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S U M M A R Y
To investigate the effect of heterogeneity of resistance on a fault, we present an analysis of
the behaviour of a canonical model, namely a periodic system of coplanar faults that can slip
under a slip-weakening friction law. The friction on the sliding patches is characterized by a
weakening rate α. We present a stability analysis based on the decomposition of the solution
on a set of eigenfunctions of increasing periodicities that are multiples of the natural period
of the system. We discuss the structure of the discrete spectrum of the static solution. For a
given geometry, we show that there exists a transition value α0 of weakening rate defining two
distinct regimes. When α is smaller than α0, the system is stable, while when α is larger than
α0, unstable modes with exponential growth are present. This stability limit can be regarded
as a non-local criterion of sliding. A somehow surprising result is the fact that a system with
infinite extension can exhibit a stable behaviour. Specifically, we show that even a fault with
weakening almost everywhere can be stable. An infinite homogeneous fault, on the contrary,
is always unstable as soon as weakening is assumed. To understand this apparent paradox, we
refer to the concept of the effective friction law, which describes the large scale behaviour of
the fault system, and more precisely here to the effective weakening rate. The results presented
here indicate that the effective friction law of a periodic fault system with weakening on the
sliding parts can be either a weakening or strengthening law depending on the geometry of the
surface of sliding.

Key words: earthquake-source mechanism, eigentheory, elastic wave theory, fault slip,
spectral analysis.

1 I N T RO D U C T I O N

A key issue for the construction of a fault model is the applicability of laboratory results on friction parameters to the scale of actual faults.
In the context of the slip-weakening model with constant stress drop, the critical slip of weakening Dc (Ida 1972; Palmer & Rice 1973)
governs the dynamic evolution (Andrews 1985; Matsu’ura et al. 1992). It is noticeable that the values of Dc used to model actual earthquake
records (Ide & Takeo 1997; Peyrat et al. 2001; Aochi & Fukuyama 2002) are very different from the ones inferred from dynamic laboratory
experiments. Indeed this critical slip must not be confused with the critical slip involved in rate and state laws (Ruina 1983; Dieterich 1986) as
discussed in Guatteri et al. (2001). The slip-weakening model consists of imposing as a boundary condition the relation between displacement
and stress observed during dynamic laboratory experiments of initiation and slip (Ohnaka 1996). This is not a valid approach for long-term
evolution of the fault but, during the period corresponding to the experiments, it is the mechanical expression of the physical evolution of the
slipping surface.

The friction properties are likely heterogeneous on the fault, particularly with the presence of barriers. By the term barrier, we denote a
patch on the fault plane where no slip occurs. This concept cannot be applied for the evolution of the fault at the geological timescale but it has
been shown to be useful and relevant in the description of fault heterogeneity during an earthquake (Papageorgiou & Aki 1983a,b). The nature
of the barriers is beyond the scope of this paper. We consider here that the heterogeneity can be described by a single local parameter, namely
the static friction threshold. Because of the heterogeneity the large-scale behaviour is controlled both by the friction at the elementary scale,
that can be identified with the laboratory scale, and by the fine geometry of the distribution of resistance on the fault. Campillo et al. (2001)
and Voisin et al. (2002) proposed a simple approach of rescaling based on the spectral solution of the evolution problem of shear instability.
They interpret the behaviour of a segmented fault in terms of an effective friction acting uniformly on a homogeneous fault. Furthermore,
Perfettini et al. (2003) proposed a simple scaling of the effective weakening rate of a heterogeneous fault. We study here a canonical problem
for understanding the scaling of friction law: the case of a periodic system of antiplane finite faults. We specifically address the problem of
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its limit of stability. We investigate the structure of the spectrum of the static solution. By analogy with the case of an infinite homogeneous
fault, we interpret the existence of a stability limit for the heterogeneous periodic system in terms of an effective weakening rate at the onset
of initiation.

2 P H Y S I C A L M O D E L

Consider the antiplane shearing of a homogeneous linear elastic space containing a system of faults � f, situated in the plane y = 0 and on
which a slip-dependent friction law is supposed. We assume that the displacement field is zero in directions Ox, Oy and that uz does not depend
on z. The displacement is therefore simply denoted by w(t, x, y). The elastic medium has the shear rigidity G, the density ρ and the shear
velocity c = √

G/ρ. The non-vanishing shear stress components are σzx = τ∞
x + G ∂w

∂x (t, x, y), σzy = τ∞
y + G ∂w

∂y (t, x, y) and the normal
stress on the fault plane is σ yy = − S (S > 0).

The equation of motion is:

∂2w

∂t2
(t, x, y) = c2�w(t, x, y), (1)

for t > 0, y �= 0. The boundary conditions on fault plane � f are:

σzy(t, x, 0+) = σzy(t, x, 0−), (2)

σzy(t, x, 0) = µ[x, δw(t, x)]S sign

[
∂δw

∂t
(t, x)

]
if

∂δw

∂t
(t, x) �= 0, (3)

|σzy(t, x, 0)| ≤ µ[δw(t, x)]S if
∂δw

∂t
(t, x) = 0, (4)

where δ w(t , x) = w(t , x , 0+) − w(t , x , 0−) is the relative slip.
The initial conditions are denoted by w0 and w1, i.e.:

w(0, x, y) = w0(x, y),
∂w

∂t
(0, x, y) = w1(x, y). (5)

Because the direction of slip is given by the applied stress τ∞
y > 0, let us assume in the following that the slip δw and the slip rate ∂ tδw

are non-negative. The friction law is assumed to be homogeneous on the slipping patches having the form of a piecewise linear function:

µ(x, u) = µs − µs − µd

2Lc
uifu ≤ 2Lc, µ(x, u) = µd if u > 2Lc, (6)

where u is the relative slip, µs and µd (µs > µd) are the static and dynamic friction coefficients and L c is the critical slip. This piecewise
linear function is a reasonable approximation of the experimental observations reported by Ohnaka et al. (1987).

Because our intention is to study the evolution of the elastic system near an unstable equilibrium position, we shall suppose that τ∞
y =

Sµs. We remark that taking w as a constant satisfies eqs (1–4), hence w ≡ 0 is an equilibrium position. Because we deal with the evolution
of one initial pulse, we may put (for symmetry reasons) w(t , x , y) = − w(t , x , − y), hence we consider only one half-space y > 0 in eqs (1)
and (5). With these assumptions eqs (2–4) become:

w(t, x, 0+) = 0 x /∈ �f, (7)

∂w

∂y
(t, x, 0+) = −αw(t, x, 0+) if w(t, x, 0+) ≤ Lc, x ∈ �f, (8)

∂w

∂y
(t, x, 0+) = −αLc if w(t, x, 0+) > Lc, x ∈ �f, (9)

where α is a parameter that has the dimension of a wavenumber (m−1) and that will play an important role in our further analysis. α is given
by:

α = (µs − µd)S

GLc
.

With the slip heterogeneity implied by the unbreakable barriers (eq. 7), the solution exhibits stress singularities located at the edges of
the barriers. We have assumed an infinite resistance of the barriers and therefore we do not consider any evolution of their geometry in the
mathematical treatment of the problem. We shall return to this point in the final discussion.

Because we assume that the initial perturbation (w0, w1) of the equilibrium (w ≡ 0) is small, we have w(t , x , 0+) ≤ L c for t ∈ [0, T c] for
all x, where T c is a critical time for which the slip on the fault reaches the critical value L c at least at one point, i.e. supx∈R w(Tc, x, 0+) = Lc.
Hence for a first period [0, T c] we deal with a linear initial and boundary value problem in eqs (1), (5) and (7). Our aim is to analyse the
evolution of the perturbation during this initial phase.

Let us consider the eigenvalue problem associated with eqs (1), (5) and (7): find a bounded eigenfunction 	: R × R+ → R and the
eigenvalue λ2 such that

∇2	(x, y) = λ2	(x, y), y > 0, (10)
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∂	

∂y
(x, 0+) = −α	(x, 0+), x ∈ �f, (11)

	(x, 0+) = 0, x /∈ �f. (12)

The eigenvalues λ2 are functions of the parameter α, i.e. λ2 = λ2(α). It is important to obtain a simple condition on α to determine the
positiveness of the eigenvalues λ2, representing an unstable behaviour for the solution of the dynamic problem. Let us now make a remark that
is extremely important for the analysis presented in this paper. The domain of existence of unstable solutions (i.e. λ2 > 0) is limited by the
critical values of the parameter α, for which λ2(α) = 0. For this reason we rewrite eqs (10–12) into a new eigenvalue problem corresponding
to the static case (i.e. λ2 = 0), in which the unknowns are α (such that α ≥ 0) and the eigenfunction ϕ : R × R+ → R:

∇2ϕ(x, y) = 0, y > 0, (13)

∂ϕ

∂y
(x, 0+) = −αϕ(x, 0+), x ∈ �f, (14)

ϕ(x, 0+) = 0, x /∈ �f. (15)

The solutions of this static eigenvalue problem are the stability limits in α of the different modes in a given geometry.
Let us be reminded that we impose a positivity constraint on the solution w(t , x , 0+) on the fault � f. This condition has not to be imposed

on each eigenfunction. Having in mind the spectral expansion of the solution in terms of eigenfunctions, only their linear combination, with
coefficients depending on the particular initial conditions, must comply with this requirement. Because the solution is dominated by the
first eigenfunction, which has always the largest coefficient of exponential growth with time, the positivity constraint has to be applied to
this particular eigenfunction. Although not a mathematically sufficient condition, we require that the first eigenfunction has the same sign
everywhere on the fault in order for the eigenvalue problem to have a physical interpretation. This is always the case for a coplanar system of
faults. If the faults are not coplanar, this condition is no longer satisfied, that is the above eigenvalue problem has no physical significance and
a non-linear eigenvalue problem must be considered (Ionescu & Wolf 2004; Wolf et al. 2004). This difficulty arises with the effect of stress
shadowing, which does not exist for the coplanar segments considered here.

3 S P E C T R A L S O L U T I O N

In this section, we use explicitly the periodic character of the system of faults � f . Let P > 0 be the geometrical period and let [a, b] be the
elementary fault (0 < a < b < P) of length 2L = b − a < P (see Fig. 1). The slipping part of the fault is given by

� f = ∪k∈Z[a + k P, b + k P]. (16)

As a result of the periodicity of the problem, we expect a periodic behaviour for the eigenfunction x → ϕ(x , y). To better point out this
periodicity of the solutions, let us distinguish between the geometrical period of the fault system and the physical period of the corresponding
spectral solution (Fig. 1).

Specifically, for a period P, we shall look for eigenfunctions ϕm(x , y) of the static eigenproblem of periodicity mP with m = 1, 2, . . . .
That is, we are looking for ϕm : � → R and αm solution of

∇2ϕm(x, y) = 0, y > 0, (17)

ϕm(x + m P, y) = ϕm(x, y), (18)

∂ϕm

∂y
(x, 0+) = −αmϕm(x, 0+), x ∈ �f, (19)

ϕm(x, 0+) = 0, x /∈ �f. (20)

y

x

P

a b

T = m P

Figure 1. The geometry of the periodic fault. P is the geometrical period and T = mP the physical period.
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Figure 2. The eigenfunction ϕ100
0 (x , 0) versus the fault line axis x. Note that its periodicity is P, i.e. ϕ100

0 (x , 0) = ϕ1
0(x , 0).

To solve this problem, we use the technique described in Appendix A with the parameter set: T = mP, N = m, ai = a + i P and bi = b + i P ,
with i = 1, m. As it follows from Ionescu et al. (2002) for all m, the eigenvalues are an unbounded, non-decreasing sequence (αm

n )n≥1, i.e.

0 < αm
0 ≤ αm

1 ≤ . . . ≤ αm
n ≤ . . . , lim

n→∞
αm

n = +∞. (21)

3.1 Stability analysis

The system in eqs (17–19) was numerically solved for different values of m using the method described in Appendix A for P = 4L and
[a, b] = [L , 3L], where L is a characteristic length. The first eigenvalue α1

0 of the elementary periodicity P is also the first eigenvalue of
periodicity mP for all m, simply denoted by α0. We denote by ϕ0 the associated eigenfunction, i.e.

αm
0 = α1

0 = α0, for all m ≥ 1,

ϕm
0 (x, y) = ϕ1

0 (x, y) = ϕ0(x, y), for all m ≥ 1.

In order to illustrate this fact we have plotted in Fig. 2 ϕ100
0 (x , 0) computed for P = 4L , which is actually a periodic function of the same

period P and not only 100P as could be expected for the first eigenvalue. The unexpected property that α0 is the first eigenvalue whatever
the periodicity seems to be a general feature that we observed for all the cases we have considered in our computations. Because we are not
able to prove it from a mathematical point of view, we conjecture that for a geometric periodicity P, in the set of solutions of period mP, the
eigenfunction associated with the first (the smallest) eigenvalue is a function of period P.

The first eigenvalue α0 represents the threshold of instability, that is

w ≡ 0 is unstable when α > α0. (22)

The positivity of α0 in eq. (22), shows the possible existence of a stable periodic system of faults under slip-weakening friction.
Let us analyse now the influence of the length of the barrier on the stability limit α0. For this, we consider a fault of length 2L and the

non-dimensional parameter r ∈ [0, 1] given by

r = 2L

P
.

In Fig. 3, we have plotted the computed non-dimensional threshold α0 L versus the geometrical parameter r. As expected, the system is more
unstable when the barriers become shorter. Two geometric limit cases have to be noted. The first one corresponds to r close to zero. In this
case, the faults are far away from each other and the stability limit is the same as for a single fault system obtained by Dascalu et al. (2000)
and Uenishi & Rice (2003), i.e.

α0 L = β∗
0 = 1.15777 . . . , for r = 0.

The second limit case corresponds to the geometry of the periodic system of faults in which the barriers reduce to points. Computation
performed for P = 2L and [a, b] = [0, 2L], with barriers at points 2kL , k ∈ Z, lead to a critical limit of stability

α0 L = 0.1532293 . . . , for r = 1.
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Figure 3. The computed non-dimensional threshold of stability α0 L versus the geometrical parameter r.

Table 1. The eigenvalue αm
1 for different values of m.

m = 1 m = 2 m = 10 m = 20 m = 100

Lαm
1 2.764167 1.22235793 1.098298515 1.06730381 1.04040256

The non-vanishing of this limit shows that even for arbitrary small barriers there still exists a positive threshold of stability. This non-trivial
result indicates that regions of resistance with very limited extent can play a major part in the global behaviour of a fault. Even when the
surface of the barriers on the fault tends to zero, their existence can prevent the onset of an instability.

3.2 Description of the spectrum

We summarize here the principal facts deduced from numerical results obtained by solving eqs (17–19) with the method described in Appendix
A. Considering P = 4L and [a, b] = [L , 3L], we found

α0 = 1.03349339

and the values of αm
1 L , which are presented in Table 1.

From the results in Table 1 one can conjecture that

αm
1 → α0 for m → ∞. (23)

This property was verified in different numerical tests. This shows that for α > α0, arbitrarily close to α0, an infinite set of eigenfunctions 	m
1

of the dynamic problem in eqs (10–12) have an unstable behaviour [λ2(α) > 0].
We plotted in Fig. 4 the shape of the eigenfunction ϕ100

1 . We remark that the period is now 100 P, in contrast to ϕ100
0 of period P. A

sinusoidal shape can be observed for the envelope of ϕ100
1 . One can note that the sign of the function changes. Therefore this function alone

cannot comply with the positivity constraint. The positivity of the global solution is provided by the summation of the modes and predominantly
by the first mode.

The details of the spectral structure of the solution are given in Appendix B. Simple properties of the distribution of the eigenvalues are
shown. The relative positions of the eigenvalues can be interpreted by considering the different modes of interactions between neighboring
segments as illustrated by the eigenfunctions on the fault.
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Figure 4. The computed eigenfunction ϕ100
1 (x , 0) versus the fault line axis x. Note the sinusoidal shape of the envelope.

4 A N A L O G Y W I T H T H E I N F I N I T E H O M O G E N E O U S FAU LT

We recall here the spectral analysis given by Campillo & Ionescu (1997), in the case of an infinite homogeneous fault, i.e. � f is the whole
x-axis. The same problem was studied with a different method by Knopoff et al. (2000) and Ampuero et al. (2002).

We have to solve the following eigenvalue problem: find a bounded eigenfunction 	: R × R+ → R and the eigenvalue λ such that

∇2	(x, y) = λ2	(x, y), y > 0, (24)

∂	

∂y
(x, 0+) = −α	(x, 0+). (25)

Using the separation of the variables, we found that λ2 ≤ α2 and that two types of eigenfunctions exist. The first one is given by:

	I
λ(x, y) = C I

λ exp(−αy + i x
√

α2 − λ2), (26)

for all λ ≤ α2. This expression contains a unique exponential dependance on y. Furthermore, a second type of eigenfunction is obtained for
λ2 < 0. In this case, for each λ2, there exists a family of eigenfunctions given by:

	II
λβ (x, y) = C II

λβ exp(i x
√

β − λ2)

[
cos(y

√
−β) − α√−β

sin(y
√

−β)

]
, (27)

for all β such that λ2 ≤ β < 0. This expression contains wave-type terms. In the expressions of the eigenfunctions, C I
λ, C II

λβ are normalization
complex constants. Bearing in mind the above spectral computations, one can give a generic form of the solution for eqs (1), (5) and (7) as
follows:

w(t, x, y) =
∫ α2

0

[
ch(λct)W I

0(λ) + sh(λct)

λc
W I

1(λ)

]
	I

λ(x, y) dλ

+
∫ 0

−∞

[
cos(λct)W I

0(λ) + sin(λct)

λc
W I

1(λ)

]
	I

λ(x, y) dλ

+
∫ 0

−∞

{∫ 0

λ2

[
cos(λct)W II

0 (λ, β) + sin(λct)

λc
W II

1 (λ, β)

]
	II

λβ (x, y)dβ

}
dλ, (28)

where W I
0(λ), W I

1(λ), W II
0 (λ, β), W II

1 (λ, β) are deduced from the initial data w0, w1. This is a complete solution of the problem, having all the
properties of the wave equation, including causality.

The part of the solution associated with positive eigenvalues, that is the first term in eq. (28), grows exponentially with time. Hence, after
a while, this part will completely dominate the other part, which has a wave-type evolution. This is why we put w = wd + ww, where wd is
the dominant part and ww is the wave part. As shown in Campillo & Ionescu (1997), the dominant part has a simple expression:

wd(t, x, y) = α

π
e−αy

{ ∫ α

−α

∫ ∞

0

∫ ∞

−∞
e−αs+iλ(x−u)

[
ch(ct

√
α2 − λ2)w0(u, s)

+ sh(ct
√

α2 − λ2)

c
√

α2 − λ2
w1(u, s)

]
du ds dλ

}
. (29)
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According to this expression, the infinite homogeneous fault is unstable for any weakening rate (α > 0). We can therefore define a
stability limit as α = 0 with reference to our previous analysis of the periodic fault. This is a drastic difference to the case of the periodic fault
for which a non-zero limit of stability exists, even in the limit when the width of the barriers tends to zero.

To compare the behaviour of homogeneous and periodically heterogeneous infinite faults, we refer to the concept of effective friction as
introduced by Campillo et al. (2001). The effective friction law is the law which, when imposed on a homogeneous fault, would produce the
same average behaviour as that of the actual heterogeneous fault. It is a homogenized form of the friction. The validity of the approach has
been demonstrated in the unstable regime and interpreted as a spectral equivalence of the homogeneous and heterogeneous problems Voisin
et al. (2002).

To draw an analogy between the periodic and infinite cases is somehow delicate because their evolutions are characterized by continuous
and discrete spectra, respectively. Nevertheless, the solution is governed by the largest eigenvalue and this eigenvalue belongs to the mode that
defines the stability domain. In this sense, the static analysis gives important qualitative indications of the dynamic behaviour. The study of the
structure of the spectrum of the periodic fault shows that the eigenvalues are accumulated in infinite number around the stability limit. This
suggests a spectrum that is dense around the largest eigenvalue. From this observation, it seems legitimate to consider a spectral equivalence
between the periodic and infinite problems, even considering that, in the case of the periodic fault, the only results available so far are the
static eigenvalue solutions.

Let us consider a periodic fault with a given geometry. If the weakening on the sliding patches is larger than α0, it is an unstable system.
Its evolution is dominated by the most unstable mode, that is the first eigenfunction, which has a periodicity P and whose envelope is a constant
(Fig. 1). If we consider the envelope as an average behaviour of the slip, we see here a property that is exhibited by the infinite fault, that the
largest wavelengths are associated with the most rapid growth.

The existence of a limit of stability for the periodic fault is puzzling. It indicates that it is not always possible to define an effective
weakening, because a homogenized infinite fault would always be unstable if subjected to a weakening friction. We understand this fact by
taking into account the response of the unbreakable barriers. They offer an elastic resistance that counterbalances the weakening on the sliding
patches. The resulting effect is producing the effective weakening. It results in the fact that the introduction of small resistant zones changes
drastically the behaviour of the fault and decreases the effective weakening as illustrated numerically in Campillo et al. (2001). In the case of
the periodic fault and depending on the geometry and the local weakening, this concurrence between weakening and elastic response results
either in an average weakening, corresponding to the unstable regime, or in an average strengthening that is the stable regime of the infinite
periodic fault. The effective friction law of a periodic fault can be therefore a weakening or strengthening friction.

5 S U M M A RY A N D D I S C U S S I O N

We use the canonical configuration of a perfectly periodic fault as a first approximation to study the stability limit of a heterogeneous fault. We
computed the eigenvalues of the static problem. They represent the limiting values of the weakening rate for which the modes are unstable. We
showed the existence of a non-zero first eigenvalue for any geometry, that demonstrates the existence of a transition between stable and unstable
behaviours. For any periodic fault, the threshold of instability is reached for a value of β (the weakening rate times the length of an individual
fault) that is between two non-dimensional values associated with the limited cases of, first, infinitely distant faults and, secondly, infinitely
narrow barriers. The first limiting value (1.157773...) was already computed for an isolated fault by Dascalu et al. (2000) and by Uenishi &
Rice (2003). As a result of the non-dimensionality of β for an isolated fault, it is a universal threshold. A second universal limit emerges in
our computation. When the barrier length tends to zero, the threshold is for β = 0.153229.... This non-zero limit means that, whatever is the
weakening rate on the fault, it is sufficient to have a distribution of infinitely narrow barriers (i.e. with a surface that is asymptotically null) to
keep the fault stable.

By drawing the analogy of our periodic problem with the infinite homogeneous case, we propose to interpret our results in terms of the
effective friction on the homogenized fault (Campillo et al. 2001). We consider the global behaviour of a complex system and we search for
the homogeneous system with a similar behaviour. Our analysis shows that the global behaviour of the periodic fault with slipping patches
under a slip-weakening friction law can be either stable or unstable, depending on the geometry. In comparison with an infinite homogeneous
fault, it means that the effective friction can be either weakening or strengthening.

Let us consider an actual fault in view of the results we obtained with the simplified periodic model. We focus our interest on the question
of the growth of an instability that could be the initiation stage of a rupture at large scale. We found that the existence of segments under
slip-weakening friction is not sufficient to imply the instability of the fault, even when the extension of the zone covered by such segments
is very large and the surface of the barriers is very small. It illustrates the key importance of the small-scale structure of the fault. Even
very limited geometrical irregularities can prevent the growth of the initiation. In this case, the fault can reach the stress threshold without
developing a large-scale rupture. In this regime of stability, if a local stress concentration leads to a slip event, the further evolution is described
by a solution with only propagative components. Formally this is the case when the dynamic eigenvalue problem has only solutions with
negative squares. This results in the propagation of pulses that could be reflected by the barriers as it is illustrated in Dascalu et al. (2000).
The effective behaviour is slip strengthening as observed in initial stage of the dynamic laboratory experiments (e.g. Ohnaka et al. 1987). In
such a case, the quasi-static evolution of the fault is characterized by the concentration of stress at the edges of the barriers. Although our
simplified model assumes unrealistic, infinitely resistant barriers, the evolution of a natural system, with barriers of finite resistance, includes
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some form of barrier erosion. When the resistance threshold is exceeded, the slip may occur on a part of the barrier and the available length of
the slipping patch is increasing. An increase in L (the half length of a slipping patch) results in an increase of β in the direction of the unstable
domain. This suggests a scenario for the evolution of a heterogeneous fault in which two timescales are involved. The first timescale is related
to the long-term evolution of the geometry with the erosion of the barriers as a result of stress concentration at their edges. The second is
related to the onset of dynamic instability that is controlled by the effective weakening of the fault.

A C K N O W L E D G M E N T S

The authors thank two anonymous reviewers and Raul Madariaga for their careful reading of the manuscript. The authors benefited from
discussions with Hugo Perfettini, Christophe Voisin and Jean-Pierre Vilotte. This work was supported by the program ACI Prévention des
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A P P E N D I X A : I N T E G R A L R E P R E S E N TAT I O N A N D N U M E R I C A L A P P ROA C H

For the convenience of the reader, we recall here from Ionescu et al. (2002) the principal steps of the solution technique used in solving the
periodic eigenvalue problem. We first reduce the eigenproblem to a system of hypersingular integral equations and then we use an appropriate
semi-analytic method to find solutions of period T .

Consider N arbitrary faults and denote by F their reunion. We suppose that F ⊂ [0, T ], T > 0, with F = ∪N
i=1[ai , bi ] and that we have

an infinite set of faults � f , in which the geometry of the finite system F is repeated periodically. Namely,

� f = ∪k∈Z Fk, Fk = ∪N
i=1[ai + kT, bi + kT ]. (A1)
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The eigenproblem consists of finding ϕ: R × R+ → R and β such that

∇2ϕ(x, y) = 0 y > 0, (A2)

ϕ(x, 0) = 0, x /∈ � f , (A3)

∂ϕ

∂y
(x, 0) = −βϕ(x, 0), x ∈ � f , (A4)

ϕ(x + T, y) = ϕ(x, y). (A5)

The Fourier transform in x of the eq. (A2) leads to

ϕ(x, y) = y

π

∫
� f

ϕ(s, 0)

y2 + (s − x)2
ds, (A6)

which is a representation formula for the displacement field ϕ (x , y). By derivation with respect to y and after some computations we deduce

βϕ(x, 0) = − π

T 2
F P

∫
F

ϕ(u, 0)

sin2
(

π

T (x − u)
)du (A7)

for x ∈ F , where the integral is taken in the finite-part sense. This equation is suitable for a numerical integration. For an efficient solving,
we further look for a particular development of the spectral solution that takes into account the boundary conditions at the faults endpoints.
Introducing ϕi : [ai , bi ] → R and the function g : R → R through

ϕi (t) = ϕ

(
bi − ai

2
t + ai + bi

2
, 0

)
, (A8)

g(z) =
{

1/ sin2(z) − 1/z2 for z �= 0
1/3 for z = 0

(A9)

and the transformation variables s and t:

x = t
bk − ak

2
+ ak + bk

2
u = s

bi − ai

2
+ ai + bi

2
(A10)

we can write eq. (A7) as the following system of integral equations

βϕk(t) = − 2

π (bk − ak)
F P

∫ 1

−1

ϕk(s)

(s − t)2
ds − π

T 2

N∑
i=1

∫ 1

−1
Hik(t, s)ϕi (s) ds (A11)

for t ∈ (−1, 1) and where

Hik(t, s) = bk − ak

2
g

[
π (s − t)

T

bk − ak

2

]
δik

+bi − ai

2
csc2

[
π

T

(
t

bk − ak

2
+ bk + ak

2
− s

bi − ai

2
− bi + ai

2

)]
(1 − δik). (A12)

We look for the solution of this system in the form of the expansion

ϕk(t) =
∞∑

n=1

Unk sin[n arccos(t)] (A13)

on [−1, 1]. With these notations the system of integral equations can be written in a compact form:

β
bk − ak

2

∞∑
n=1

ApnUnk =
N∑

i=1

∞∑
n=1

Dki
pnUni , (A14)

with

Amn = − 2mn[1 + (−1)m+n]

[(m − n)2 − 1][(m + n)2 − 1]
(1 − δn,m−1)(1 − δn,m+1), (A15)

Bmn = nπ

2
δm,n, (A16)

Cki
pn = −

∫ π

0

∫ π

0
sin(nψ) sin(pθ ) sin ψ sin θ Hik(cos θ, cos ψ) dψ dθ, (A17)

Dki
pn ≡

{ bk−ak
2

π

T 2 Cki
pn + Bpn for i = k

bk−ak
2

π

T 2 Ckk
pn for i �= k.

(A18)

The relation in eq. (A14) is a generalized eigenvalue problem. In order to compute the corresponding matrices, we shall truncate the infinite
series up to M . The eigenvalue form appears more clearly by defining the NM × NM matrices

Alr = bk − ak

2
Apnδi,k ; Dlr = Dki

pn, (A19)
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with l = M × (k − 1) + p and r = M × (i − 1) + n for p, n = 1, M and i, k = 1, N . Also the generalized eigenvectors

vr = Uni , (A20)

for r = M × (i − 1) + n with n = 1, M and i = 1, N .
With eqs (A19) and (A20) the system in eq. (A14) now reduces to the generalized eigenproblem

β

N M∑
q=1

Alqvq =
N M∑
q=1

Dlqvq , (A21)

for the eigenvalue β and the eigenvectors v.

A P P E N D I X B : S T RU C T U R E O F T H E S P E C T RU M

The structure of the spectrum of the solution is governed by the existence of a series of eigenvalues α1
n corresponding to the elementary

periodicity P of the system. For large n, we observe qualitatively, that the eigenfunction ϕ1
n(x , y) ≈ sin(nπx/(2L)) f (y) and from eq. (17)

we deduce f (y) = K exp(−nπ y/(2L)) with K a constant. Replacing in eq. (19) we found that α1
n ≈ nπ/(2L) for large n. According to

our numerical results, the interval between two eigenvalues is rapidly converging towards π/2 for increasing eigenvalue index (Fig. B1). As
already stated, each of these eigenvalues is also a solution for any periodicity multiple of P.

When plotting the eigenvalues for all periodicity mP (Fig. B2), we notice that the eigenvalues for period mP are concentrated closely
around the solution for the elementary period P. This phenomenon can be regarded as a progressive splitting of the solution of elementary
period. There is m eigenvalues around α1

n for solutions of periodicity mP. We noted that this split eigenvalue is larger than α1
n when n is odd

and is smaller when n is even. In other words, noting that αm
nm−1 = α1

n we remark that αm
nm > α1

n when n is odd and αm
nm < α1

n when n is even.
All the eigenvalues degenerated from α1

n lie between α1
n and α2

2n . Accordingly we can define for every α1
n a splitting width and we found

numerically that this width is decreasing with n faster than n−2. It must be noted that the eigenvalues lying strictly inside this interval (i.e. the
eigenvalues different from the limits of the splitting interval) are twice degenerated. For example, let us consider the first eigenvalue. For m =
2 we found two split eigenvalues that define the splitting domain, one of them being α0. For m = 3, we found three eigenvalues: α0 and two
identical values. Three modes are nevertheless present because the degenerate values correspond to two distinct eigenfunctions.

In order to interpret the repartition of the eigenvalues, we present in Fig. B3 the eigenfunctions along the fault, that is the distribution of
slip. We show only the eigenfunctions associated with the first three groups of eigenvalues and for the three first periodicities. The plots are
presented in the same order as the eigenvalues in Fig. B2. We did not repeat the eigenfunctions of elementary periodicity, which are trivially
solutions for every periodicities. Note that for m = 3, we observe couples of eigenfunctions that are different but each couple is associated
with a single eigenvalue. The shapes of the displacement distributions (Fig. B3) help to understand why the first eigenvalues split from α0 by
larger values. For example, the solution of period 2P (n = 1, m = 2) exhibits a pattern such that two neighboring patches slip in opposite
directions. This is indeed a less unstable situation than the one of the very first eigenvalue with all segments slipping in the same direction. An
opposite case is encountered with the second mode of periodicity P. Its eigenfunction (n = 1, m = 1) shows that slip in opposite directions
occurs on the elementary fault itself. For a larger periodicity, for example m = 2, the pattern of slip is such that two adjacent segments of
faults interact with the closest zones of slip being in the same direction. This leads to a more unstable situation than for the one of the solution
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Figure B1. Difference between two successive eigenvalues L(α1
n+1 − α1

n) for an elementary period (m = 1). Note the convergence to π/2 for large n.
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Figure B2. The eigenvalues αm
n from different periodicity mL of the solution.

Figure B3. Shapes of the slip distribution associated with the eigenfunctions ϕm
n (x , 0).

with the elementary periodicity P. As a consequence of these symmetry properties, the eigenvalues close to α1
1 split by smaller values. Similar

observations can be done for the other modes. An important conclusion, which can be drawn from this description of the spectrum, is that
the stability limit of the entire periodic system is given by the first eigenvalue in the set of solutions having the elementary periodicity P.
According to the previous analysis, the only exception would be that the first split eigenvalue of α1

1 for periodicity 2P, which is smaller than
α1

1, is also smaller than α0. Such a case was not encountered in the computations we performed.
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