chains parallel to the main compression direction, which transmits stress across the enclave. A sim-
ple, first-order relationship could be fitted to our data to relate shear and enclave deformation, which we applied
to the case of the Adamello pluton. There is a second-order dependence of deformation on the onset of particles
contacts and force chains, which are both related to particle concentration. The main control of these second-
order effects is the host crystal content. Enclave particles pack early, quickly erasing differences in initial content
and building force chains parallel to the compression axis that transmit stresses to the host. Whether the host is
able to transmit those stresses across its own volume is controlled by host crystal content.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Ubiquitous in both plutonic and volcanic rocks, enclaves are inclu-
sions of partially to wholly crystallized magmas hosted in a generally
more silicic magma (e.g., Didier and Barbarin, 1991; Paterson et al.,
2019). These compositionally defined structures present a large variety
of shapes and sizes, and have been long suspected to record dynamical
information on the conditions that prevailed during their formation
(Vernon et al., 1988; Paterson et al., 1989). In early subsolidus (plutonic)
rock studies, the deformation of a solid inclusion hosted in a softer ma-
trix was not only studied using solid mechanics (e.g., Pfiffner and
Ramsay, 1982), but also by using pure fluids (e.g., Bilby et al., 1975;
Gay, 1976; Lisle et al., 1983). More recently, deformation studies have
used mixtures with bulk non-Newtonian rheologies (e.g., Treagus,
2002; Jessell et al., 2009; Marques et al., 2014, and references therein).
In hypersolidus conditions, which are relevant to magmatic systems,
modeling enclave deformation by using the analogy of two fluids has
gisser).
also been used (e.g., Williams and Tobisch, 1994; Caricchi et al., 2012;
Laurent et al., 2017). Magmas, however, are inherentlymultiphasemix-
tures of melt, crystals and possibly gas bubbles. The presence of at least
two phases (twomisciblemelts and crystals of various sizes, shapes and
chemical composition) motivated experiments using particle-laden
fluids (Hodge and Jellinek, 2012; Hodge et al., 2012). Such experiments
showed that streams of suspensions flowing into a clear fluid break up
and deform under the combined effects of buoyant ascent and shear
in more complex ways than a simple fluid.

The detailed process of enclave formation is highly dynamic as it in-
volves thermal exchange, crystallization, possible gas exsolution, and
possible mechanical mixing between the melts and/or the host and in-
clusion minerals (e.g., Coombs et al., 2000; De Campos et al., 2004;
Laumonier et al., 2014; Petrelli et al., 2016; Wiesmaier et al., 2015).
Even when leaving aside the roles of volatiles and crystallization, the
rheology of crystal-bearing magmas is generally complex because of
the feedback betweenmelt–crystal entrainment, crystal–crystal friction
and collision, and intermittent lock-up of crystals in contact with each
other (e.g., Bergantz et al., 2017). This complexity motivated first-
order estimates of enclave formation and deformation that distinguish
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three broad classes of behavior at high melt viscosity, when crystal set-
tling is unimportant (Andrews and Manga, 2014). If their crystal con-
tent are low (e.g., b20 vol%), enclaves deform as Newtonian fluid
mixtures. At intermediate crystal content (e.g., 20–40 vol%), enclaves
deform only if the inclusion yield stress is overcome (yield stress, as ap-
plied to amagma suspension, is a bulk characterization of the lock-up of
the crystal network, which is controlled to first order by a combination
of crystal content, shape, and solid friction). At higher crystal content,
enclaves act as rigid bodies because the crystals are in permanent
state of jamming and the melt forms a partly disconnected network.

Here, we take the simplified view of documenting the mechanical
interaction between thermally equilibrated host and enclave without
exsolved volatiles. The main goal of this study is to use recent advances
in computational fluid dynamics to refine previous work (Caricchi et al.,
2012) done on enclave deformation using the analogy of pure fluids. To
keep some consistency with the study of Caricchi et al. (2012), we use
the geological constraints of the Adamello batholith, which is an Alpine
intrusion located in Northern Italy that was emplaced incrementally 42
to 31Ma ago (John and Blundy, 1993; Schaltegger et al., 2009; Fiedrich
et al., 2017).We explore how crystal-rich enclaves deform under planar
strain and pure shear thanks to computational fluid dynamics with dis-
crete element modeling (CFD-DEM). Such type of numerical simula-
tions has proven to be a powerful tool to study crystal-rich magma
dynamics (Bergantz et al., 2015, 2017; Schleicher et al., 2016; Carrara
et al., 2019). The behavior of the continuous fluid phase (silicate melt)
is computed by solving the Navier-Stokes equations on an Eulerian
grid. Individual crystals are represented by spheres, the trajectories of
which are computed in a Lagrangian framework with the Newton
laws of motion. This representation of the solid phase allows the CFD-
DEM framework to explicitly resolve solid/solid interactions such as
contact and frictionwhile taking into account the couplingwith the sur-
rounding fluid (Trulsson et al., 2012). Approximating crystals as
spheres, however, is a limitation because the anisotropy of natural crys-
tals can either induce jamming at lower particle volume fraction com-
pared to spheres, or ease deformation by strain localization due to
crystal alignment (e.g., Cimarelli et al., 2011; Picard et al., 2013; Mader
et al., 2013; Moitra and Gonnermann, 2015). Our spherical approxima-
tion can thus be applied to equant crystals such as quartz or olivine but
fails to capture the behavior of elongated crystals such as plagioclase
microlite. In dilute conditions, significant particle elongation can also af-
fect settling because drag forces are non-uniform around crystals
(Dioguardi et al., 2014; Bergantz et al., 2017). This is not a concern in
this study because settling is inconsequential.

2. Methods

We performed CFD-DEM numerical simulations by using the MFIX-
DEM software (https://mfix.netl.doe.gov/). The equations are summa-
rized in the supplementary material (Tables S1–S2). Detailed explana-
tions about the theory and implementation of the model can be found
in Garg et al. (2010), Syamlal (1998), Syamlal et al. (1993), and valida-
tion of the DEM approaches in Garg et al. (2012) and Li et al. (2012).

As the flows simulated are in the laminar regime and the particle
Reynolds numbers are also well below the transition to turbulence
(Furuichi and Nishiura, 2014), the drag forces exerted by the fluid on
the particles aswell as gravity forces were calculated using an analytical
simplification instead of the usual numerical evaluation (Garg et al.,
2012). The reason behind this algorithmic modification can be under-
stood by considering the equation of motion for the solids in the ab-
sence of particle contacts:

d vp
�!
dt

¼ −
∇P
ρp

þ g!þ β
Φ ρp

v f
�!− vp

�!� �
; ð1Þ

where vp
�! is the particle velocity vector, vf

�! is the fluid velocity vector,
∇P is the local fluid pressure gradient, ρp is the particle density,Φ is the
local particle volume fraction, β is the momentum transfer coefficient,
and g! is the gravitational acceleration vector. The first term on the
right hand side of Eq. (1) is the pressure force, which includes the par-
ticle buoyancy. The last term expresses the drag force that depends on
the relativemotion of the particle compared to the fluid, and on themo-
mentum transfer coefficient, which is parameterized using the
Gidaspow drag model (Gidaspow, 1994). In crystal-rich conditions, in-
ertial effects may be neglected, and β reduces to a form of Kozeny-
Carman relationship (Li et al., 2012):

β ¼ 150Φ2 η

1−Φð Þ dp2
; ð2Þ

where η is the fluid dynamic viscosity and dp is the particle diameter.
Similarly to Bergantz et al. (2017), it is convenient to define the particle
viscous response time, τv = Φ ρp/β, as the ratio of the particle density
times the crystallinity, over the momentum transfer coefficient. The
classical numerical method used to integrate in time Eq. (1) imposes
to use time steps smaller than τv, which is a strong limitation to the ap-
plication of such method to crystal-rich magmas (for chemically
evolved and crystal-bearing magmas, τv ≈ 10−10 s). At low particle
Reynolds number and Stokes number, τv is much smaller than the
fluid characteristic time, which means that the fluid velocity and pres-
sure gradient within Eq. (1) may both be considered constant during
the particle acceleration in response to a change in its environment.
Consequently, Eq. (1) reduces to a first-order ordinary differential equa-
tion with a solution of the form:

v!p tð Þ ¼ v!p0e

−
t
τv
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where v!p0 is the initial particle velocity vector. The effective force, F
!

GPD,
needed to get from the velocity at time t1 to that a DEM time step, Δt,
later is:

F
!

GPD t1ð Þ ¼ mp

Δt
v!p t1 þ Δtð Þ− v!p t1ð Þ

� �
: ð4Þ

Setting v!p0 ¼ v!pðt ¼ t1Þ in Eq. (3), F
!

GPDðt ¼ t1Þ becomes:
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Eq. (5) presents the advantage to depend on the simulation time
step and does not have to comply with a stability criterion. When
Δt≫ τv, Eq. (5) yields the force needed to reach the particle terminal ve-
locity in one time step, andwhenΔt b τv, it is able to recover the particle
acceleration curve. As a result, the DEM time steps are far larger than
those stemming from the classical numerical integration of Eq. (1),
which significantly decreases the computational costs. By capturing
the particle acceleration curve, our approach builds on that used in
Furuichi and Nishiura (2014), which assumes that particles systemati-
cally jump to their terminal velocities in one time step.

The first type of runs is two-dimensional compression of a flat cylin-
der, which corresponds to planar strain. The second type is uniaxial
compression of an ellipsoid, which corresponds to pure shear where
thematerial is free to expand in any direction perpendicular to the com-
pression axis. The cross-shaped computational domains of both geome-
tries are depicted in Fig. 1. Planar strain was imposed to an enclave
positioned in themiddle of the cross by imposing an incoming fluid ve-
locity on two opposite extremities of the cross (inlets) and letting the
fluid flow out at the two other extremities (outlets) (Fig. 1A). The
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Fig. 1. Simulation setup. A) Views from above and from the side of the thin 3D domain
undergoing planar strain shear. B) View the cubic 3D domain undergoing pure shear.
Axes are labeled in m and the rendering is based on the fluid cells. Shear is driven by
incoming normal velocities at two opposite boundaries (white arrows) and
accommodated by free outflow along the y (planar strain and pure shear) and x–z (pure
shear only) directions. Run 3 g at t = 0 s (see Table 2).

Table 1
Particle characteristics. Particles pe1, pe2, pe3 seeded the enclaves andparticles ph1, ph2, and
ph3 seeded the host. The label “Number” refers to the proportions of the three particle type
in each medium (host and enclave, respectively).

pe1 pe2 pe3 ph1 ph2 ph3

Density (kg/m3) 2700 2700 3300 2700 2700 2700
Diameter (mm) 2 2.2 4.2 4 4.2 4.4
Number (%) 35 36 30 34 30 35
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computational domain contains 120 × 120 × 3 fluid cells with an edge
length of 1 cm. The inlet and outlet aperture is 40 cm in all runs except
two runs that were carried out with a 80-cm aperture to quantify how
aperture size affects large deformations. The geometry of pure shear
compression is that of classic uniaxial test with a square horizontal
cross-section (Fig. 1B). The domain contains 120 × 120 × 120 fluid
cells and the fluid was free to flow at the mid-section periphery. Inlets
and outlets apertures are 60 cm wide.

In both geometries, all walls are free slipwith respect to thefluid and
act as a frictional material with respect to the particles. The vicinities of
the fluid inlets and outlets are particle-free and the shapes of both the
inlet and outlets ducts ensure that theflow field around the enclave cor-
responds to that expected for pure shear. The boundary condition at
both outlets is free pressure and velocity, which yields numerically sta-
ble solutions because there is a continuous outflow of material through
these outlets. The cuboid region in the center of the cross is subject to a
hyperbolic flow field when a single fluid of uniform density and viscos-
ity is used (e.g., Mulchrone and Meere, 2015). Gravity is directed in the
negative z direction so that the symmetry of the planar shear flow field
is not disturbed by the hydrostatic pressure gradient. Under uniaxial de-
formation, setting a standard gravity field of 9.81 m/s2 would perturb
the symmetry of the imposed pure shear because of the outflow condi-
tion in the gravity direction and because the melt is Newtonian. In the
coldest, most viscous magmas, the response times of the crystals (i.e.
their diameter divided by their terminal fall velocity) are much longer
than typical run durations (2–10 s). They are, however, on the order
of 30min for the hotter casewe simulate (1030 °Cwith only 9 vol% crys-
tals in the host). To prevent gravity-driven particle drainage during uni-
axial compression, we thus used a reduced but finite gravity field
(10−3 m/s2) in the z direction. Setting gravity to zero would yield simi-
lar results at the expense of tedious changes in model implementation.

Particles sizes and number proportions are summarized in Table 1.
The Hertzian collision model was chosen for the particles and the
walls. Particles have a Young modulus of 2 MPa, a Poisson ratio of
0.27, a Coulomb friction coefficient of 0.32, a normal damping coeffi-
cient of 0.7 and a tangential damping coefficient of 0.35. The Young
modulus is lower than that expected for real crystals to ensure reason-
ably large time steps while avoiding unrealistic particle overlaps and
keeping dynamic verisimilitude (Lommen et al., 2014). Wall character-
istics are identical to those of particles, except that the Poisson ratio is
set to 0.2. Setting smoothwalls (zero friction) or changing their Poisson
coefficient did not influence results. Pure fluid was injected in the inlets
at the same velocities normal to the x-z plane but in opposite directions
to push the particle-laden host fluid into the inlets shafts. At the inlets,
the injection superficial velocities were 0.05 m/s for all runs, which
yields a shear rate of 0.05 s−1. We checked that lowering this speed
by factors of 2 and 10 did not change the results. Runs were thus in
quasi-steady-state (i.e. pore pressure had time to readjust during defor-
mation) and fluid velocity gradients in the z direction of planar strain
runs were b 10−8 m/s.

The enclavewas initialized by setting thefluid cellswith the relevant
melt density and viscosity. A scalar field advected by the fluid was used
to distinguish the enclave melt from the host melt. The initial positions
of the enclave particles were defined in two stages. First, randomly dis-
tributed particles were settled in a 20 × 20 × 3 cm fluid-free tank. Then,
a 20-cmcylinder of particleswas extracted from the resulting dense, cu-
boid bed, which formed the densest enclaves (62 vol% particles).
Crystal-poor enclaves were built by proportionally expanding the cu-
boid bed in the x-y directions and extracting the particles fitting into
the 20-cm cylinder of particles. The uniaxial sphere was generated by
accumulating slices of the cylindrical enclave expanded in an isotropic
way to reach a 20-cmdiameter. The ensuing artificial particle alignment
was no longer visible after the first recorded time step because of parti-
cle rearrangement under strain. The host particles were initialized in a
similar fashion by using a 120 × 120 × 3 cm settled bed and subtracting
particles that overlapwith thewalls and the enclaves. Planar strain runs
had typically 7–8 particles in the z direction, which ensured that parti-
cles were free to rearrange themselves in 3D so that steric effects were
properly captured.

Results are reported in enclave shape ratio (major semi-axis X di-
vided by minor semi-axis Y). Shapes were obtained in Paraview visual-
ization software by imaging the trace of a thresholded interpolation
surface of the parameters of interest on an x-y plane located in the do-
mainmid-thickness (z=1.5 cm for planar strain and 60 cm for uniaxial
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strain). Parameters were fluid volume fraction, fluid viscosity, and par-
ticle type (inside vs. outside the enclave). Images were then treated
with ImageJ software to fit ellipses on the resulting contours and re-
trieve shape parameters. All runs were carried out so that the major
axis was aligned with the x direction. The imposed amount of shear at
time step j, εj, was calculated using:

ε j ¼
Xj

i¼1

Δx
xi−1

ð6Þ

whereΔx is the distance increment during one recorded time step (0.2 s
times 10 cm/s) and x0=40, 60 or 80 cm,which is the edge length of the
square region in the center of the cross (Fig. 1). In other words,Δx is the
displacement of tracer particles seeded at both inlets, which represent
the equivalent of tracking the two moving pistons in a classic uniaxial
piston cylinder apparatus.

Six planar strain runs were carried out without particles but with
contrasting fluid densities, viscosities, and inlet/outlets widths
(Table 2). These runs were used to benchmark our setup and model
by recovering an analytical solution of cylindrical ellipse deformation
(Bilby et al., 1975):

ln
1þ ε j

1−ε j

� �
¼ lnRB þ 1−μð Þ RB−1ð Þ

μ RB þ 1ð Þ ð7Þ

where RB is the theoretical X/Y ratio and μ is the ratio between the host
and the enclave viscosities. Viscosities are those of themelts in particle-
free runs and they are bulk viscosities in particle-laden runs. Eq. (7)
needs to be solved numerically to find RB.

Two other deformation relationships were used to analyze our re-
sults. The first is that used by Caricchi et al. (2012):

RC ¼ 1þ με j
� �3 ð8Þ

The other was proposed by Manga (1996):

RM ¼ exp
ε j

1þ 1=μ

� �
ð9Þ

One pure shear run was carried out without particles but with con-
trasting fluid densities and viscosities (930i, Table 2). The analytical so-
lution of an oblate ellipsoid deformation under uniaxial strain reads
Table 2
Initial conditions of the host and the enclave domains, respectively. Deformation geometries we
given by PELE (ϕp) and those simulated (ϕs), ρl is melt density, μl is melt viscosity, and μb is bu

Run T (°C) Enclave Host

ϕp ϕs ρl μl μb ϕp

Particle bearing
3h 820 61.8 61–62 2260 1.0 × 107 1.8 × 1014 43.2
3b 880 58.6 61–62 2280 6.9 × 105 3.3 × 1010 37.8
3e 900 57.3 60–61.5 2300 2.9 × 105 2.3 × 109 35.5
3d 930 54.6 57.5–59.5 2320 7.1 × 104 4.8 × 107 31.3
3f 950 52.5 55–56.5 2340 2.8 × 104 4.8 × 106 27.9
3c 980 48.0 50–52 2380 6.8 × 103 2.1 × 105 21.6
3ga 1030 38.4 40–41.5 2470 6.5 × 102 3.1 × 103 9.6

Pure fluid
930ib n.a. n.a. n.a. 2340 2.2 × 105 n.a. n.a.
930n n.a. n.a. n.a. 2340 4.8 × 107 n.a. n.a.
1a n.a. n.a. n.a. 2340 6.9 × 106 n.a. n.a.
1b n.a. n.a. n.a. 2340 6.9 × 106 n.a. n.a.
1c n.a. n.a. n.a. 2340 6.9 × 101 n.a. n.a.

a This run was also carried out under pure shear compression with a 60-cm aperture.
b This run was also carried out under pure shear compression with a 60-cm aperture and un
(Bilby et al., 1975):

ln
1þ ε j

1−ε j

� �
¼ ln

1
RU

þ 2 1−μð Þ
μ

1
3
−
1−β 1−β2

� �−1=2
arccosβ

1−β2

2
64

3
75 ð10Þ

where β= RU
−3/4 and RU is the theoretical X/Y ratio of the ellipsoid semi-

axes with X N Y = Z.
Seven planar strain runs and one uniaxial run were carried out with

particle content, melt viscosities and densities that match the in-situ
crystallization paths of magmas having the respective bulk chemical
compositions of host and enclaves at Adamello (Table S3; John and
Blundy, 1993). Isobaric crystallizations were carried out using the
MELTS model in the software PELE (Boudreau, 1999) at 250 MPa and
at the Ni–NiO buffer with initial melt water content of 2 wt%. They re-
cover approximately the volume proportions of the two main minerals
identified in the host and intrusion at Adamello (Fig. S1). Melt viscosi-
ties are calculated in PELE using the model of Giordano et al. (2008)
and we calculated bulk viscosities according to Costa et al. (2009).

3. Results

3.1. Pure fluids

Fig. 2 shows the ratio between the enclave shapes (X/Y) predicted by
Eqs. (7)–(10) and those measured in particle-free CFD-DEM runs as a
function of the viscosity ratio between host and enclave. Under planar
strain, all relationships quantify deformation in the same way as our
runs when the host viscosity is much smaller than that of the enclave.
When the host viscosity is nearing or exceeds that of the enclave, how-
ever, relationships differ greatly among themselves and only Eq. (7) is
close to our results. Under uniaxial strain, Eq. (10) yields a fit of similar
quality as Eq. (7) for planar strain runs. We thus carried out a more de-
tailed comparison between the Bilby et al. (1975) relationship and our
pure fluid simulations.

Fig. 3 shows themeasured deformation of particle-free runs of cylin-
drical ellipses under planar strain for various host/enclave viscosity ra-
tios as a function of the solution of Eq. (7). Our results follow Eq. (7)
at small deformation for all viscosity ratios. When the aperture size of
the inlets and outlets is 40 cm, runs depart from Eq. (7) at large defor-
mation, when the extreme edges of the deformed ellipse go from the
central part of the domain into the lateral arms of the cross (Fig. 1A).
This is because our 40-cm setup is only an approximation of a planar
strain velocity field once enclaves are deformed past the central region.
re planar shear with a 40-cm aperture exceptwhenmentioned. Crystal contents are those
lk viscosity. n.a. means not applicable.

Viscosity ratio

ϕs ρl μl μb Melt Bulk (μ)

45–47 2280 4.7 × 106 4.5 × 107 0.47 2.5 × 10−7

35–37 2300 5.5 × 105 2.5 × 106 0.80 7.4 × 10−5

37–39 2320 2.6 × 105 9.4 × 105 0.91 4.1 × 10−4

32–34 2340 8.5 × 104 2.2 × 105 1.20 4.6 × 10−3

29–31 2360 3.9 × 104 8.0 × 104 1.38 1.7 × 10−2

21.5–23.5 2390 1.3 × 104 1.9 × 104 1.86 8.7 × 10−2

9.5–10.5 2410 2.7 × 103 2.9 × 103 4.16 9.2 × 10−1

n.a. 2320 4.8 × 107 n.a. 2.2 × 102 n.a.
n.a. 2320 2.2 × 105 n.a. 4.6 × 10−3 n.a.
n.a. 2320 1.4 × 106 n.a. 2.0 × 10−1 n.a.
n.a. 2320 5.3 × 102 n.a. 7.7 × 10−5 n.a.
n.a. 2320 5.5 × 101 n.a. 8.0 × 10−1 n.a.

der planar strain compression with a 80-cm aperture.



Fig. 2. Ratio between the predicted enclave shape (X/Y) and that measured in the CFD-
DEM runs as a function of the viscosity ratio between host and enclave for pure fluids.
Each run at a given viscosity ratio is represented by 10 symbols, which correspond to
deformation increasing from ε1 = 0.05 to ε10 = 0.7. Planar strain predictions follow the
relationships proposed by Bilby et al. (1975) (diamonds, RB), Manga (1996) (squares,
RM), and Caricchi et al. (2012) (triangles, RC). Triangles at a viscosity ratio of 220 are not
shown because they overestimate the deformation by a factor 130 to 3500, which is
beyond the y-axis range. Uniaxial deformation predictions follow the Bilby et al. (1975)
relationship (circles, RU). Some symbols have been slightly shifted along the x-axis for
clarity.
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This limitation is confirmed by the behavior of the run with 80-cm ap-
ertures, which follows Eq. (7) up to X/Y ratios of ~7, when the flattened
ellipse can no longer be discretized accurately because its shortest axis
is b6 fluid cells. The 40-cm setup thus overestimates elongation com-
pared to the 80-cm setup. This drift at large X/Y values can be corrected
for with a second degree polynomial fit (Fig. 3): RBcorr ¼ 0:5

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25−2:5ð1−RBÞ

p
. Keeping such narrow apertures for most runs,

which significantly shortens calculation times, will be justified a
posteriori by the fact that all pure fluid relationships, including Eq. (7),
greatly overestimate particle-bearing enclave elongation, regardless of
aperture size.
Fig. 3. Enclave shape (X/Y) measured in pure-fluid CFD-DEM runs vs. shape predicted by
Bilby et al. (1975) as a function of the viscosity ratio between host and enclave (from
8 × 10−5 to 220). All runs have inlet and outlet apertures of 40 cm, except one run that
has 80-cm apertures (black circles). Symbol sizes represent the maximum distance that
the further edge of the deformed enclave reaches at the end of a run. The dashed line is
a fit correcting the geometrical drift at large X/Y (RBcorr). The inset illustrates a
maximum edge distance of 29 cm.
3.2. Suspensions

Following Caricchi et al. (2012), we consider that enclave and host
material are thermally equilibrated. Run temperatures were chosen to
maximize the range of crystal contents of each component within
model limits. Our assumption that crystals can be represented as
spheres sets a limit to the maximum particle volume fraction we can
consider. Themaximum packing fraction is highest for bimodal suspen-
sion with ~70% coarse particles and ~30% of particles as fine as possible
(e.g., Faroughi and Huber, 2014). Unlike Caricchi et al. (2012), we chose
to relate crystal content and temperature by using the MELTS model
embedded in the PELE software (Fig. 4). This is partly to avoid the
water-saturated, crystal-rich end of the cooling paths, which are
strongly affected by how gas saturation is handled (open vs. closed sys-
temdegassing), and partly because PELE recoverswell themainmineral
proportions found in the natural enclaves (Fig. S1), which ensures a
consistency with the particles mixtures we use in the runs.

The twomost commonminerals found in the Adamello enclaves are
0.5–1 mm grains of K-feldspar and plagioclase and those found in the
host granodiorite are plagioclase of 1–3 mm and quartz b2 mm (John
and Blundy, 1993). To keep computational times reasonably short, we
selected the higher bounds of these grain size estimates. We initialized
our hosts with ~4-mmparticles and our enclaves with ~30% of dense, 2-
mm particles and ~70% of less dense, 4-mm particles (Table 1; Fig. S1).
Coarse particles were of two or three slightly different sizes to avoid
crystallization effects, such as the spontaneous organization in hexago-
nal lattice of monodisperse spheres that creates locked-in regions. The
maximum particle content in the enclaves is ~62 vol%, which sets the
lowest bound of temperature to 820 °C (Table 2). The maximum tem-
perature was set to 1030 °C with a host close to a particle-free suspen-
sion with b10 vol% crystals. The resulting bulk viscosity ratios cover
many orders of magnitude, spanning from 10−7 to 1.

A typical run is given in Fig. 5 (3D version in Fig. S2). The maximum
deformation is limited to ε10 = 0.7 to ensure that the short axis of the
deformed ellipse contains at least 6 fluid cells. The fluid cells being
~2.5 times larger than the coarsest particles, the aliasing causes some
Fig. 4. Crystal content as a function of temperature for the host granodiorite (thick black
line) and two enclave dioritic compositions (thin black lines) using the MELTS model in
the software PELE (Boudreau, 1999). Labels indicate the initial melt water content at
high temperature. Vertical dashed lines mark run temperatures (Table 2). The gray lines
are the fits of the experimental data – triangles are from Piwinskii and Wyllie (1968)
and circles are from Martel et al. (1999) – used in the work of Caricchi et al. (2012).



Fig. 5. Typical planar strain run (3 g) at maximum deformation (ε10 = 0.7). Axes are labeled in m. Blue particles belong to the host. Green particles are host particles that reached
concentration similar to that of the enclave. They are referred to as bulges in the text. Yellow particles are enclave particles surrounded by enclave melt and red particles are enclave
particles surrounded by host melt. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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enclave particles to be suspended in hostmelt. The lateral extremities of
the enclave sweep host particles during deformation, creating a bulge of
host particles at maximum packing.

Fig. 6 shows the ratio between the enclave shapes (X/Y) predicted by
Eqs. (7)–(10) and those measured in particle-laden CFD-DEM runs as a
function of the ratio between the bulk viscosities of the host and the en-
clave. As with pure fluids, the Bilby et al. (1975) relationship corrected
for the geometrical effect of the aperture size recovers best our planar
Fig. 6. Ratio between the predicted enclave shape (X/Y) and that measured in the CFD-
DEM runs as a function of the bulk viscosity ratio between host and enclave for
suspensions. Each run at a given viscosity ratio is represented by 10 symbols, which
correspond to deformation increasing from ε1 = 0.05 to ε10 = 0.7. Planar strain
predictions follow the relationships proposed by Bilby et al. (1975) (corrected for the
geometrical drift at large X/Y, diamonds, RBcorr), Manga (1996) (squares, RM), and
Caricchi et al. (2012) (upward triangles, RC). Fits (RCfit, see text) of the run results using
the Caricchi et al. (2012) relationship are represented by downward triangles for planar
strain and by circles for uniaxial deformation. Some symbols have been slightly shifted
along the x-axis for clarity.
strain results, but with considerable scatter because the predicted
values is 1 to 5.8 times larger than themeasured values (Fig. 6). The uni-
axial predicted deformation using Eq. (10) corrected for the geometrical
effect is 1 to 1.5 times larger than the measured values.

We attempted to fit an empirical relationship to our results. We
chose that of Caricchi et al. (2012) for its simplicity and adjusted the vis-
cosity ratio, μ, to match our measured deformation. A single value of
μ = 1.1 recovers the measured values within 21%, regardless of strain
geometry (Fig. 6):

RCfit ¼ 1þ 1:1ε j
� �3 ð11Þ

If, instead, the viscosity ratio of the corrected Bilby et al. (1975) rela-
tionships is adjusted, a single value of 10 ensures a satisfactory fit. These
single-valued factors suggest that, unlike pure fluids, suspension defor-
mation is not a function of the viscosity contrast between host and en-
clave. This is confirmed by the behavior of X/Y as a function of εj
(Fig. 7) because all runs deform in a very similar fashion, regardless of
viscosity ratio or whether the enclaves spread laterally into the arms
of the cross-shaped domain (see Fig. 3). The small but visible differences
among the curves of Fig. 7 cannot be explained by the fact that the ve-
locity field departs from that of pure shear once enclaves are deformed
past the central region or by a simple combination of the parameters
summarized in Table 2. This led us to quantify particle contacts in detail.

Force chain is a powerful concept to understand how stress is sup-
ported by the grains. The chains are quantified by trackingnormal forces
between each particle pair during deformation. A division between
pairs having normal forces above the mean and those featuring forces
below the mean can be made, which separates load-bearing particles
from spectator particles, respectively (Radjai et al., 1999; Bergantz
et al., 2017). As force chains only exist during contact, they give a partial
picture of the granular topology because only touching particles are
accounted for. This picture can be completed by tracking particle chains
thanks to particle overlaps and distinguishing touching particles that
make the solid network from floating particles. Fig. 8 shows the



Fig. 7. Enclave shape (X/Y) vs. deformation for all particle-laden runs. An empirical fit
(Eq. (11)) is also shown. The horizontal line marks the X/Y ratio beyond which the
enclave is more elongated than the inlet aperture size for planar strain. The X/Y ratio
beyond which the enclave is more elongated than the inlet size for uniaxial strain (9) is
beyond the y-axis limits.
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evolution of load-bearing vs. spectator and of touching vs. floating par-
ticles in host and enclave for four representative runs. In enclaves, the
proportion of load-bearing particles increases quite sharply for most
runs before reaching a plateau, the value of which is commensurate
with themagnitude of the bulk viscosity contrast. The number of touch-
ing particles decreases gently in all runs but that with the most dilute
enclave (41 vol% particles). This crystal-poor enclave has initially
Fig. 8. Proportions of load-bearing particles participating to force chains (dashed curves “Forc
curves “In contact”), and crystal volume fraction (solid curves “Crystallinity”) as a function
contents are given in vol% for reference. A) Host particle proportions. B) Enclave particle propo
many floating particles. They quickly touch each other at the beginning
of the deformation and behave similarly to the other enclaves after ε=
0.18. Contacts are set earlier in more crystal-rich enclaves. The general
decrease of contacts at large ε follows that of crystal content (Fig. 8C).
This slight dilution is driven by enclave elongation and the ensuing in-
crease of surface area; enclave particles close to the enclave boundary
bear fewer contacts with particles contained in the more dilute host
than with other enclave particles.

At small deformation, both force and particle chains have a fabric
parallel to the main compression direction, spanning enclaves across
in response to the imposed stress (Fig. 9). In crystal-rich hosts, this fab-
ric extends into the host at larger deformation, forming chains that cross
the host–enclave boundary. As ellipses become more elongated, chains
become shorter but are distributed all along themajor axis. Crystal-poor
enclaves have fewer load-bearing particles compared to crystal-rich
ones (Fig. 8B), mostly because crystal-rich enclaves concentrate load
bearers along the maximum elongation axis (Fig. 9B). This is likely the
result of crowding due to converging flow lines towards the central
axis and away from the hyperbolic point (e.g., Mulchrone and Meere,
2015).

Force chains have a more complex behavior in hosts than in en-
clave. The proportion of load-bearing either increases or decreases
before reaching a plateau that is close to 40% for all runs (Fig. 8A) ex-
cept that with the bulk viscosity ratio closest to one (μ = 0.9). The
proportion of touching particles in hosts increases in a logistic fash-
ion; large viscosity contrasts reaching the high plateau earlier than
low contrasts (e.g., plateau at ε = 0.18 for μ = 3 × 10−7 vs. plateau
at ε = 0.5 for μ = 2 × 10−2). In crystal-poor hosts, this behavior re-
sults exclusively from the accumulation of host particles at the
e”), proportion of particles in contact with respect to the total number of particles (solid
of deformation for four representative bulk viscosity ratios. Enclave and host crystal
rtions. C) Crystal volume fraction of enclaves.



Fig. 9.Visual renderings of particle and force chains within run 3 h at two stages of deformation (εj=0.05 and 0.62). Black curves outline the enclave. A) Particles colored according to the
relative amount of overlap they have with their neighbors (when several particles touch each other, only the maximum overlap is considered). Relative overlap values are that of the
particle divided by the average over all particles. B) Force vectors linking particle pairs colored according to the relative amount of normal force. Relative force values are that of the particle
pair divided by the average over all particle pairs (load-bearing particles have relative force values N1 and spectators have values ≤1).
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lateral extremities of the enclave, whereas all particles are subject to
crowding in crystal-rich hosts. When bulges reach a sufficiently large
distance from the central hyperbolic point, flow lines are nearly par-
allel to the spreading axis. The bulges and the host particles ahead of
them travel then at the same velocity, ending bulge accretion and the
associated increase of particles in contact with each other. Force
chains are mostly present in the bulges and on the outline of the en-
clave for all runs. The large number of load-bearing particles in the
crystal-poor host is due to the fact that force pairs only occur in the
bulges of that run, unlike runs featuring weaker force chains
throughout the host. Although their initial accumulation rates differ
from run to run, bulges of crystal-rich hosts end up with ~40% load-
bearing particles (Fig. 9B), which is simply controlled by the size of
the domain compared to that of the bulges.

Differences in deformation behavior are thus not simply related to
crystal content or bulk viscosity ratio. They are instead controlled by
how the solid phase reorganizes itself to transmit stresses. In hosts,
most of the stress is concentrated in the bulges, which resist enclave
elongation. The evolution of bulge resistance depends strongly on host
crystal content because bulges are built by sweeping and accumulating
host particles until a steady-state shape is reached. In enclaves, maxi-
mum compressive stress is accommodated by force chains that extend
well into the host if it is crystal-rich enough. The enclave crystal content
plays a more minor role compared to that of the host because force
chains are quickly established therein when deformation starts, even
for crystal-poor enclaves. This dominant role of host crystal content is il-
lustrated by the contrasting behavior of the two runs with the lowest
bulk viscosity ratios (μ = 3 × 10−7 and 7 × 10−5), which have the
same enclave crystallinity but differ in host crystallinity (Figs. 7 and 8C).

3.3. Application to a natural case

Our data show that, to first order, enclave deformation under pure
shear is not a function of crystal content, whether that of the enclave
or that of the host. One immediate implication of this result is that the
common assumption that enclave deformation can be approximated
by two miscible fluids with equivalent bulk viscosities can be revisited.
There are two main physical reasons why the fluid-like approximation
does not capture the deformation of particle-bearing fluids. The first is
the presence of inter-particle contacts that transmit stress through
force chains. The second reason is linked to the fact that our enclaves
are, by design (the injected magma is assumed more mafic than the
host), richer in crystals than the host. As a result, enclave edges sweep
crystals, causing differential motion of fluid and particles and accumu-
lating host crystals near the enclave lateral extremities. The semi-
empirical Eq. (11) captures enclave deformation and is calibrated by
our runs up to a flattening ratio of ~10.

Focusing on the well-documented case of the Adamello pluton,
extracting kinematic information from deformed enclaves brings the
need to define the causes of pure shear. As no significant subsolidus de-
formation due to tectonics is expected to have occurred (Fiedrich et al.,
2017), magmatic foliation, crystal bending, and relatively low amounts
of trapped liquid point to late (near-solidus) crystal-melt separation
that could have accompanied enclave deformation. This separation
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could have led to a loss of at most 27% of melt (Fiedrich et al., 2017).
Translated into a maximum amount of pure shear, ε, this loss corre-
sponds to ε = 0.27 × ϕ, where ϕ is the pre-compacted crystal content.
Melt extraction being assumed to be most efficient at 0.5 b ϕ b 0.7
(Dufek and Bachmann, 2010), the corresponding enclave flattening ac-
cording to Eq. (11) is atmost 1.5–1.8, which is far less than the N2 ratios
commonly measured on the field (John and Blundy, 1993).

Alternatively (or concurrently), the deformation could be due to the
incremental construction of the pluton by repeated injections (John and
Blundy, 1993; Caricchi et al., 2012). The relationship between the intru-
sion of new material inside a pre-existing magma body and the defor-
mation of the surrounding material is a long-standing issue (Pfiffner
and Ramsay, 1982; Paterson and Fowler, 1993). The earliest attempts
at quantifying deformation were based on sub-spherical plutons grow-
ing by “ballooning” (i.e. radial expansion, Johnson et al., 2001), although
more recently field evidence suggests a combination of processes
(Paterson and Vernon, 1995). Caricchi et al. (2012) modeled the ther-
mal history of the Adamello pluton construction by assuming that the
plutonwas built by successive injections of magma pulses at a common
feeding point. Each injection produces a lateral expansion of the already
emplacedmagma, deforming it. Each newmagmapulse enters themain
reservoir with a suspended cargo of roughly spherical, thermally equil-
ibrated enclaves. Recent thermal modeling (Alves et al., 2015) shows
that this assumption is justified; 60-cm enclaves cool in typically
b2 months while only a couple of weeks is needed for 30-cm enclaves.
Such durations are far shorter than that of repeated injections. The ra-
dial expansion caused by the repeated injections produce the foliation
patterns and the deformation of the enclaves observed in the field.

Caricchi et al. (2012) assumed series of cylindrical injections of iden-
tical sizes. In the Supplementary Text 1, we extend this geometry by
considering also ballooning (Ramsay, 1989; Johnson et al., 2001) and
dykes (Annen et al., 2008). As with melt extraction, we combined
these injection styles with Eq. (11) to determine enclave flattening by
pure (or planar) shear as a function of the distance from the injection
point. Fig. 10 shows enclave deformation as functions of injection
shape and enclave initial position, alongside Adamello data from John
and Blundy (1993). This simple model suggests that enclave
Fig. 10. Enclave shape (X/Y) vs. distance from the injection point as functions of initial
enclave position and injection shape. Triangles are the data of John and Blundy (1993)
selected by Caricchi et al. (2012) because they represent oblate ellipsoidal enclaves at
Adamello. These oblate enclaves are the result of a first deformation in a stress field
dominated by constriction followed by a predominantly radial flattening due to
successive injections. See Supplementary Fig. S3 for an illustration of the injection
geometries (cylinder, sphere, and dyke).
deformation depend on its initial position before deformation, regard-
less of intrusion shape.

4. Discussion

Instead of carrying out a systematic parametric study, we only con-
sidered cases where host and enclave characteristics (crystal content,
melt densities and viscosities) follow natural trends expected when
mafic material intrudes a more silicic host. This approach takes advan-
tage of the fact that chemical and phase changes buffer the trends of
these physical characteristics, thereby reducing the number of degrees
of freedom (e.g., Scaillet et al., 2000; Montagna et al., 2017). As a result,
the enclave material had systematically a higher particle volume frac-
tion and a lower melt viscosity than the host. Melt and bulk densities
varied from run to run, but are not expected to play a role in deforma-
tion dynamics because gravity was perpendicular to the axes of main
deformation. Our approach thus leaves many host–enclave combina-
tions aside (e.g., crystal-poor, viscous enclave in a crystal-rich, low-
viscosity host), which are interesting from a theoretical standpoint al-
beit less common in nature. Another limitation is that our simulations
are aimed at exploring enclave deformation in planar strain and pure
shear, which is one end-member of deformation. Another important
end-member is simple shear, which creates a different deformation dy-
namics involving the rotation of the deformed enclave (e.g., Arbaret
et al., 2001; Schmid and Podladchikov, 2004). Simple shear will be the
subject of a further study.

The most surprising result is that deformation does not depend, to
first order, on differences in melt viscosities, crystal contents, or bulk
viscosity contrast. This is a strong departure from the behavior of pure
fluids, which suggests that the coaxial deformation of rocks changes
fundamentally when shifting from subsolidus conditions to the pres-
ence of a quantity of melt sufficient to create a non-cohesive magmatic
suspension. In magmatic conditions, the semi-empirical Eq. (11) cap-
tures enclave deformation and is calibrated by our runs up to a flatten-
ing ratio of ~10. Fig. 10 extrapolates this relationship up to a ratio of ~60
by considering that enclave deformation is mainly controlled by the for-
mation of force chains parallel to the main compression direction (see
below) and that these chains are built continuously along the whole
width of the flattening enclave as deformation proceeds. However, ex-
cept for one outlier at X/Y = 19, natural data at Adamello pluton have
X/Y ratios mostly within our calibration values, which justifies our ap-
proach. We stress that enclave deformation is an inherently 3D process
and that enclave flattening to ratios N50 is uncommon (e.g., Vernon
et al., 1988; Didier and Barbarin, 1991).

One implication of our results is that the link between enclave defor-
mation and strain conditions is more direct than previously assumed.
We illustrated how this finding impacts our capability to use enclave
shape as markers of the emplacement dynamics by revisiting the case
of the Adamello pluton. Caricchi et al. (2012) used a thermo-
mechanical model to link magmatic strain to deformation by taking
into account the rheological differences between mafic enclaves and
their host granitic magma as a function of temperature. This depen-
dence to temperature means that they were able to constrain the em-
placement time of the Adamello pluton by comparing enclave
deformation data to thermally-controlled strain trajectories as a func-
tion of time and distance from the magma injection point. Our results
suggest that enclave deformation can instead be linked to strain condi-
tions regardless of rheological difference, which excludes this elegant
possibility to link enclave deformation to the thermal evolution of the
pluton and its growth rate.

Our first-order deformation relationship applied to melt extraction
from a mush, which probably caused the magmatic foliation observed
at Adamello (Fiedrich et al., 2017), suggests that extraction did not
cause sufficient pure shear to explain the observed enclave deformation.
When our deformation relationship is instead linked to multiple injec-
tions in a pre-existing host, enclave flattening depends on the initial
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position of the non-deformedenclavewith respect to the injection point
rather than on the geometry of the injection setup. Fig. 10 suggests that
the Adamello enclaves started deforming when they were between 0.5
and 2 km from the central injection point. This result hinges on the as-
sumption of injections of identical volumes. Changes in injection vol-
umes and/or rates (Paterson et al., 2011; Schöpa and Annen, 2013)
greatly affect pure shear histories (Ramsay, 1989), significantly chang-
ing the deformation paths of Fig. 10. We also expect that this direct
link between injection and deformationwill bemodulated by other fac-
tors (e.g., Paterson and Vernon, 1995) when considering the interpreta-
tion of natural systems. We thus view Fig. 10 as an illustrative
application of our semi-empirical deformation relationship rather than
a geologically meaningful quantification.

An additional limiting factor to relating injection and deformation
like in Fig. 10 is that there is more than one occasion for enclaves to
be strained. Enclaves form by disaggregation of the injected material
in an environment that is not shear free. Such non-coaxial deformation
during enclave formation is thus likely to precede that due to the effect
of the next injection illustrated in Fig. 10. Another factor is that our sim-
ulations involve polydisperse spheres, but crystals are anisometric,
which enhances shear localization (Picard et al., 2013) and creates crys-
tal orientation domains (Ildefonse et al., 1992; Picard et al., 2011) and
mineral foliation (Arbaret et al., 1996). Our particles are not cohesive
but crystals may adhere to each other by synneusis at lowmelt fraction
(Philpotts and Dickson, 2000; Paterson et al., 2019).

All our runs deformed in a similar fashion, but our results also high-
light a second-order dependence of deformation on the onset of parti-
cles contacts and force chains, which are both related to particle
concentration. Host crystal contents are more important than those of
enclaves because enclave particles pack early, quickly erasing differ-
ences in initial crystal contents and transmitting solid stresses to the
host. Whether the host is able to transmit those stresses across its
own volume is controlled by host crystal content. Enclave deformation
is thus partly controlled by the coupling of the solid phases instead of
by that of the melt phases. Quantifying the stress partition between
force chains, melt viscous deformation, and melt–particle entrainment
will be within the scope of a future study, because it would clarify
1) which phase interactions (melt–melt, particle–melt, or particle–
particle) exert these second-order controls of deformation, and 2) the
apparent lack of effect of domain geometry at large deformation,
when the extreme edges of the deformed ellipse go from the central
part of the domain into the lateral arms of the cross.

A seeminglymoreminor phenomenon occurs along the axis ofmax-
imum elongation. When enclaves are stretched, they sweep host parti-
cles in their way, flanking the enclaves with two bulges featuring a
dense network of force chains that opposes deformation. Unlike the
case of two pure fluids deformed at low Reynolds number, these bulges
make the deformation an irreversible process, which is a hallmark of
particulate suspensions (Souzy et al., 2016). Viscous numbers (Ivg in
Bergantz et al., 2017), are 105–1010 in the enclaves and 103–105 in the
hosts. Owing to the large melt viscosity of magmas, these values are
much higher than the ones usually reached in CFD-DEM studies
(Boyer et al., 2011; Ness and Sun, 2015; Chèvremont et al., 2019).
They characterize a regime where, if present, contact forces dissipate
most of the power compared to viscous drag and melt viscosity
(Trulsson et al., 2012), which is consistent with our results showing
that the emergence of force chains takes precedence overmelt viscosity
contrast.

5. Conclusions

This work presents results from computational fluid dynamics with
discrete element modeling aimed at deforming crystal-rich enclaves in
pure shear. The first series of deformation involved only pure fluids to
validate the setup and several pre-existing deformation relationships.
The second series comprised seven runs aimed at reproducing
magmatic conditions. Enclaves were made of a cylindrical suspension
of particles embedded into a host with different characteristics. In
bothmedia, particles and fluids had densities, viscosities, elastic charac-
teristics, and sizes tailored to the in-situ crystallization paths ofmagmas
having the respective bulk chemical compositions of host and enclaves
found in the Adamello pluton, Italy. Each run corresponds to a temper-
ature along the two respective crystallization paths and span crystal
contents from 10 to 62 vol% .

The most surprising result is that, to first order, deformation does
not depend on differences in melt viscosities, crystal contents, or bulk
viscosity contrast. This is due to the formation of force chains parallel
to the main compression direction, which transmits stress across the
enclave, bypassing the fluid interfaces. A simple, first-order relationship
could be fitted to our data to relate shear and enclave deformation. We
applied this relationship to the case of multiple injections in a pre-
existing host, following the setup proposed by Caricchi et al. (2012) to
explain the Adamello pluton construction. This setup assumes that en-
claves are thermally equilibratedwith the host and that they deformbe-
cause the surrounding host is stretched by the expansion caused by the
arrival of newmaterial in themain feeding region of the magmatic sys-
tem. Our results illustrate that enclave deformation depends on the ini-
tial position of the non-deformed enclave with respect to the injection
point rather than on injection geometry. This interpretation ignores all
other sources of enclave deformation.

All our runs deformed in a similar fashion, but our results also high-
light a second-order dependence of deformation on the onset of parti-
cles contacts and force chains, which are both related to particle
concentration. The main control of these second-order effects lies in
the host crystal content. Enclave particles pack early, quickly erasing dif-
ferences in initial content and building force chains parallel to the com-
pression axis that transmit stresses to the host. Whether the host is able
to transmit those stresses across its own volume is controlled by host
crystal content.
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