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This work postulates that highly polydisperse materials have an effective size distribution that controls per-
meability. Existence of such effective distribution implies that not all clasts participate to the permeable net-
work resisting to gas flow and that clasts smaller than the minimal effective size are elutriated. When this
concept is coupled to a generalized Blake–Kozeny equation, the resulting semi-empirical law links perme-
ability to material properties only (bed void fraction, clast sizes and densities). After calibration of an exper-
imental constant, it is able to replicate within ±0.6 log unit experimentally measured permeabilities of both
loosely packed and expanded beds made of highly polydisperse (from 1 μm to 4 mm) pyroclastic deposits
that were resampled so as to ensure homogeneous fluidization. The presence of an experimentally calibrated
constant and the necessary absence of segregation during fluidization limit the extrapolation of the proposed
law to any pyroclastic bed. Satisfactory fitting of the experimental values, however, confirms that the perme-
ability of homogeneously fluidized beds is controlled by a balance between settling and elutriation. This bal-
ance suggests a first-order link between permeability and bed expansion, which has implications on the
kinetics of dense pyroclastic flows.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pyroclastic material is commonly highly polydisperse, with clasts
ranging from a few meters down to a few microns or less. When trav-
eling down the slopes of a volcano as dense pyroclastic density cur-
rents, such mixtures of clasts have a complex behavior that is partly
inherited from the interactions with the hot interstitial volcanic gas
and the entrained gas and partly due to their polydisperse nature.
One approach of these complexities concentrates on the link between
the microscopic, discrete nature of the clasts and the mesoscopic
properties that arise when a subset of clasts within the main flow pre-
sents a coherent and representative dynamic behavior. Bed perme-
ability, which characterizes the resistance encountered by the gas
when it flows through a subset of clasts, is such a mesoscopic proper-
ty. Permeability is a fertile concept because its quantification brought
the idea that, like water-supported debris flows, pyroclastic flows
may retain gas within the mixture, thus building excess gas pore
pressure (Iverson and Vallance, 2001). Permeability enables one to
calculate pore pressure diffusion, which in turn can quantify how
long a bed remains in a fluidized state if no external gas is supplied
(e.g., Roche et al., 2008; Roche, 2012). Under high pore pressure,
pyroclasts are in a fluidized state because gas–grain interactions

dominate over grain–grain interactions (e.g., Iverson, 1997; Iverson
and Denlinger, 2001; Druitt et al., 2007). Importantly, the resulting
low friction is a potential explanation of the long runout distance of
pyroclastic flows (Iverson and Vallance, 2001; Girolami et al., 2008;
Roche et al., 2008).

An accurate method to measure permeability of pyroclastic mate-
rial is fluidization and bed settling (or collapse) experiments (see
Wilson, 1984; Druitt, 1995 for a full description of fluidization and
settling behaviors). Fluidization and settling experiments are most
often conducted by placing the sample material in rigs, which are
generally hollow cylinders open at the top and capped at the base
by a permeable plate through which gas is fed in order to maintain
fluidization. Bed settling starts when the gas source is cut. Depending
on the capacity of the bed to retain gas (i.e., bed permeability), com-
plete settling can occur before all excess gas pore pressure vanish.
Such experiments clearly indicate that the degree of polydispersity
influences permeability (Wilson, 1980, 1984; Druitt, 1995; Gravina
et al., 2004; Druitt et al., 2007). An additional complexity is that nat-
ural pyroclastic material efficiently segregates clasts, whether by size
or density (Wilson, 1984). Mesoscopic properties such as porosity,
clast size distribution, and permeability cease to be uniformly distrib-
uted within the fluidized bed as segregation proceeds (Di Felice,
1995). Fortunately, segregation can be avoided in experiments if sam-
ples are naturally well-sorted enough (Wilson, 1984) or pre-fluidized
(Druitt et al., 2004, 2007; Girolami et al., 2008). The latter method
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involves a first fluidization of the natural bulk samples, which gener-
ates two segregated layers. Resampling of the homogeneous upper
layer yields a pyroclastic material that can be fluidized without parti-
cle segregation. Such pre-fluidization allows samples to be homoge-
neously fluidized without bubbling or channelization from the
loosely packed state up to 40 vol.% expansion (Druitt et al., 2007).

Another research avenue is the establishment of semi-empirical
physical laws that link the dynamically measured permeability to
other bed properties that can be measured independently. An impor-
tant aspect of semi-empirical laws is that they shed partial light on
the physics behind fluidization. The widely used Blake–Kozeny law
of permeability (e.g., Bird et al., 2002) is such a relationship, albeit
limited to monodisperse particle beds. It shows that the bed perme-
ability to gas, kc, is a function of particle size, Dc, and of the hydrody-
namic porosity of the bed, α (i.e. the bed porosity without the inner
porosity of the particles):

kc ¼
α3D2

c

A 1−αð Þ2 : ð1Þ

The semi-empirical nature of Eq. (1) stems from the fact that the
constant A is experimentally determined and thus lumps together
the combined effects of the tortuosity, interconnectedness, and irreg-
ular cross-sections of the gas pathways (MacDonald et al., 1991). The
works of Carman (1937) and Wyllie and Rose (1950) have shown
that A is partly a function of the gas pathways tortuosity, which
could then be introduced in Eq. (1) as an independent parameter.
This is a good example on how further research on such laws leads
to the identification and quantification of key physical characteristics
of the permeable bed.

Most semi-empirical permeability laws for polydisperse beds
ignore segregation and focus on homogeneously fluidized beds
(e.g., MacDonald et al., 1991; Hamilton, 1997; Gmachowski, 1998;
Karacan and Halleck, 2003; Yu and Liu, 2004; Wu and Yu, 2007; Yin
and Sundaresan, 2009; Cello et al., 2010). To date, however, these
laws have not given satisfactory results when applied to natural pyro-
clastic material, mostly because of its highly polydisperse nature

(Wilson, 1984; this work). Here, I build on the generalized Blake–
Kozeny law of permeability proposed by MacDonald et al. (1991) to
propose a law suitable for highly polydisperse pyroclastic material.
It is based on the hypothesis that the size distribution can be divided
into one part that forms the permeable network and another that is
being elutriated out of the bed by the gas flow. After calibration of
an experimental constant, this law is used to link bed properties
(bed void fraction, clast sizes and densities) to permeability measure-
ments on homogeneously fluidized pyroclastic beds. Satisfactory
fitting of the experimental values confirms the hypothesis that the
permeable framework of highly polydisperse material is controlled
by the balance between settling and elutriation. As a result, it is pos-
sible to propose a first-order equation linking bed permeability and
bed expansion.

2. Theoretical model of permeability

The size distribution of pyroclastic material is commonly mea-
sured by sieving the material and weighing each class size, thus
obtaining a size distribution per unit weight, w(Dj), where Dj is parti-
cle size and j is the class indices that runs from the smallest class,
0, to the coarsest class, m. Short forms w(D) and D will be used
when all clasts sizes are concerned. Permeability is mostly sensitive
to the surface area of each clasts size, which is best represented
when distributions are expressed as number of clasts per unit weight,
nw(D), or number of clasts per unit volume, n(D). Conversion be-
tween these various forms is carried out by assuming spherical clasts
(e.g., Hamilton, 1997):

n Dð Þ ¼ ρB nw Dð Þ ¼ 6ρB

πρp Dð ÞD3 w Dð Þ ð2Þ

where ρB is the bed bulk density and ρp(D) is the density of clasts of
size D. Bed bulk density can be related to the average particle density,
ρavg, by ρB≅(1−α)ρavg, where ρavg ¼ ∑

j
w Dj

� �
ρp Dj

� �
.

Bed collapse experiments start from a bed of particles contained in
a fluidization rig and expanded by an upward flow of gas (Fig. 1A).

A B

C

Fig. 1. A. Schematic representation of a settling polydisperse bed. Clasts can be divided in three categories with respect to settling dynamics, which define the effective part of the
size distribution that controls bed permeability. Small clasts (black) have settling velocities smaller than gas flow (UTbUE) and are elutriated. Outsized clasts have sizes, Dm, com-
parable to that of the settling rig, T, and do not influence bed permeability. Intermediate clasts having settling velocities larger than gas flow (UT>UE) form the permeable frame-
work. On the right are two representations of sieve data from the five fluidized pyroclastic samples analyzed by Druitt et al. (2007). B. Normalized number of clasts per size bin.
C. Normalized weight percent per size bin. Permeability is most sensitive to the shape of the distribution in B.
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The collapse is caused by the sudden stop of the gas source and the
subsequent evacuation of gas from the expanded bed until all excess
gas has left the bed. Owing to the setup geometry, bed motion can be
considered as one-dimensional. If the bed is composed of a polydis-
perse material, its permeability, k, can be expressed as a generalized
Blake–Kozeny equation (MacDonald et al., 1991):

k ¼ α3

A 1−αð Þ2
M2

M1

� �2
ð3Þ

whereMi is the i-th moment of the particle size distribution as a func-
tion of particle number per unit volume (MacDonald et al., 1991):

Mi ¼ ∫
∞

0

Din Dð ÞdD: ð4Þ

Here, moments represent statistical characteristics of the size distri-
bution by particle number:M1 is themedian andM2 is the sorting of the
distribution. Eq. (3) has been shown to hold for ternary sand mixtures
and permeabilities between 10−7 and 10−11 m2 (MacDonald et al.,
1991). Typical pyroclastic material, however, contains clasts with size
frommeters down tomicron. There is thus a need to extend the validity
of Eq. (3) to highly polydisperse material.

Not all clasts participate to the network that hinders gas flow. It is
easy to conceive that micron-sized clasts might be entrained by the
upward gas flow through much larger particles, whereas large, isolat-
ed boulders act as outliers floating in a much finer matrix (Fig. 1A).
Thus, there might be upper and lower bounds to the effective size dis-
tribution that controls how permeable the bed is. When pyroclastic
size distributions are expressed as a function of particle numbers,
the fines systematically dominate distributions (Fig. 1B–C, Kaminski
and Jaupart, 1998), thereby strongly influencing the value of the mo-
ments. It thus would not be surprising if the permeabilities of pyro-
clastic material calculated using Eq. (3) are at least sensitive to the
value of the lower bound of the effective distribution. Below I quanti-
fy such bounds in order to constrain the effective size distribution
upon which moments should be calculated.

2.1. The upper bound of the effective size distribution

During collapse experiments, beds are contained in a fluidization
rig. Isolated large clasts affect bed permeability by adding friction be-
cause of their surface area and by increasing the gas volume flux per
unit area because they take a large fraction of the volume. Focusing on
the former process, the upper bound of the effective size distribution
controlling permeability can be thought as when there are so few
large particles that the friction they cause to the escaping gas is com-
parable to that of the rig wall. To examine the contribution of these
few particles to the overall permeability, I consider the permeability
of the bed as if it contained only those coarse clasts of size Dc at the
concentration, n(Dc), of the overall polydisperse distribution. In
other words, the permeability, kc, is that of a bed from which all par-
ticles have been removed but the ones of size Dc. The permeability of
the resulting monodisperse bed can be described by Eq. (1), which
can be written as (Bird et al., 2002, pp. 188–192):

kc ¼
36αR2

h

A
ð5Þ

where Rh is the hydraulic radius (ratio of volume available for flow
over the total wetted surface) given by (Bird et al., 2002):

Rh ¼ αDc

6 1−αð Þ : ð6Þ

This relationship has been shown to work with porosities up to 0.9
(Knackstedt and Zhang, 1994). At higher porosities, however, perme-
ability becomes infinite as α becomes unity. This is because the hy-
draulic radius in Eq. (6) is only a function of the particles forming
the bed. I thus modify Eq. (6) to incorporate wall effects while taking
only into account the presence of particles of size Dc among the whole
size distribution.

Considering a cylindrical container of diameter T and volume Vc,
the volume available for flow is αVc and the total wetted surface is
the cumulated areas of all size Dc clasts, n(Dc)Vcπ Dc

2, plus the area
of the container walls, 4Vc/T. The hydraulic radius becomes:

Rh ¼ α
n Dcð ÞπD2

c þ 4=T
: ð7Þ

This formulation expresses the hydraulic radius of a monodisperse
bed of particles of size Dc and porosity α that is contained in a cylinder
of diameter T. It is easy to verify that Eq. (7) equals Eq. (6) if the bed is
monodisperse because then n(Dc)(π/6)Dc

3=1−α and wall effects are
negligible (T=∞). If, on the other hand, no particles are present, Rh=
T/4 because then α=1 and n(Dc)=0.

The denominator of Eq. (7) suggests that wall friction becomes as
important as particle friction when n(Dc)πDc

2=4/T. Using this equal-
ity and transforming size distribution by particle number per unit vol-
ume, n(Dc), into size distribution by weight fraction, w(Dc), using
Eq. (2) yields the minimum weight fraction of particles of a given
size that affects the permeability of a polydisperse bed by friction:

w Dcð Þ ¼ 2ρp Dcð ÞDc

3ρBT
≅

2ρp Dcð ÞDc

3 1−αð ÞρavgT
: ð8Þ

Owing to the linear dependence on particle size, one can expect
this minimum amount of particles to be maximal at the coarse tail
of the size distribution. This is consistent with w(Dc) defining the
upper bound of the effective size distribution. Eq. (8) can thus be
used to test whether the coarse tail of a pyroclastic size distribution
can be truncated so as to ignore sizes that are present in quantities in-
ferior to w(Dc).

2.2. The lower bound of the effective size distribution

Permeability is generally measured by injecting gas through the
bed at a rate just below bed fluidization and expansion. The pressure
gradient created by the upward gas flow is thus exactly balancing that
of the bed at maximum loose packing. Under such conditions and
neglecting the gas contribution to bed weight, the gas pressure gradi-
ent is a simple function of the particle average density, ρavg, and the
bed porosity at maximum packing. The velocity, UE, at which gas es-
capes from the bed (a.k.a. gas volume flux per unit area, or interstitial
gas velocity) can thus be found by applying Darcy's law:

UE ¼ k 1−αð Þρavgg
μα

ð9Þ

where μ is gas viscosity and g is the gravity acceleration.
A very small particle of size De trapped in a coarse bed will be elu-

triated if the gas velocity is greater than its terminal fall velocity UT

(Fig. 1A). Wilson and Huang (1979) studied the terminal fall velocity
of volcanic ash particles in air and proposed a relationship valid over a
wide range of particle sizes and shapes. Assuming laminar gas flow
around the particles, their relationship can be simplified to:

UT ¼ ρeD
2
e gF

0:828

18μ
ð10Þ
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where ρe is particle density, De is particle size, and F is a measure of
the non-sphericity of the clasts. The factor F is equal to (x2+x3)/
2x1, where x1, x2, and x3 are the longest, middle, and shortest axes
of the clast, respectively. The simplification induces an error ≤1% on
UT for clasts ≤125 μm, which will be shown to be accurate enough
for permeability calculations.

In order to find the lower bound of the effective size distribution, I
postulate that there is a particle size, De, of density ρp(De)=ρe below
which elutriation takes place while coarser particles form the net-
work of the permeable bed. This occurs when UE=UT, which sim-
plifies to:

ρeD
2
e F

0:828

18
¼ ρavgk 1−αð Þ

α
: ð11Þ

Expressing the permeability with Eq. (1) and rearranging gives:

De
M1

M2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18ρavg

AF0:828ρe

s
αffiffiffiffiffiffiffiffiffiffiffi
1−α

p : ð12Þ

The Mi are the moments of the effective particle size distribution
from the coarser end to the size just above De. Two ways to solve
Eq. (12) are presented below.

Themost direct but somewhat cumbersomemethod is to calculate
the moments directly from the sieved size distribution. Traditionally,

sieve data are acquired by weighing sample fraction every ϕ unit,
where particle size is equal to 2−Φ mm (0 ϕ=1 mm, −1 ϕ=
2 mm, etc.). The class size is thus halving at each ϕ increment.
The distribution n(D) from which moments are calculated, however,
is defined in number of particle by linear class size in meters. So,
once weight fractions are converted to numbers of particles, the mo-
ments have to be calculated incrementally by, for example, a middle
Riemann sum:

Mi ¼ B
Xm
j¼eþ1

Diþ1
j n Dj

� �
ð13Þ

where e+1 is the class size just above De, and B is a constant equal to
(21/p−2−1/p)/2 with p being the sieve interval. The constant B is thus
3/4 if the sieve interval is 1 ϕ (p=1) and 1=

ffiffiffi
8

p
if the interval is 1/2 ϕ

(p=2). The elutriation size De is obtained by finding numerically the
root of Eq. (12). The bed permeability at a given porosity can then be
calculated using M1, M2, and Eq. (3). To simplify calculations, the
number of particle per unit weight in Eq. (2) can also be used, as
bed bulk density cancels out when calculating the ratio M2/M1.

Formally, perfect match between both sides of Eq. (12) is not pos-
sible because the moments expressed by Eq. (13) are discrete values
whereas the value of De is only limited by machine precision. In other
words, De is considered as a continuous value in Eq. (12) and is
allowed to take values between bin increments, whereas n(De+1)
will be rounded to the nearest bin in Eq. (13). A workaround is to
refine the values of n(D) to a smaller interval by setting p=10 and

Table 1
Size distribution parameters from pyroclastic beds and permeability determinations.

Samplea β ρavg/ρea Porositya

(%)
Expansiona

(%)
k measureda

(m2)
k discrete
(m2)

k continuous
(m2)

De

(ϕ)

NES250 2.39 0.995 52 0 3.63·10−12 4.19·10−12 3.52·10−12 6.4
0.995 52 0 5.60·10−12 4.13·10−12 3.44·10−12 6.4
0.995 53 0 6.79·10−12 4.64·10−12 4.14·10−12 6.3
0.995 54 0 1.64·10−11 5.86·10−12 4.62·10−12 6.2
0.995 63 21 1.05·10−11 4.02·10−11 2.06·10−11 5.1
0.995 63 21 1.58·10−11 3.66·10−11 1.97·10−11 5.1
0.995 66 24 2.37·10−11 6.00·10−11 3.07·10−11 4.9
0.995 68 26 6.76·10−11 8.70·10−11 4.21·10−11 4.6

DOR250 2.18 0.981 46 0 3.30·10−12 5.10·10−12 1.33·10−12 6.1
0.981 47 0 4.75·10−12 5.80·10−12 1.52·10−12 6.0
0.981 47 0 6.26·10−12 6.23·10−12 1.70·10−12 6.0
0.981 49 0 1.37·10−11 7.76·10−12 2.24·10−12 5.8
0.981 58 26 9.10·10−12 2.65·10−11 9.17·10−12 5.2
0.981 61 31 1.73 10−11 4.40·10−11 1.58·10−11 5.0
0.981 63 33 2.54·10−11 5.44·10−11 2.00·10−11 4.8
0.981 65 32 5.97·10−11 7.48·10−11 2.69·10−11 4.7

PDD250 2.23 0.989 52 0 9.10·10−12 6.16·10−12 3.29·10−12 6.1
0.989 52 0 1.13·10−11 6.45·10−12 3.54·10−12 6.1
0.989 58 0 1.62·10−11 1.56·10−11 9.61·10−12 5.6
0.989 60 0 2.72·10−11 2.14·10−11 1.25·10−11 5.4
0.989 56 9 1.38·10−11 1.27·10−11 7.01·10−12 5.7
0.989 59 13 2.13·10−11 1.93·10−11 1.07·10−11 5.5
0.989 69 19 5.64·10−11 1.26·10−10 5.86·10−11 4.4
1.041 72 20 1.15·10−10 2.57·10−10 9.21·10−11 4.0

NES4000 2.79 0.942 42 0 3.76·10−12 2.07·10−12 1.80·10−10 6.6
0.942 41 0 4.75·10−12 2.09·10−12 1.59·10−10 6.6
0.942 43 0 6.73·10−12 3.00·10−12 2.12·10−10 6.4
0.961 58 38 9.40·10−11 1.41·10−10 2.35·10−9 4.0
0.961 60 46 2.33·10−10 2.34·10−10 3.34·10−9 3.7
1.132 62 45 4.30·10−10 9.55·10−10 4.71·10−9 2.7

DOR4000 2.59 0.879 39 0 6.40·10−12 6.91·10−12 1.03·10−10 5.7
0.879 38 0 5.41·10−12 6.33·10−12 8.98·10−11 5.7
0.879 39 0 1.15·10−11 7.51·10−12 1.08·10−10 5.7
0.879 40 0 1.28·10−11 8.59·10−12 1.21·10−10 5.6
0.879 49 26 4.06·10−11 3.78·10−11 5.83·10−10 4.8
0.879 49 28 3.63·10−11 3.17·10−11 5.48·10−10 4.9
0.879 51 29 9.25·10−11 4.68·10−11 7.27·10−10 4.7
0.879 52 31 1.23·10−10 5.85·10−11 9.11·10−10 4.6

a Values from Druitt et al. (2007). See text for details.
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perform a linear interpolation of n(Dj) between the actual sieved in-
tervals. This is the solution proposed in the Electronic Supplementary
Material under the form of an MS Excel spreadsheet.

Another way to solve Eq. (12) is to fit a continuous expression of
the form n(D)=δD−β to the size distribution, where δ is a fitting con-
stant and β is the fractal dimension of the distribution (e.g., Kaminski
and Jaupart, 1998). If β≠2 and β≠3, moments of the continuous dis-
tribution can readily be integrated using Eq. (4) from the smallest size
of the effective distribution, De+1, which is the size above De, to the
coarsest size, Dm. Maintaining the order of terms in both sides of the
equation, Eq. (12) becomes:

De
3−β
2−β

� �
D2−β
m −D2−β

eþ1

D3−β
m −D3−β

eþ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18ρavg

AF0:828ρe

s
αffiffiffiffiffiffiffiffiffiffiffi
1−α

p : ð14Þ

Eq. (14) has to be solved numerically, but a special case of interest
can be solved for analytically. It requires that β=2.5, ρavg=ρe, and
De+1=De:

De ¼
18α2Dm

AF0:828 1−αð Þ : ð15Þ

Permeability can then easily be calculated using Eqs. (3) and (15):

k ¼ 18α5D2
m

A2F0:828 1−αð Þ3 : ð16Þ

3. Experimental permeability data from the literature

Druitt et al. (2007) have measured the permeability of pyroclastic
beds at various stages of expansion above maximum packing and at
different temperatures. The beds were formed of natural pyroclastic
material sieved as to eliminate the coarser part, either from 4 mm
(−2 ϕ) up, or from 250 μm (2 ϕ) up, respectively. The resulting
grain sizes were analyzed down to 1 μm (10 ϕ). Beds were formed
of 2.5 kg of material enclosed in a 14-cm-wide fluidization rig fed
by nitrogen between 50 and 500 °C. They measured the bulk density
of the loosely packed bed, from which I recalculated bed porosity
(Table 1). Expanded bed experiments were treated the same way as
maximum packing ones, except that bed porosity is that of the ex-
panded bed. Permeabilities of loosely packed beds reported in
Table 1 were taken from their Fig. 9, and the largest source of error
is the measure of fluidization velocities. Errors linked to permeabil-
ities of loosely packed beds are thus considered to be of the same
magnitude as the errors on fluidization velocities (±0.08 log unit,
or ~20%). Permeabilities of expanded beds reported in Table 1 were
calculated using their Eq. (10) with the exponent n=4 (Table 1). Er-
rors linked to expanded beds were quantified by taking the two

extreme values for the exponent n (2 and 6 for b2 ϕ samples, and 7
and 12 for b−2 ϕ samples, Druitt et al., 2007).

The shape factor, F, of individual clasts is not reported by Druitt et
al. (2007), but a range of likely values can be calculated from Wilson
and Huang (1979) data. The 26 smallest ash particles from their
Table 1 yield a median F value of 0.4 with a minimum of 0.27 and a
maximum of 0.57. These ash particles have median axes ≤3ϕ,
which will be shown a posteriori to be an appropriate size for the
lower bound of the effective size distribution, De. Such a departure
from spherical shape (F=1) is due to the fact that fine clasts are
generally broken bubble walls, glass shards, and crystals of angular
shape. Since the proportions of these types of elements vary between
bin sizes and between deposits, the full range of F values will be
considered.

4. Results

The semi-empirical nature of the method proposed herein stems
from the fact that the experimental constant A need to be determined
before solving for permeability. The constant A partly characterizes
the irregularity of the clasts belonging to the effective distribution
and partly depends on the particle spatial organization (Knackstedt
and Zhang, 1994). Many values have been suggested for this constant,
ranging from the theoretical value of 44.4 for spheres to experimen-
tally fitted values of 150 or 180 (MacDonald et al., 1991) and to

Fig. 3. Measured vs. calculated permeabilities, k, of pyroclastic beds. Fine beds contain
clasts b2 ϕ and coarse beds contain clasts b−2 ϕ. Calculated permeabilities are termed
discrete because sieve data are directly used to determine permeability. Size distribu-
tion binning is every 0.1 ϕ, a resampling from the original data. Vertical error bars on
calculated permeabilities were obtained by combining the minimum, median, and
maximum values of F and A (0.27; 0.4; 0.57 and 203; 242; 289, respectively). Errors
inferior to symbol size are not shown. Measured permeabilities are from data in Druitt
et al. (2007): expanded bed permeabilities were obtained from data regression, gener-
ating the vertical error bars, and packed bed permeabilities were obtained from direct
measurements, generating errors inferior to symbol size (see text).

Fig. 4. Lower bound of the effective size distribution, De, as a function of bed expansion.
Fine beds contain clasts b2 ϕ and coarse beds contain clasts b−2 ϕ.

Fig. 2. Spread of values for the permeability coefficient A as a function of three values of
the clast shape factor F. Population size is 38 (see Table 1).
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even larger values for fractal media (Xu and Yu, 2008). I use the data
of Druitt et al. (2007) to constrain the likely range of A by considering
that bed permeability is known (Table 1). Calculation of A can be car-
ried out by fixing F, solving Eq. (11) for De, calculating the moments
using Eq. (13), and solving for A using Eq. (3).

Fig. 2 shows values of A given by the 38 permeabilities reported in
Table 1 for three representative values of F (minimum, median, and
maximum). Values of A display positively skewed normal distribu-
tions lying between 130 and 526, a span that includes but extends
to much larger values than the commonly assumed 150 for monodis-
perse beds (e.g., Roche, 2012). The factor F is a weak control of A, and
the range of values within one standard deviation is restricted be-
tween 203 and 289 with a median value of 242. This suggests that a
single value of A might represent bed permeability to an acceptable
degree of accuracy.

Using the same data of Druitt et al. (2007), I applied the general-
ized Blake–Kozeny Eq. (1) on the effective size distribution with sin-
gle values for F and A (0.4 and 242, respectively) and compared the
theoretical result to their measured permeabilities (Fig. 3). Uncer-
tainties on calculated permeabilities were obtained by combining
the minimum, median, and maximum values of F and A, respectively.
The best results were obtained by calculating the moments from the
sieved size distribution that were interpolated to a finer (0.1 ϕ or
p=10) interval and without constraining the upper bound of the
size distribution (see the implemented resolution in Supplementary
Material). As a result, the lower bound of the effective distribution
satisfies Eq. (12) using the discrete class sizes from sieve data in
Eq. (13). Theoretical values lay less than ±0.6 log unit (a factor of

3.8) from their experimental counterparts, offering a good match
over 3 orders of magnitude. The concept of effective size distribution
coupled with fixed values for F and A thus adequately links bed char-
acteristics and permeability. A similar conclusion is reached if the
permeabilities of Table 1 are randomly split into a subset from
which an A value is obtained, and another subset against which pre-
dicted values are compared to. This suggests that the 38 measures
of Table 1 constitute a sufficient sample size to determine A.

The lower bound of the effective distribution of the loosely packed
beds lay between 5 and 7 ϕ (Fig. 4). Once expanded, the lower bound
shifts towards coarser clasts to lie between 3 and 6 ϕ. These values
justify a posteriori the ash sizes used to constrain F. Data of Fig. 4 sug-
gest that clasts b7 ϕ (b8 μm) were being elutriated during the
steady-state stage of all the fluidization experiments. Druitt et al.
(2004) report that ash b100 μm was being elutriated from sample
NES250 when gas supply was at or above maximum pressure velocity
(Ump, Wilson, 1984). This is consistent with De values up to 40 μm for
that sample (Table 1). More precise evaluations of elutriation sizes
from experimental data would be a test of the robustness of the con-
cept of effective size distribution.

Samples used by Druitt et al. (2007) were sieved at 1 ϕ intervals,
and best results were obtained when refining these intervals to 0.1 ϕ.
Fig. 5A shows the effect of not interpolating these distributions to a
finer interval. Discrepancies of more than an order of magnitude
arise for expanded beds. Permeabilities of packed beds, however,
are not sensitive to interval refinements.

The most straightforward method to solve for the moments is to
fit a power law to the size distribution because it leads to the analyt-
ical solution of Eq. (16). Several assumptions, however, must be made
to apply Eq. (16). The first assumption is that all clasts have the same,
average density. Calculations of Fig. 4 used the density distribution
measured by Druitt et al. (2007). When assuming that ρp(D)=ρavg,
calculated permeabilities are increased by less than 0.08 log unit
(16%) for fine beds and less than 0.25 log unit (43%) for coarse
beds, regardless of bed expansion. These errors are less than those in-
duced by the uncertainties on F and A, which suggests that this as-
sumption (ρavg=ρe) is valid.

Examination of Table 1 suggests that the additional assumptions
required to use the continuous method in Eq. (16) to obtain the mo-
ments of the distribution seem reasonable (β=2.5 and De+1=De).
Agreement between theoretical and experimental values, however,
holds only for the finer beds (with clasts b250 μm; Fig. 5B). It
seems unlikely that the major discrepancy observed for coarser beds
is caused by fixing to 2.5 the value for the exponent of the fitted dis-
tribution, as coarser beds have β values closest to 2.5 (Table 1). This
was confirmed by taking the best-fit β value for each sample and

A

B

Fig. 5. Measured vs. calculated permeabilities, k, of pyroclastic beds. Fine beds contain
clasts b2 ϕ and coarse beds contain clasts b−2 ϕ. Gray areas represent the data field of
Fig. 3. A. Discrete calculation, in which sieve data are directly used to determine perme-
ability. Size distribution binning is every 1 ϕ, as in original data. B. Continuous calcula-
tion, in which best-fits of sieve data (Table 1) are used to determine permeability.

Fig. 6. Difference between moments calculated from the discrete data of the sieve anal-
ysis using Eq. (13) and the ones calculated from best-fit power laws using Eq. (14).
Fine bed is sample NES250 and coarse bed is sample NES4000. Both M2/M1, which
can be viewed as an effective clast size, and the lower bound of the effective distribu-
tion, De, are shown in ϕ units.
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solving Eq. (14) numerically, which yielded a similar divergence for
the coarser beds. Instead, this deviation seems to be caused by the
fact that power-law distributions do not accurately represent the mo-
ments of the coarser distributions, despite excellent fits with sieve
data (R2 values are between 0.96 and 0.99, Fig. 1B). Fig. 6 shows
that there could be significant differences betweenmoments calculat-
ed from the discrete distribution and the ones calculated from best-fit
power laws. It depends on both the goodness-of-fit of the distribution
and the relevant value for De.

4.1. Constraining bounds of the effective size distribution

Clasts less abundant than w(Dc) are predicted to have a negligible
effect on permeability. Thus, the first and the second moment of the
size distribution shall not be sensitive to small amounts of coarse
clasts in order for Eq. (3) to correctly predict permeability. This can
be tested by comparing a distribution that includes a small amount
of coarse clasts to a distribution that does not. First, take the distribu-
tion of the fine sample NES250 with a 52 vol.% bed porosity (Table 1),
the coarsest clasts of which are b2 ϕ (250 μm) and calculatew(Dc) for
−1 ϕ (2 mm) clasts using Eq. (8) (Fig. 7). Then, add small amounts of
−1 ϕ clasts while keeping the bed porosity constant and calculate the
resulting permeability using Eqs. (3), (12), and (13). Fig. 7 compares
the theoretical value w(Dc) with the evolution of permeability as
coarse (−1 ϕ) clasts are added. It illustrates nicely that coarse clasts
can safely be neglected if less abundant thanw(Dc) because the coars-
er they are, the less influence they have on bed permeability. This is in
agreement with experiments on horizontally flowing fluidized beds,
which demonstrated that small quantities of coarse particles added
to a fluidized monodisperse bed do not influence its flowing charac-
teristics (Roche et al., 2005). Calculating w(Dc) for all the samples in
Table 1 shows that the coarsest clasts of the sieve data always partic-
ipate to the permeable network.

The lower bound of the effective distribution, however, has values
much larger than the smallest clasts present in the samples (Fig. 4).
The bed permeability with unconstrained lower bound can be calcu-
lated by assuming that particles given as b10 ϕ (1 μm) in Druitt et
al. (2007) were 11 ϕ (0.5 μm). For sample NES250, forcing the
lower bound, De, to 11 ϕ yields 4.18×10−13 m2. This is an order of
magnitude below the measured value (3.63×10−12; Table 1),
which illustrates nicely that the original law of MacDonald et al.
(1991) needs to be modified so as to take into account that clasts
below a certain size do not influence bed permeability.

5. Discussion

The present model replicates permeabilities of both loosely
packed and expanded beds and links permeability to material proper-
ties only (bed void fraction, clast sizes and densities). These results
have several implications on the physics of fluidization. First, the in-
teractions between clasts and gas control the system, which is trying
to maintain equilibrium between settling and elutriating particles.
As expected, particle–particle interactions play a subordinate role,
as the effective distribution is only a function of the average relative
speed between gas and particles and of the settling speed of non-
interacting particles. This remains true as long as gas pore pressure
exists within the settling bed, regardless whether touching clasts
form chains or exchange momentum through collisions or frictional
contact.

Fitting power laws to size distributions of pyroclastic material is
common practice (e.g., Kaminski and Jaupart, 1998; Horwell et al.,
2001; Maria and Carey, 2007), and many permeability determination
methods based on power-law size distribution have been proposed
(e.g., Gmachowski, 1998; Karacan and Halleck, 2003; Wu and Yu,
2007). Fig. 8 compares the experimental permeabilities reported
in Table 1 and those calculated with the methods proposed by
Gmachowski (1998) and Karacan and Halleck (2003). Such compari-
son suggests that the permeability of pyroclastic material cannot
easily be related to power-law-fitted distributions. A shortcoming of
the Karacan and Halleck (2003) method is that it assumes that pore
size distributions follow power-laws that are linked to those of clast
size distributions. While this might be true for loosely packed beds,
it is not the case for expanded beds because expansion only affects
porosity. Difficulties encountered when applying the method by
Gmachowski (1998) are caused by the coarse tail of the distributions,
which not only deviate from power laws, but also is present in
amounts greater than w(Dc), thereby affecting bed permeability.
Power-law size distribution is thus an approximate description of
the fractal nature of pyroclastic beds that has a limited use to quantify
bed permeability.

5.1. Implications for experimental work

The semi-empirical law developed herein depends on several crit-
ical assumptions that condition its applicability to experiments on

Fig. 8.Measured vs. calculated permeabilities, k, of pyroclastic beds using two methods
(open symbols: Gmachowski, 1998; closed symbols: Karacan and Halleck, 2003) as-
suming power-law size distributions. In the first method, sieve intervals of 0.1 ϕ
were used with their corresponding β values (D in Eqs. (13) and (15) of Gmachowski,
1998). In the second method, sieve intervals of 0.1 ϕ were used to calculate the total
grain surface area while assuming no tortuosity of the gas pathways, a complete frag-
mentation, and a pore fractal dimension of two (respectively DT=1, ϕf=bed porosity,
and DP=2 in Karacan and Halleck, 2003). Triangles are fine beds and circles are coarse
beds. Gray squares are permeabilities of Fig. 3.

Fig. 7. Permeability of bed formed by NES250 clasts as a function of added weight frac-
tion of coarser clasts of size −1 ϕ (2 mm). Also shown is the theoretical weight frac-
tion, w(Dc), below which added clasts have a small effect on permeability of a bed
contained in a 14-cm-diameter fluidization rig. The effective size distribution (bound-
ed at De) with 1 ϕ interval has been used.
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fluidizedmaterial. Experiments of Druitt et al. (2007) were conducted
on static beds having reached steady-state fluidization. In the light of
the law developed herein, it means that the balance between fluidiza-
tion and elutriation of fines was reached. At the inception of fluidiza-
tion, however, unsteady fluidization prevails (see Di Felice, 1995, for a
full description) and the fines are trapped within the highly concen-
trated bed. Their elutriation speed is thus different from that predict-
ed by the terminal velocity of a single particle in Eq. (10) because of
the small size of the interstices and the presence of other finer parti-
cles. This effect is expected to increases when the proportion of fines
increases.

The need to experimentally calibrate the constant A limits the ex-
trapolation of the proposed law to any pyroclastic bed. Hamilton
(1997) suggested replacing A by a first principle expression
depending on bed porosity, thus proposing a universal law. The A
values so calculated span from 162 to 216 for the samples in
Table 1. This is below the best-fit value of 242 and, when used in
Eqs. (3) and (12), these A values result in poor fitting of the perme-
abilities with discrepancies reaching up to 3 log units. As Hamilton
(1997) assumes that particles are spheres, which is not the case of
the pyroclasts studied herein, the poor fit suggests that A is partly
controlled by the degree of irregularity of the clasts.

The relationship between bed expansion and permeability is a
complex one to establish because expansion is linked to porosity,
which is difficult to quantify in polydisperse material (Wilson, 1984;
Roche et al., 2005; Druitt et al., 2007). Expanded bed permeabilities
reported in Table 1 were calculated thanks to a relationship based
on the work of Richardson and Zaki (1954). It states that permeability
is roughly proportional to the ratio of expanded to loosely packed po-
rosity elevated to a power ranging from 2 to 12 (Druitt et al., 2007).
Following the same reasoning, a first-order assessment of how expan-
sion controls permeability can be done based on the continuous
method in Eq. (16) because it captures the relative evolution of per-
meability with porosity. The ratio between the permeability, k0, of a
loosely packed bed of porosity, α0, and the permeability, k1, of an ex-
panded bed of porosity, α0(1+E), where E is the fraction of expan-
sion, is given by:

k1
k0

¼ 1−α0ð Þ3 1þ Eð Þ5
1−α0 1þ Eð Þ½ �3 : ð17Þ

If the Blake–Kozeny relationship (1) is taken instead of Eq. (16),
this ratio becomes:

k1
k0

¼ 1−α0ð Þ2 1þ Eð Þ3
1−α0 1þ Eð Þ½ �2 : ð18Þ

Fig. 9A plots bed permeability as a function of bed expansion. It
shows that Eq. (17) captures the increase of permeability upon ex-
pansion within an order of magnitude for four out of the five samples
of Table 1, whereas Eq. (18) does not. The large misfit of sample
NES4000 is caused by the strong departure from the assumption
ρe=ρavg for large E values. Expansion thus exerts a much stronger
control on permeability than the Blake–Kozeny relationship suggests.
This is partly due to the fact that the porosity function α3/(1−α)2 in
Eq. (1) is only valid for packs of uniformly sized spheres, and partly
due to the fact that Eq. (18) incorrectly assumes that particle size is
constant, regardless of expansion.

The permeability law tested in Fig. 2 is applied to statically fluid-
ized beds, although pyroclasts are flowing along the slopes of the vol-
cano. Observations suggest that sedimentation in static beds occurs as
a sharp front aggrading the deposits because gas pore pressure keeps
the settling part of the collapsing bed at its initial porosity (Druitt et
al., 2007). To first the order, the permeability of the initially expanded
bed can thus be linked to sedimentation rate, although such link is

made complex by non-linear variations of pore pressure during set-
tling (Montserrat et al., 2012). Girolami et al. (2008) have shown
that the same pyroclastic material as used by Druitt et al. (2007) set-
tles at the same speed when flowing along a horizontal base than
when it is contained in a static rig. Following these authors and inte-
grating the present results suggest that the sedimentation rate in ho-
mogeneously fluidized, polydisperse flows is also controlled by a
simple balance between elutriation of smaller particles and gas reten-
tion by coarser particles. A first order, permeability-based sedimenta-
tion law derived from the present work would be quite versatile, as it
can be incorporated into depth-averaged flow model (e.g., Kelfoun et
al., 2009) through the concept of pore pressure diffusion (Montserrat et
al., 2012; Roche, 2012), and used in multiphase models (e.g., Dufek and
Bergantz, 2007) because permeability characterizes the drag between
the solid phase and the carrier gas.

5.2. Implications for natural pyroclastic flows

One of the strengths of the semi-empirical law presented herein is
that it does not depend on gas viscosity and is valid at magmatic

A

B

Fig. 9. Effects of expansion on bed permeability. A. Calculated bed permeabilities as a
function of expansion (Table 1). Only the coarsest samples NES4000 and DOR4000
are shown for clarity; the two finer samples (NES250 and DOR250) having respective
curves similar to those of DOR4000. Continuous lines are calculated using the discrete
size distributions with 0.1 ϕ intervals and changing the value of α. Dashed lines are cal-
culated using Eq. (17) and dotted lines are calculated using Eq. (18). B. Increase in per-
meability as a function of bed expansion for three loosely packed porosities. The
increase is calculated using Eq. (17) and expressed as the ratio of expanded bed per-
meability (k1) over loosely packed bed permeability (k0).
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temperatures since Druitt et al. (2007) data were acquired between
50 and 550 °C. Some of the insights developed above can thus be ex-
tended to flowing pyroclastic density currents. Two issues, however,
limit the scope of these insights.

The first issue is whether the permeability determination de-
scribed herein can be applied to natural, coarser material. The stron-
gest limitation is that natural materials are generally more poorly
sorted than those of Table 1 and will segregate upon fluidization
(Wilson, 1984). This restricts the extension of the law proposed here-
in to materials that fluidize in a homogeneous fashion. With this limit
in mind, Eq. (8) can be used to assess whether the coarser end of the
size distribution affects permeability. Since the concept of rig size
used herein loses pertinence when addressing unconfined systems,
a ratio between deposit thickness and boulder size might be more ap-
propriate to characterize outliers. Two additional aspects can cause
trouble when applying the law to natural materials. First, although F
was not determined on the same pyroclasts as the ones used in
Druitt et al. (2007), assuming a value of 0.4 gives satisfactory results
over three orders of magnitude (Fig. 3). This might no longer hold
for coarser beds, which suggests that further testing of the current
conclusion that shape irregularities of the elutriated clasts have a
small influence on bed permeability is needed. Testing can easily be
conducted by measuring F on the same clasts as those composing
the fluidized beds. Second, most published sieve data of pyroclastic
material do not feature the average clast density of each sieve inter-
val. Results of this study indicate that using a constant, average clast
density for the whole distribution underestimates bed permeability.
This effect increases with the abundance of coarse particles but re-
mains below the overall uncertainty level of the method for beds
with clasts up to 4 mm. Most natural material being, however,
much coarser than a few mm, extrapolation of the present model to
natural material most likely necessitates clast density distributions.

The second issue is whether particle–particle interactions, negligi-
ble at the flow speeds reached in the laboratory (1.5 m/s) for b4 mm
clasts mixtures, are also negligible in the case of much faster pyroclas-
tic flows. Several recent lines of evidence suggest that fluidization
plays a key role in the transport system of natural flows. Research
centered on dense granular mechanics that ignores the role of the
gas (e.g., Foreterre and Pouliquen, 2008) has proposed rheology
laws that explain non-fluidized, laboratory flows much more accu-
rately (e.g., Lube et al., 2007) than natural flows (Kelfoun et al.,
2009; Doyle et al., 2010). Quantifications carried out with pore pres-
sure diffusion values corresponding to permeabilities from 10−13 to
10−9 m2 indicate that large-scale flows are likely to remain fluidized
over much of their travel time (Roche et al., 2010; Roche, 2012). Even
if this is encouraging, it remains that the delicate balance expressed
by equating gas speed to settling speed in Eq. (11) will be upset by in-
complete fluidization (i.e., loss of pore pressure, Roche et al., 2008),
attrition, or irruption of momentum-driven boulders in the settling
bed. Assuming nevertheless that the kinetics of fluidized pyroclastic
flows is controlled by such a balance, one can try estimating the con-
sequences of upsetting it by a modification of the flow expansion.
Events affecting flow porosity include, for instance, thickening fol-
lowing a break in the pathway slope. The approximate relationship
between of bed expansion and permeability (Fig. 9B) suggests that
a ~30% change in bed expansion results in one order of magnitude
change in permeability. This suggests that the kinetics of pore pres-
sure diffusion in natural flows is only moderately sensitive to flow
thickness changes, and that flows might be able to quickly
re-establish their balanced permeability after being subjected to per-
turbations such as slope changes.

6. Conclusions

This work postulates that highly polydisperse materials have
an effective size distribution that controls permeability. Existence of

such effective distribution implies that not all clasts participate to
the permeable network resisting to gas flow and that clasts smaller
than the minimal effective size are elutriated. When this concept is
coupled to a generalized Blake–Kozeny equation, the resulting law
is able to predict the permeabilities of pyroclastic material within
±0.6 log unit. The dataset used to carry out the comparison is based
on natural pyroclastic deposits that were resampled so as to ensure
homogeneous fluidization (Druitt et al., 2007). Results suggest that
the effective size distribution is not sensitive to small amounts of
large particles, which are correctly treated as outliers floating in a
finer matrix. If Eq. (8) is verified, there is no need to constrain the
upper bound of the effective size distribution other than by sieve
data. The lower bound is best constrained by solving Eq. (12) using
themethod in Eq. (13) and interpolating sieve data to 0.1 ϕ intervals.
Bed permeability can then be obtained using Eq. (3) (see Supple-
mentary Material). The presence of an experimentally calibrated
constant and the necessary absence of segregation during fluidiza-
tion limit the extrapolation of the proposed law to any given pyro-
clastic bed. The result that permeability is controlled by a balance
between settling of the coarse clasts and elutriation of the fines has
nevertheless implications on the kinetics of dense pyroclastic
flows. This balance implies a first-order relationship between per-
meability and expansion, which suggests that pore pressure diffu-
sion in homogeneously fluidized parts of natural pyroclastic flows
is only moderately sensitive to perturbations of the flow thickness.
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