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Accepted 2021 October 21. Received 2021 September 8; in original form 2021 March 30

S U M M A R Y
The geophysical detection of magma bodies and the estimation of the dimensions, physical
properties and the volume fraction of each phase composing the magma is required to improve
the forecasting of volcanic hazards and to understand transcrustal magmatism. We develop an
analytical model to calculate P waves velocity in a three-phase magma consisting of crystals
and gas bubbles suspended in a viscous melt. We apply our model to calculate the speed of
sound as a function of the temperature in three magmas with different chemical compositions,
representative of the diversity that is encountered in arc magmatism. The model employs
the coupled phase theory that explicitly accounts for the exchanges of momentum and heat
between the phases. We show that the speed of sound varies nonlinearly with the frequency
of an acoustic perturbation between two theoretical bounds. The dispersion of the sound in
a magma results from the exchange of heat between the melt and the dispersed phases that
affects the magnitude of their thermal expansions. The lower bound of the sound speed occurs
at low frequencies for which all the constituents can be considered in thermal equilibrium,
whereas the upper bound occurs at high frequencies for which the exchange of heat between
the phases may be neglected. The presence of gas in a magma produces a sharp decrease in
the velocity of compressional waves and generates conditions in which the dispersion of the
sound is significant at the frequencies usually considered in geophysics. Finally, we compare
the estimates of our model with the ones from published relationships. Differences are largest
at higher frequencies and are <10 per cent for typical magma.

Key words: Acoustic properties; Body waves; Physics of magma and magma bodies; Volcano
seismology.

1 I N T RO D U C T I O N

Most upper crustal magma reservoirs are probably dominated by
crystals. However, volumes dominated by the presence of fluids
must exist if only episodically as evidenced by the crystal con-
tent of eruptive products (e.g. Pallister et al. 1996; Eichelberger &
Izbekov 2000; Takahashi & Nakagawa 2013). The possible mecha-
nisms leading to the presence of fluid-dominated magmatic volumes
are the replenishment of crystal-rich magma reservoirs with crystal-
poor magmas (e.g. Caricchi et al. 2014; Annen et al. 2015; Wiebe
2016; Carrara et al. 2020), and the extraction of melt or exsolved
volatiles from crystal-rich reservoirs (e.g. Bachmann & Bergantz
2004; Huber et al. 2011; Parmigiani et al. 2016; Holness 2018;
Bachmann & Huber 2019; Degruyter et al. 2019). The crystals and
exsolved volatiles of a magma affect its rheology (e.g. Caricchi et
al. 2007; Petford 2009; Mader et al. 2013) and can dramatically

change eruptive styles (e.g. Karlstrom et al. 2012; Cassidy et al.
2018). When the solid volume fraction reaches a threshold, crystals
start to touch each other, forming a semi-rigid skeleton inhibiting
magma flow (Bergantz et al. 2017). In contrast, the volumes dom-
inated by the presence of fluids represent the eruptible portions
of the reservoir. Therefore, the detection of such volumes and the
estimation of the volume fraction of each phase is of paramount im-
portance to enhance our ability to predict the occurrence and style
of eruptions and to best assess volcanic hazards.

Among geophysical methods, tomography of seismic wave ve-
locities and attenuations has been widely employed to map magma
reservoirs but has not clearly evidenced the presence of fluid-
dominated bodies (Waite & Moran 2009; Paulatto et al. 2012; De
Siena et al. 2014; Huang et al. 2015; Delph et al. 2017; Kiser et al.
2018; Hooft et al. 2019). Tomography images are computed with
the first wave arrival at the stations, which corresponds to the fastest
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travel from the source. The velocities of compressional waves (also
called sound speed or P-wave velocity) are lower in fluid-rich mag-
mas. As a result, the ray paths of the first arrivals may circumvent
and undersample such volumes in the resulting images. The spa-
tial averaging of the seismic properties resulting from tomography
may also smooth the effects of the presence of small fluid bodies,
which are then interpreted as partially molten rocks. Finally, seis-
mic waves may be attenuated during their propagation across the
magma reservoir. Hence, improving our knowledge of the acoustic
properties of the materials constituting the magma reservoir can
reduce the uncertainties in interpreting tomography images.

While models exist to compute the speed of sound and/or the asso-
ciated attenuation coefficient in partially molten rocks (e.g. Mavko
1980; Hammond & Humphreys 2000; Takei 2002; Hier-Majumder
2008; Carcione et al. 2020) or in bubbly melts (e.g. Chouet 1996;
Kumagai & Chouet 2000; Morrissey & Chouet 2001; Neuberg &
O’Gorman 2002; Collier et al. 2006; Karlstrom & Dunham 2016),
no model addresses the acoustic properties of magmas composed
of crystals and gas bubbles suspended in the melt. Here, we aim at
calculating the velocity of a compressional wave at the frequencies
used in volcano seismology (∼0.001–1000 Hz) in a three-phase sus-
pension composed of solids and gas bubbles suspended in a viscous
liquid. Previous models for the acoustic properties of a suspen-
sion employed methods based on the effective medium theory (e.g.
Kuster & Toksöz 1974; Berryman 1980) because they are applica-
ble at any frequency, and account for the presence of an unlimited
number of phases. However, this approach neglects the influence
of the liquid phase viscosity, the relative motion (or relative veloc-
ity) between the constituents, the evolution of the temperature of
the phases and the interaction between neighbouring solids grazing
each other. Alternatively, methods using the coupled phase theory
(e.g. Harker & Temple 1988; Atkinson & Kytömaa 1992; Margulies
& Schwarz 1994; Kytömaa 1995; Evans & Attenborough 1997;
Valier-Brasier et al. 2015) can capture all these effects for bi-phasic
suspensions (e.g. solids in a liquid or bubbles in a liquid) but are
restricted to the long-wavelength approximation (wavelength of the
perturbation much larger than the size of the discrete phases). The
coupled phase theory is suitable to compute the acoustic properties
of magmas because the long-wavelength approximation is valid at
the frequencies used in geophysics. To be extended to a three-phase
magma, the method requires modifications to account for both vis-
cous and thermal effects and the joint presence of crystals and gas
bubbles.

Here, we adapt the coupled phase theory to the computation of
the velocity of compressional waves travelling in magmas where
the crystals are not touching each other and where the melt is the
carrier phase. We first introduce the conservation equations con-
trolling the propagation of an acoustic perturbation in a suspension
and present the calculation of the speed of sound using the cou-
pled phase theory. The resulting model allows us to compute both
the velocity and the intrinsic attenuation coefficient of compres-
sional waves. In this work, we focus on the speed of sound and
we will address attenuation in a future communication. Results are
first presented for a suspension representative of magmas to illus-
trate how its composition and the characteristics of the perturbation
(frequency and propagation direction) affect the speed of sound.
We then apply the model to magmas having different chemical
compositions representative of arc magmatism to highlight the key
features of the propagation of sound in magmas. Finally, we com-
pare the results of our model with other relationships proposed or
employed by authors to estimate compressional wave velocity in
magmas.

2 M E T H O D

To present the model, we first introduce the physical model and
assumptions about the initial conditions (Section 2.1). Then, we in-
troduce the conservation equations describing the dynamics of the
phases (Section 2.2). These equations are similar to those reported
in the literature (e.g. Harker & Temple 1988; Atkinson & Kytömaa
1992; Evans & Attenborough 1997) and include a few modifica-
tions to account for the presence of three phases and the dynamic
viscosity of the melt. The details of the derivation of these equa-
tions are presented in Supporting Information 1 (online). In Section
2.3, we present the relationships controlling the momentum transfer
between the phases and within the liquid and solid phases. Section
2.4 details the relationships we used to account for the transfer of
heat within the liquid phase and between the carrier and suspended
phases. Section 2.5 describes briefly the calculation of the speed
of sound using the coupled phase theory because we employed the
same method as presented and employed by several authors to cal-
culate the velocity of a compressional wave (e.g. Harker & Temple
1988; Atkinson & Kytömaa 1992; Evans & Attenborough 1997).
We detail the calculation of the speed of sound in Supporting In-
formation 2 (online). In Section 2.6, we derive the bounds of the
speed of sound in magma using an alternative approach consid-
ering an isotropic compression of an isolated volume of magma.
Finally, we present the initial composition of the magmas and how
their changes in physical properties are computed as a function of
temperature (Section 2.7).

2.1 Physical model

We consider an elementary volume of a suspension composed of
solid particles and gas bubbles in a viscous liquid (Fig. 1). Both dis-
crete phases are represented with monodisperse spheres. Initially,
we consider all the constituents of the suspension to be static and
in thermodynamic equilibrium. The thermodynamic properties of
each phase (e.g. bulk modulus or specific heat capacity) are con-
sidered uniform within the elementary volume and constant with
pressure and temperatures. The presence of mass transfer or chem-
ical reactions between the phases is neglected.

A plane and monochromatic compressional wave propagates in
a gravitational field in the direction x with an angle θ from the
horizontal (Fig. 1). The geometry of the acoustic perturbation allows
us to express the conservation equations describing the dynamics of
each phase in one dimension aligned with the propagation direction
x (∂y = ∂z = 0). The wave has a small amplitude and a frequency in
the range of the acoustic signals recorded in nature (0.001–1000 Hz)
for which its wavelength is much larger than the diameters of the
particles and bubbles. Therefore, the scattering of the acoustic wave
resulting from resonance effects in the discrete solids and bubbles
may be neglected (Atkinson & Kytömaa 1992).

2.2 Conservation equations

The propagation of an acoustic perturbation in the suspension is
governed by the conservation equations of each phase. Neglecting
the transfer of mass between the phases and chemical reactions, the
conservation of mass of the liquid phase reads:

∂t (φlρl ) + ∂x (φlρlu) = 0, (1)

where ρ l is the density of the liquid phase, φl is the volume fraction
of liquid in the suspension and u is the liquid velocity in the direction
x (u = ux, the velocities in the other directions are null because we
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Figure 1. Schematic representation of a suspension of solid particles and
gas bubbles in a viscous liquid. The scheme represents a cross-section of an
elementary volume perpendicular to the north direction. The liquid phase
is represented in grey. The black and white discs correspond to the solid
particles and gas bubbles, respectively. The three grey axes (east, north and
vertical) indicate the orientation with respect to the gravitational acceleration
vector. The black orientation axes (x, y and z) indicate the coordinate system
used to express the conservation equations, in which the direction x is aligned
in the direction of the propagation of the wave. The sinusoid represents the
plane acoustic perturbation propagating along the direction x with an angle
θ (positive clockwise) from the east direction.

consider a plane wave and the suspension to be initially static).
Similarly, for the solid and gas phases, mass conservations are:

∂t (φsρs) + ∂x (φsρsv) = 0, (2)

∂t

(
φgρg

) + ∂x

(
φgρgw

) = 0, (3)

where ρs is the density of the solids, φs is the volume fraction of
solids, v is the velocity of the solids in the direction x, ρg is the gas
density, φg is the volume fraction of gas and w is the velocity of the
gas bubbles.

The rate of change of momentum of the liquid equals the sum of
the applied force and may be expressed as (see Supporting Infor-
mation 1, online):

φlρl (∂t (u) + u∂x (u)) + φl∂x (P) + Ill + Ils + Ilg (4)

+ φlρl gsinθ = 0,

where P is the pressure, Ill is the rate of momentum exchange among
the liquid, Ils is the rate of momentum exchange between the liquid
and solid phases, Ilg is the rate of momentum exchange between
the liquid and gas phases and g is the gravitational acceleration.
The exchange of momentum within the liquid, Ill, is equal to the
divergence of the viscous stress tensor and indicates the rate at which
the viscous stress propagates in the liquid. The two other terms, Ils

and Ilg, express the exchanges of momentum between the carrier
and discrete phases through the drag forces when they have relative
velocities. The conservation of momentum in the solid phases is:

φsρs (∂t (v) + v∂x (v)) + φs∂x (P) + Iss − Ils (5)

+ φsρs gsinθ = 0,

where Iss represents the transfer of momentum between close solids.
Here, this term corresponds to the lubrication forces caused by the
squeezing of the interstitial liquid located between two grazing
particles (see the next section for details about this term). The
momentum conservation in the gas phase reads:

φgρg (∂t (w) + w∂x (w)) + φg∂x (P) − Ilg + φgρggsinθ = 0. (6)

The conservation of energy in the carrier liquid expressed as a
function of the temperature reads:

φlρlCPl (∂t (Tl ) + u∂x (Tl )) − φl Tlαl (∂t (P) + u∂x (P)) (7)

+ 2φlρl gusinθ−σxx∂x (u) + Hll + Hls + Hlg = 0

where Tl is the temperature of the liquid phase, CPl is the specific
heat capacity at a constant pressure of the liquid, αl is the coef-
ficient of thermal expansion of the liquid, σ̄ is the liquid viscous
stress tensor, Hll is the rate of heat diffusion within the liquid phase
by conduction, Hls is the rate of heat exchange between the carrier
liquid and discrete solids and Hlg is the rate of heat exchange be-
tween the liquid and gas bubbles. The two terms Hls and Hlg are the
total heat flux through the interfaces between the carrier and dis-
crete phases. They depend on the temperature difference between
constituents. Similarly, in the solid and gas phases, the conservation
of energy is:

φsρsCPs (∂t (Ts) + v∂x (Ts)) − φs Tsαs (∂t (P) + v∂x (P)) (8)

+ 2φsρs gvsinθ − Hls = 0,

φgρgCPg

(
∂t

(
Tg

) + w∂x

(
Tg

)) − φgTgαg (∂t (P) + w∂x (P)) (9)

+ 2φgρggwsinθ − Hlg = 0,

where Ts is the temperature of the solids, Tg is the temperature of
the gas, CPs is the specific heat capacity at a constant pressure of
the particles, CPg is the specific heat capacity of the gas, αs is the
coefficient of thermal expansion of the solid particles and αg is the
coefficient of thermal expansion of the gas.

The state equations link the variation of the density of the phases
to the evolution of their temperatures and pressure:

dρl − ρl

Kl
d P + αlρl dTl = 0, (10)

dρs − ρs

Ks
d P + αsρs dTs = 0, (11)

dρg − ρg

Kg
d P + αgρg dTg = 0, (12)

where Kl is the bulk modulus of the liquid phase (inverse of the
coefficient of isothermal compressibility), Ks is the bulk modulus
of the solids and Kg is the bulk modulus of the gas. The last conser-
vation equation ensures that the sum of the volume fraction of all
the phases is always equal to one. In differential form, it reads:

∂t (φl ) + ∂t (φs) + ∂t

(
φg

) + u∂x (φl ) + v∂x (φs) (13)

+ w∂x

(
φg

) = 0.

2.3 Interphase exchanges of momentum

The exchange of momentum within the liquid phase, Ill, is equal to
the divergence of the viscous stress tensor, σ̄ , which depends on the
dynamic shear viscosity, η and volume viscosity, λ, of the liquid (

Ill = φ∇ · [ηε̄ + λtr (ε̄) Ī ], where ε̄ is the strain rate tensor and Ī
is the unit tensor). For a magmatic melt in relaxed conditions (low-
frequency perturbations), Dingwell & Webb (1989) showed that λ

= η/3. Since the velocity of the liquid in the directions y and z are
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Figure 2. Conceptual configuration of the crystals used to derive the rate of
momentum exchange between the solids. The scheme represents one target
particles located in the layer 2 and its six closest neighbours located in layers
1 and 3. The colour of the boundary of each particle depends on the layer
in which it is located (green for layer 1, red for layer 2 and blue for layer 3).
Each arrow indicates the velocity vector of the corresponding particles. The
grazing angle β is represented in purple.

null, the rate of momentum exchange in the liquid can be calculated
as:

Ill = 7

3
φlη∂2

x (u) . (14)

While contacts are neglected, crystals can exchange momentum
through lubrication forces (Marzougui et al. 2015; Bergantz et al.
2017; Carrara et al. 2019). Lubrication refers to the hydrodynamic
forces resulting from the resistance of the liquid located in the gap
between two neighbouring particles to their relative motions. These
forces influence the duration of the initiation and closure of mo-
tion of the solid phase (Carrara et al. 2019). The propagation of
a wave in a suspension can be viewed as a ‘cyclical transient’ in
which the relative motions between neighboring solids are repeti-
tively initiated and dissipated. To derive an expression of the rate
of momentum exchange between the solids, Iss, we consider a sus-
pension where spherical particles are regularly organized forming
a hexagonal close-packed lattice (Fig. 2). In this configuration, the
distances between the particles are identical and minimized such
that the influence of lubrication is maximized. The solid lattice is
oriented along the direction of propagation of the wave (x) such that
it can be represented as three layers of particles orthogonal to the
direction x (Fig. 2). The total lubrication force between two neigh-
boring particles (here labelled as i and k) including both normal and
tangential components can be expressed as (Marzougui et al. 2015;
Carrara et al. 2019):

Flub (k, i) = 3ηA

ρsds
2

(vk − vi ) , (15)

where A is a geometrical parameter indicating the relative impor-
tance between normal and tangential lubrication forces that depends
on the distance between the surface of the particles and on the graz-
ing angle β (Carrara et al. 2019):

A = 3cosβ

2 j
− ln ( j) sinβ, (16)

where j is the ratio between the distance separating the surface of the
neighbouring particles and their radius. Both the incidence angle
and distance between the surface of the particles can be deduced
from geometrical arguments since the solid lattice is regular. For
a compressional wave β = (2/3)1/2 and j is related to the volume
fraction of solids by (Atkinson & Kytömaa 1992):

j = 1 −
(

φs

φs max

) 1
3

, (17)

where φs max is the maximum volume fraction at which the solids
start to touch each other. For a hexagonal close-packed lattice,
φs max = 0.64. Summing all the lubrication interactions experienced
by the particle located on the second layer in Fig. 2 gives:

Flub
tot (2) = 9ηA

ρsds
2

(v1 + v3 − 2v2) , (18)

where v1, v2 and v3 are the velocity of the particles in the layers 1,
2 and 3, respectively. The sum of the solid velocities on the right-
hand side of eq. (18) may be approximated with the second-order
derivative in space of the solid velocity:

∂2vx

∂x2
� (v1 + v3 − 2v2)

�x
2

, (19)

where �x is the distance in the direction x separating two successive
layers of solids in Fig. 2, which can be calculated as:

�x =
√

2

3
ds

(
j

2
+ 1

)
. (20)

Inserting eqs (19) and (20) into eq. (18) gives the following
expression for the exchange of momentum between the solids:

Iss = Flub � 6ηA
( j

2 + 1
)2

ρs

∂2v

∂x2
. (21)

The liquid exchanges momentum with the other phases (particles
and bubbles) because of their relative motions. The transfers of mo-
mentum between the carrier and discrete phases include both steady
(drag) and unsteady (added mass and Basset forces) contributions.
Because of the high viscosity of magmatic melts, the frequency
range considered here is well below those at which unsteady forces
become significant compared to the steady contribution (Gumerov
et al. 1988; Atkinson & Kytömaa 1992). Therefore, the rate of
momentum exchange between the liquid and solid phases can be
reduced to the steady term (Gidaspow 1994):

Ils = βls (u − v) , (22)

and the rate of momentum exchange between liquid and bubbles
is:

Ilg = βlg (u − w) , (23)

where β ls is the coefficient of momentum exchange between the
liquid and solids and β lg is the coefficient of momentum exchange
between the liquid and gas phases. To compute these two coef-
ficients, several empirical correlations exist in the literature (e.g.
Ergun 1952; Wen & Yu 1966; Syamlal et al. 1993; Gidaspow 1994;
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Benyahia et al. 2006). Here, we combine a Stokes drag law for high
porosity (high liquid volume fraction) and an Ergun relationship at
lower liquid volume fraction. Because of the high viscosity of the
liquid phase, the Ergun drag law may be reduced to the Carman–
Kozeny relationship because the inertial term becomes negligible:

βls =
⎧⎨
⎩

18ηφs

ds
2

i f φl >
25

28
150φs

2η

φl ds
2 i f φl ≤ 25

28

, (24)

βlg =

⎧⎪⎨
⎪⎩

18ηφg

dg
2

i f φl >
25

28
150φg

2η

φl dg
2 i f φl ≤ 25

28

, (25)

where ds is the diameter of the solid particles and dg is the diameter
of the gas bubbles. The drag laws we used here are similar to the
one proposed by Gidaspow (1994), but uses the Stokes drag instead
of the Wen–Yu drag correlation at high porosity such that the drag
forces are linearly dependent on the relative velocities between the
phases, which is suitable for the coupled phase theory.

2.4 Interphase exchanges of heat

The amount of heat transferred within the carrier liquid by conduc-
tion is calculated using Fourier’s law:

Hll = φl kl∂
2
x (Tl ) , (26)

where kl is the heat conductivity of the liquid.
The rate of heat exchange between the carrier and discrete phases

are expressed by:

Hls = γls (Tl − Ts) , (27)

and,

Hlg = γlg

(
Tl − Tg

)
, (28)

where γ ls is the coefficient of heat transfer between the fluid and
solids and γ lg is the coefficient of heat exchange between the fluid
and gas. In the absence of mass transfer between the phases, the
coefficients of heat transfer can be estimated as (Syamlal et al.
1993):

γls = 6klφs Nu

ds
2

, (29)

and,

γlg = 6klφg Nu

dg
2

, (30)

where Nu is the Nusselt number. To estimate Nu, we used the empir-
ical correlation proposed by Gunn (1978), which depends on both
the porosity and relative velocity between the phases. Since in our
case the relative velocities are very small because of the small am-
plitude of the perturbation and the viscosity of the liquid, Nu may
be expressed as a function of φl only:

Nu = (
7 − 10φl + 5φl

2
)

. (31)

2.5 Coupled phase model

To compute the speed of sound from eqs (1) to (13), we employed
the coupled phase theory (e.g. Harker & Temple 1988; Atkinson
& Kytömaa 1992; Evans & Attenborough 1997; Valier-Brasier et
al. 2015; see Supporting Information 2, online, for details about
the method and equations), which consists in imposing a small and

monochromatic perturbation to all the variables that oscillate during
the propagation of the acoustic perturbation (ρ l, ρs, ρg, u, v, w, Tl,
Ts, Tg, φl, φs, φg, P) by using wave-like solutions (here for the
density of the liquid phase):

ρl = ρl
0 + ρl e

i(kx−ωt), (32)

where ρl
0 is the static fluid density, ρl is the amplitude of the per-

turbation of the fluid density at the source and i2= −1. Note that
since all phases are static and in thermal equilibrium before the
perturbation, u0 = v0 = w0 = 0 and Tl

0 = Ts
0 = Tg

0 = T0. The expo-
nential term in eq. (32) expresses the spatial and temporal variations
of the liquid density and depends on ω, the angular frequency (ω
= 2π f, f is the frequency of the perturbation), and k the complex
wavenumber defined as:

k = ω

c
+ iα, (33)

where c is the speed of sound and α is the associated intrinsic atten-
uation coefficient. After the introduction of the oscillating variables
and linearization (the products of two small oscillations are ne-
glected), the set of equations can be expressed as a matrix equation
(see Supporting Information 1 for details about the matrix equa-
tion):

M
[
ρl , ρs, ρg, φl , φs, φg, Tl , Ts, Tg, ū, v̄, w̄, P

]T = 0, (34)

where M is a coefficients matrix containing k as unique unknown.
To ensure the equality in eq. (34), the non-trivial solution (a pertur-
bation exists) imposes that M is singular and thus:

det (M) = 0. (35)

The speed of sound and associated attenuation coefficient at a
given frequency can be found from the wavenumber, k, that is phys-
ically meaningful and that satisfies eq. (35).

2.6 Bounds of the sound speed in magmas

The speed of sound in a suspension depends on the variation of its
density and volume during an adiabatic compression or dilatation
(Temkin 1998). Consider an elementary volume, V, containing a
constant mass of solids and gas bubbles suspended in a viscous
liquid. By neglecting the relative motions between the phases, the
suspension can be approximated as a homogeneous material having
a bulk density, ρ∗, defined as (Brennen 2005):

ρ∗ = φl ρl + φsρs + φgρg. (36)

The total net change of the elementary volume, dV, can be written
as the sum of the net changes of the volume of the three phases:

dV = dVl + dVs + dVg, (37)

where dVl is the net change of the volume of liquid, dVs is the
net change of the volume of solid and dVg is the net change of the
volume of gas. Neglecting phase changes, eq. (37) may be expressed
as:

dρ∗
ρ∗ = φl

ρl
dρl + φs

ρs
dρs + φg

ρg
dρg, (38)

where dρ∗ is the net change in the bulk density of the suspension,
dρ l is the net change of the liquid density, dρs is the net change of
the density of the solids and dρg is the net change of the density of
the gas bubbles. The evolution of the density of each phase depends
on the change in pressure (here we consider that the pressure is the
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same in all the phases) and in its temperature as (here for a phase
i):

d ρi =
(

∂ρi

∂ P

)
T

d P +
(

∂ρi

∂Ti

)
P

dTi , (39)

where (∂ρ i/∂P)T is the variation of the density of a constituent
with the pressure at a constant temperature and (∂ρ i/∂Ti)P is the
derivative of its density with respect to its temperature at a constant
pressure. Introducing eqs (39) into (38) yields:

dρ∗
ρ∗ = 1

K∗ d P + φl

ρl

(
∂ρl

∂Tl

)
P

dTl + φs

ρs

(
∂ρs

∂Ts

)
P

dTs (40)

+ φg

ρg

(
∂ρg

∂Tg

)
P

dTg,

where K∗ is the bulk modulus characterizing the suspension and
defined as:

1

K∗
= φl

Kl
+ φs

Ks
+ φg

Kg
, (41)

with Kl/ρ l= (∂P/∂ρ l)T, Ks/ρs= (∂P/∂ρs)T and Kg/ρg= (∂P/∂ρg)T.
When the net changes in temperature of the phases are neglected,
the isothermal speed of sound is:

c−2 = dρ∗
d P

= ρ∗
K∗ . (42)

When considering temperature variations, the speed of sound de-
pends on the evolution of the bulk density of the suspension with
pressure at constant entropy (Temkin 2000). The net change of en-
tropy, dS, in each phase may be expressed as a function of the net
change in its temperature and pressure (here for a phase i):

Ti d Si =
(

∂Si

∂Ti

)
P

dTi +
(

∂Si

∂ P

)
T

d P. (43)

Considering an isentropic transformation, eq. (43) can be ex-
pressed as:(

∂Ti

∂ P

)
S

= −
(

∂Ti

∂Si

)
P

(
∂Si

∂ P

)
T

. (44)

Because the magma constituents have different thermodynamic
properties, the net changes in temperature of the phases for the
same net change in pressure are not equal. Two end-member scenar-
ios may be considered as a function of the perturbation frequency
and characteristic times for the phases to reach thermal equilib-
rium, τ . When f�τ –1, the heat exchanges between the phases
may be neglected such that dTl 	= dTs 	= dTg. Inserting eq. (44)
into eq. (40) and considering the relationships dTi = (∂Ti/∂P)S dP,
(∂Ti/∂Si)P = Ti/CPi, (∂Si/∂P)T = −αi/ρ i and (∂ρ i/∂T)P = −αi ρ i,
the speed of sound at thermal disequilibrium reads:

c−2 = dρ∗
d P

= ρ∗
(

1

K∗ − φlα
2
l T 0

CPlρ f
− φsα

2
s T 0

CPsρs
− φgα

2
gT 0

CPgρg

)
. (45)

When f
τ –1, the rates of heat exchanges between the phases are
efficient such that the phases may be considered in thermal equi-
librium during the propagation of the perturbation. In adiabatic
conditions, the total change of temperature in the suspension at
equilibrium, dT∗, may be calculated as:

dT ∗ = φlρlCPldTl + φsρsCPsdTs + φgρgCPgdTg

φlρlCPl + φsρsCPs + φgρgCPg
. (46)

Setting dTl = dTs = dTg = dT∗ in eq. (40) and inserting eqs (44)
and (46) give the following relationship for the speed of sound at

thermal equilibrium:

c−2 = dρ∗
d P

= ρ∗
K∗ − α∗2T 0

CP∗ , (47)

where α∗ is the bulk coefficient of thermal expansion defined as:

α∗ = φl αl + φsαs + φgαg, (48)

and CP∗ is the specific bulk heat capacity at constant pressure
calculated as a mass average:

CP∗ = φlρlCPl + φsρsCPs + φgρgCPg

ρ∗
. (49)

The characteristic time at which the transition between the two
regimes occurs depends on the rate at which the heat is exchanged
between the phases. Two characteristic times may be calculated
since both the gas and solids are suspended in the liquid. To es-
timate these critical frequencies, we start by considering a static
suspension of gas bubbles in a liquid. The evolution of the differ-
ence in temperature between the two phases resulting only from the
heat exchanged between them may be approximated as:

∂t

(
Tl − Tg

) + τg
−1

(
Tl − Tg

) = 0. (50)

where τ g is the characteristic time to equilibrate the temperature of
the liquid and the gas phases given by:

τ−1
g = γlg

(
1

φlρlCPl
+ 1

φgρgCPg

)
. (51)

Similarly, the characteristic time to equilibrate the temperature
of the phases in a suspension of solids in a liquid, τ s, is:

τ−1
s = γls

(
1

φlρlCP f
+ 1

φsρsCPs

)
. (52)

2.7 Magmas under consideration

We considered three different magmas representative of composi-
tions that may be encountered in arc magmatism (basalt, andesite
and dacite) and simulated their adiabatic cooling and crystalliza-
tion using the software MELTS (Ghiorso 2004) at a pressure of
150 MPa and fixing the oxygen fugacity along the Ni–NiO oxygen
buffer for the andesite and dacite, and along the quartz–fayalite–
magnetite buffer for the basalt. The initial compositions were taken
from Dufek & Bachmann (2010) and Martel et al. (1999) (see Ta-
ble 1). We set the initial amount of dissolved water in the magmas
to ∼3.5 wt. per cent to ensure that water vapour starts exsolving
once the mass fraction in liquid is ∼70 wt. per cent (Duan 2014).
We used the thermodynamic properties of each phase computed
during the cooling simulations to estimate the speed of sound in the
magmas as a function of their temperature. All the simulations were
stopped when the crystallinity of the magmas reached the maximum
packing fraction (φl = 0.36).

3 R E S U LT S

3.1 The speed of sound in three phases suspensions

To illustrate how the material properties and characteristics of the
perturbation affect the speed of sound in magmas, we define ref-
erence conditions relevant to magmas (Table 2) and vary selected
parameters independently from each other. Fig. 3(a) displays the
evolution of the velocity of a compressional wave as a function of the
volume fraction in liquid, solids and gas bubbles when f = 0.01 Hz.
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Table 1. Initial chemical composition, pressure and temperature of the
magmas.

Composition
wt. per cent Basalt Andesite Dacite

SiO2 48.108 59.736 66.013
TiO2 0.970 0.469 0.440
Al2O3 16.883 17.341 15.263
Fe2O3 1.755 1.277 0.663
FeO 8.279 4.765 2.031
MnO 0.174 0.176 0.069
MgO 5.925 2.239 0.908
CaO 10.396 6.100 2.910
Na2O 2.657 3.451 3.691
K2O 1.193 1.026 4.004
P2O5 0.214 0.000 0.186
H2O 3.447 3.4213 3.435
T start (◦C) 1100 1050 950
T stop (◦C) 960 700 715
P (MPa) 150 150 150
fO2 buffer QFM Ni–NiO Ni–NiO
Source Dufek &

Bachmann
(2010)

Martel et al.
(1999)

Dufek &
Bachmann
(2010)

Table 2. Reference physical properties used to explore the influence of the
composition of the suspension and characteristics of the perturbation on
the speed of sound. They correspond to an approximate total pressure of
150 MPa

Variable Reference value

T 1000 ◦C
ρl

0 2500 kg m–3

ρs
0 3000 kg m–3

ρg
0 350 kg m–3

Kl 15 GPa
Ks 50 GPa
Kg 150 MPa
η 1000 Pa s
CPl 1300 J kg–1 K–1

CPs 1200 J kg–1 K–1

CPg 3750 J kg–1 K–1

αl 10–4 K–1

αs 10–6 K–1

αg 10–3 K–1

kl 1 W m–1 K–1

ds 5 mm
dg 0.5 mm
g −9.81 m s–2

θ 0◦

It shows that the speed of sound decreases rapidly once a small
volume fraction of volatiles is exsolved. When φg > 0.05, the solid
volume fraction has a negligible influence on the compressional
wave velocity compared to that in the presence of gas.

Fig. 3(b) displays the speed of sound in the same suspension as
in Fig. 3(a) when f = 100 Hz. Results show the same dependence
of the wave velocity on φg. The amplitude of the decrease of the
speed of sound when increasing the volume fraction of gas is, how-
ever, slightly lower as illustrated by the shift of the position of the
isocontour of c = 500 m s–1. The frequency of the perturbation
changes both the minimum (c ≈ 457 m s–1 when f = 0.01 Hz and
c ≈ 482 m s–1 when f = 100 Hz) and maximum (c ≈ 3117 m s–1

when f = 0.01 Hz and c ≈ 3150 m s–1 when f = 100 Hz) velocities

computed by the model. On the contrary, when φl = 1 the speed of
sound is the same at the two frequencies (2582 m s–1).

To further investigate the influence of the perturbation frequency
on sound speed in a magma, we set the volume fractions of its
constituents to φl = 0.65, φs = 0.3 and φg = 0.05 and calculate the
dispersion curve of the acoustic waves (Fig. 4). Results show that
the speed of sound increases nonlinearly with the frequency and that
three plateaus can be identified. The lowest plateau at c ≈ 1020 m s–1

occurs when f < 0.01 Hz. The second velocity plateau at c ≈ 1025 m
s–1 occurs when 0.1 Hz < f < 1 Hz, whereas the third and fastest
one at c ≈ 1090 m s–1 is reached when f > 100 Hz. As illustrated
in Fig. 4, the uppermost plateau occurs when f�max(τ s

–1,τ g
–1)

and corresponds to the thermal disequilibrium bound of the speed
of sound predicted by eq. (45). The lowest plateau is found when
f
min(τ s

–1,τ g
–1) and corresponds to thermal equilibrium bound of

the speed of sound given by eq. (47). The isothermal bound (eq. 42)
underestimate the speed of sound at all frequencies.

Fig. 5 displays the evolution of the wave velocity as a function
of the propagation angle, θ , and frequency of the perturbation.
When f ≥ 0.1 Hz, the velocity of the wave is lower when the
wave propagates upward than when it propagates downward. When
f < 0.1 Hz, the speed of sound show a complex dependence on
the propagation angle. The maximum velocity is computed when θ

= π /2, whereas the minimum sound speed occurs when the wave
propagates downward with a propagation angle of ∼30◦ from the
horizontal. The propagation angle influences sound speed because
of the terms involving the gravitational acceleration in eqs (4)–(9).
In momentum conservation, these terms express the contribution of
the change in the density of the phases to the gravitational force.
In the energy conservations, the term involving the gravitational
acceleration expresses the rate at which the potential energy changes
as a function of the velocity of the phase along the vertical direction.
However, the variations in wave velocities as a function of the
propagation angle (<1 per cent) are negligible compared to the
influences of the volume fraction of the constituents (Fig. 3) and
frequency of the perturbation (Fig. 4).

Fig. 6(a) displays the difference between the velocity of a com-
pressional wave computed when lubrication is accounted for and
when it is neglected as functions of the ratio of the solid volume
fraction over the maximum packing fraction, φs/φs max, and the per-
turbation frequency. The difference increases with the ratio φs/φs max

and with wave frequency. When f < 105 Hz, the influence of lubri-
cation forces on the velocity of a P wave is negligible. Lubrication
forces have some influence of sound speed in a magma only at high
frequency (f > 106 Hz).

3.2 Application to magmas

Figs 7(a)–(e) displays the evolution of the phase assemblages and
thermodynamic properties of the three magmas computed by the
cooling simulations and averaged over the phases with eqs (35),
(42), (45) and (47) (see Supporting Information 3, online, for details
on the thermodynamic properties of the constituents). The thermo-
dynamic properties show sharp changes once the water vapour is
exsolved. The bulk moduli of the magmas, in particular, drop by
almost one order of magnitude once a small fraction of water is
exsolved (Fig. 7d), resulting in a sharp decrease of the sound speed
(Fig. 7f). In the absence of gas, the influence of the frequency of
the perturbation is weak enough for the lower (eq. 47) and upper
(eq. 45) bounds of the P-wave velocity to be almost equal. On the
contrary, the two bounds show significant differences when a gas
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Figure 3. Speed of sound as a function of the volume fraction in liquid, solids and gas when (a) f = 0.01 Hz and (b) f = 100 Hz. The background colour
depends on the speed of compressional waves. The white dashed curves indicate isocontours of the sound speed. The black dashed line indicates the theoretical
limit of the validity of the model at φl = 0.36. The material properties of the constituents and the incidence angle are indicated in Table 2. The black cross
indicates the volume fractions used to compute the dispersion curve in Fig. 4.

Figure 4. Dispersion curve of a magmatic suspension. The volume fraction
of the constituents are φl = 0.6, φs = 0.35 and φg = 0.05. The solid black
curve indicates the results obtained with the coupled phase theory (eq. 35).
The black, red and blue dashed lines indicate the isothermal speed of sound
(eq. 42), the isentropic speed of sound at thermal equilibrium (eq. 47), and the
isentropic speed of sound out of thermal equilibrium (eq. 45), respectively.
The black and blue vertical dotted lines indicate the critical frequencies
above which the solid and gas bubbles are not in thermal equilibrium with
the surrounding liquid, respectively (eqs 51 and 52). The material properties
of the constituents and the incidence angle are indicated in Table 2.

phase is present (Fig. 7f). The amplitude of the difference between
the two bounds increases with the volume fraction of gas and de-
creases with temperature. In the final phases assemblages, the gas
volume fractions are φg ≈ 0.15 in the basalt (Fig. 7a), φg ≈ 0.1 in

Figure 5. Evolution of the compression wave velocity as a function of the
incidence angle and frequency of the perturbation. The radial axis indicates
the difference in per cent between the velocity of the compressional wave
at θ and θ = 0. The blue, red, green and purple curves correspond to
frequencies of 0.01, 0.1, 1 and 10 Hz, respectively. The volume fraction
of the constituents are φl = 0.65, φs = 0.3 and φg = 0.05. The material
properties of the constituents are indicated in Table 2.

the andesite (Fig. 7b) and φg ≈ 0.05 in the dacite (Fig. 7c). These
values translate into amplitude differences between the upper and
lower bounds of ∼150 m s–1 in the basalt, ∼200 m s–1 in the andesite
and ∼250 m s–1 in the dacite (Fig. 7f).
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Figure 6. Influence of the lubrication forces on the speed of sound in a suspension of solid particles in a viscous fluid. (a) Difference between the speed of
sound computed with eq. (35) considering and neglecting lubrication forces. The physical properties of the liquid and solids are the ones indicated in Table 2.
(b) Evolution of the difference between the speed of sound computed with eq. (35) considering (club) and neglecting (cnolub) lubrication forces as a function of
ηk2/ρs. The shaded area indicates the area covered by magmas.

Figure 7. Evolution of the phase assemblage, thermodynamic properties, and speed of sound of the magmas during the cooling simulations. (a)–(c) are the
phases assemblage computed during the simulation of the cooling of the (a) basalt, (b) andesite and (c) dacite. (d) Evolution of the bulk densities and bulk
moduli of the magmas. (e) Evolution of the bulk coefficient of thermal expansion and bulk heat capacity at constant pressure as a function of temperature. (f)
Evolution of the speed of sound in the magmas. The solid, dashed and dashed–dotted curves indicate the thermal disequilibrium (high frequency), thermal
equilibrium (low frequency) and isothermal bounds, respectively. The shaded areas correspond to the range of velocity that may be computed with eq. (35) at
different frequencies.
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Table 3. List of the thermodynamical properties, or expressions employed
to estimate them, used to compare the different models in Fig. 8. The surface
tension at the interfaces between the bubbles and liquid is neglected. The
thermodynamic properties and relationships are taken from Kieffer (1977).

Parameters Expression or value

ρl
0 1000 kg m–3

ρg
0 ρ0

g = ( P
Gair

)
1
γ

ρg
ref 690 kg m–3

Gair Gair = T R

Mgρg ref γ−1

T 20 ◦C
P 500 bars
γ 1.4
dg 0.5 mm
η 10 Pa·s
Mg 29.98 × 10–3 kg

mol–1

CPl 1300 J kg–1 K–1

CPg CPg = R
Mg

(1 − 1
γ

)

Kf 1 GPa
Kg Kg = P
αl 1 × 10–4 K–1

αg αg = 1/T

The dispersion of sound is particularly important in bubbly mag-
mas (Fig. 3 and Fig. 7F). In general, αg/(ρg Cpg) � αl/(ρ l Cpl). As
a result, for the same net change in pressure, |dTl|<|dT∗|<|dTg|
(eq. 44). Since αg � αf, the net thermal expansion of the gas bub-
bles increases significantly out of thermal equilibrium, which in turn
amplifies the resistance of the bulk material to compression and de-
compression and increases the speed of sound (Temkin 2000). This
effect results in the two increases of the speed of sound with fre-
quency observed in Fig. 4. The first increase occurs when the solids
become out of thermal equilibrium with the liquid. This velocity
jump may be ignored in crystal-bearing magmas (Fig. 7f) because
the coefficients of thermal expansion of the melt and crystals are
small (see Supporting Information 3, online).

4 D I S C U S S I O N

4.1 Predicting the speed of sound in magmas

Several relationships have been proposed to estimate the speed of
sound in two-phase suspensions (e.g. Kuster & Toksöz 1974; Ki-
effer 1977; Berryman 1980; Harker & Temple 1988; Commander
& Prosperetti 1989; Atkinson & Kytömaa 1992), and employed for
bubbly magmas (e.g. Chouet 1996; Kumagai & Chouet 2000; Mor-
rissey & Chouet 2001; Neuberg & O’Gorman 2002; Karlstrom &
Dunham 2016). To compare all these models with the results of eq.
(35) based on the coupled phase theory, we considered a suspen-
sion of bubbles of an ideal gas suspended in water (see Table 3
for thermodynamic properties of the phases). Fig. 8(a) displays the
comparison of the speed of sound estimated with the different mod-
els for 10–3 ≤ f ≤ 103 Hz. The models neglecting the evolution of the
temperature of the phases (Kuster & Toksöz 1974; Berryman 1980;
Harker & Temple 1988; Atkinson & Kytömaa 1992; Neuberg &
O’Gorman 2002; Karlstrom & Dunham 2016) give the same results
as eq. (42), underestimating the speed of sound and do not captur-
ing its dispersion. When a material is compressed or decompressed,
the temperature of its constituents changes accordingly, inducing
their thermal expansions, which oppose the change of volume re-
sulting from the change in pressure. Consequently, neglecting the

thermal effects results in overestimating the ratio (dρ∗/dP), and
in turn, underestimating compressional waves velocity. In magmas
and at low frequency, the difference between the isothermal and
isentropic speed of sounds is, however, small when a gas phase is
present (Fig. 7). Neglecting the evolution of the temperature of the
phases is thus an acceptable assumption for bubbly magmas at low
frequencies (f<∼1 Hz in Fig. 4) given the uncertainty on the ther-
modynamic properties of the constituents. At higher frequencies,
the isothermal assumption results in a large underestimation of the
P-wave velocity in a bubbly magma (of ∼200 m s–1 in andesite
with φg ≈ 0.10; Fig 7f). On the contrary, in the absence of exsolved
volatiles, the isothermal assumption results in a significant under-
estimation of the speed of sound (∼50 m s–1 in Fig. 6f) compared
with the isentropic case at any frequency.

Other relationships account for the thermal effects during the
propagation of an acoustic wave. The model proposed by Kief-
fer (1977) predicts P-wave velocity between the upper and lower
bounds but does not capture the dispersion of the sound (Fig. 8a). In
this model, while the temperature changes are accounted for in the
gas phase, they are neglected in the liquid. As a result, the compres-
sion and decompression are isentropic in the gas and isothermal in
the liquid, which explains why this model predicts speed of sounds
between those predicted with eqs (42) and (45). The lack of sound
dispersion results from the absence of heat exchange between the
phases in this model.

The relationship proposed by Commander & Prosperetti (1989)
and employed by Chouet (1996), Kumagai & Chouet (2000) and
Morrissey & Chouet (2001) accounts for the exchange of heat from
the bubbles to the liquid and captures the increase of the speed of
sound at approximatively the same range of frequencies as eq. (35)
(Fig. 8a). The evolution of the temperature in the liquid is, however,
neglected in this model. Consequently, it predicts sound speeds
slower than eq. (35) for all frequencies < 103 Hz. This model also
considers the dynamics of the interface between the gas bubbles
and surrounding liquid, a phenomenon not accounted for in our
model. The dynamics of the bubbles are expected to cause a sudden
increase in sound speed at a resonance frequency, which depends on
the bubble radius (Commander & Prosperetti 1989; Chouet 1996)
and which is not captured in eq. (35) (Fig. 8b). In magmas, the
resonance frequency of bubbles is on the order of the kHz (Chouet
1996). This is above the frequencies usually used in geophysics and
can be ignored for most applications.

It should be noted that another increase in the speed of sound is
expected for each discrete phase at higher frequencies than explored
herein (Temkin 2000). These velocity jumps result from the trans-
lational relative motions between the liquid and the discrete phases.
As for heat, the constituents of the suspension exchange momentum
during the propagation of an acoustic perturbation because of their
relative motions. The rates of momentum transfer in the suspension
depend on the coefficients of momentum exchange given by eqs
(24) and (25). The evolution of the relative velocity between the
carrier and suspended phases is (here between the liquid and the
gas):

∂t (u − w) + νlg (u − w) = 0 (53)

where ν lg is the critical frequency above which translational effect
cannot be neglected. It is defined as the inverse of the characteristic
time needed for the relative velocity between the gas and liquid
phases to vanish:

νlg = βlg

(
1

φlρl
+ 1

φgρg

)
(54)
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Figure 8. (a) Comparison of sound speeds predicted by various model in a suspension of gas bubbles in water for 10–3 ≤ f ≤ 103 Hz. (b) Comparison of the
speed of sound computed with eq. (35) and with eq. (41) in Commander & Prosperetti (1989) for 103 ≤ f ≤ 106. The properties of the fluid are the same as
in (a). The density of the water and gas were calculated following eqs (8) and (9) in Kieffer (1977). The bulk modulus and coefficient of thermal expansion,
Kg = P, αg = 1/T. The heat capacity of the gas is calculated as CPg = (γ /(γ−1))R/Mg, where γ is the heat capacity ratio (γ = 1.4), R is the ideal gas constant
and Mg is the molar mass of the gas.

Similarly, the critical frequency for translational relative motion
between the solids and liquid, ν ls, is:

νlg = βls

(
1

φlρl
+ 1

φsρs

)
(55)

When f > max(ν ls,ν lg) the magnitude of the relative velocity be-
tween the carrier liquid and discrete phases becomes significant
and cannot be ignored when computing the speed of sound in the
suspension. At these frequencies, the assumption of homogeneity
required to express eq. (36) is violated such that eq. (45) cannot
be employed to estimate the velocity of compressional waves. The
relative motions between the phases cause the increase in the speed
of sound predicted by eq. (35) observed in Fig. 8(b). The critical
frequency for translational effects is inversely proportional to the
dynamic viscosity of the liquid phases. For magmas, ν lg and ν ls are
far above (>1 MHz) the maximum frequencies considered here.
The influence of the translational relative motions on the speed of
sound can thus be safely neglected in magmas for most geophysical
applications.

4.2 Limit of validity of the model

In a suspension, the initiation of interactions between the discrete
solid particles marks the onset of rigidity and the transition from
liquid- to solid-like elastic body. In our model, while contacts are
neglected, we accounted for the exchange of momentum between
neighbouring crystals through lubrication forces. The initiation of
lubricated interactions between neighbouring particles has been
suggested to result in an increase in the speed of sound, marking the
onset of rigidity in the suspensions (Esquivel-Sirvent et al. 1995).
The experiment from these authors was performed at frequencies

of the order of MHz, which are far above those considered in our
model. Equation (21) shows that for identical solid volume fraction,
Iss varies as a function of ηk2/ρs. For magmas and perturbations in
the range of frequency used in geophysics, ∼10–9<ηk2/ρs<∼101,
so that the influence of lubrication on the speed of sound is negli-
gible (Fig. 6b). As a result, the sharp increase of the velocity of the
compressional waves and the emergence of shear waves (Caricchi
et al. 2008) caused by the initiation of contact between the crystals
have negligible precursory velocity increase due to lubrication.

Since the influence of the contact between the solids is beyond
the scope of our model, the initiation of a fragile contact network
(Bergantz et al. 2017) between the crystals at magma/mush tran-
sition represents the limit of its applicability. We can neverthe-
less qualify how the transition to rigidity may occur. The volume
fraction at which a continuous contact network forms (at random
loose packing) in a magma depends on the sizes, shapes, orienta-
tions and roughnesses of the crystals. It can be significantly larger
than φl ≈ 0.36, the minimum random close packing calculated for
frictionless and monodisperse spheres (Bergantz et al. 2017). The
difference between random loose and close packings is expressed
in the coordination numbers (average number of particle–particle
contacts per particle), which is larger at random close packing than
at random loose packing. The transition between the two packings
occurs as a consequence of the reorganization of the crystal network
due to contact sliding and particle non-affine motions. The increase
in the coordination number raises the rigidity of the suspension and
the speed of sound. Thus, the rigidity modulus is expected to in-
crease progressively with the decreases of φf between the random
loose and close packings. Contacts between solids are implicitly
accounted for in the effective medium theory (e.g. Kuster & Toksöz
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1974; Berryman 1980) and the Hertz–Mindlin contact theory. In
dense suspensions where solids are in cohesionless contact, the
bulk and rigidity moduli also depend on the confining pressure and
amplitude of the perturbation, which affects the non-affine motions
of the crystals, contact slidings and shear dilatancy (e.g. Makse et
al. 2004; Brum et al. 2019). Such phenomena may induce either
strengthening or weakening of the rigidity of the suspension be-
cause of the changes in the contact network (Van den Wildenberg
et al. 2013). The effective medium theory is not able to account
for the relaxations associated with changes in the contact network
and usually overestimates the shear modulus (Makse et al. 2004).
As a result, the applicability of methods based on the effective
medium theory to compute the speed of sound between the ran-
dom loose and random close packing is uncertain given the prone-
ness of the crystal network to structural reordering and non-affine
motions.

In addition to the absence of contact between particles, we made
assumptions when deriving the conservation equations that may
affect the calculated sound speed. We neglected the mass trans-
fers associated with the precipitation or melting of crystals and the
growth, dissolution or nucleation of gas bubbles. The importance
of the mass transfers on the acoustic properties of a suspension
depends on the rates of mass exchange between the constituents
(Fuster & Montel 2015). In magmas, the exsolution or dissolution
of the volatiles depends on the changes in their solubility in the
melt phase, which is mainly controlled by the pressure changes.
The nucleation of bubbles is expected to occur during a short pe-
riod (Toramaru 1995) and requires a large supersaturation pressure
(> 5 MPa) even in the presence of crystals (Hurwitz & Navon
1994; Shea 2017). In our model, we considered small perturbations
and the magma being initially at thermodynamic equilibrium (no
steady mass or heat transfers). Thereby, the small amplitudes of the
perturbations in pressure are not expected to trigger the nucleation
of bubbles, which requires large amplitude waves (Rothery et al.
2007). The rate of the exchange of mass between the dissolved and
exsolved volatiles is controlled by the bubbles sizes and the diffu-
sion coefficient of the volatiles species in the melt phase (Toramaru
1995). The competition between diffusion and the rate of pressure
change can be measured by the ratio of the diffusive timescale over
the decompression timescale (Lensky et al. 2004). The diffusivity
coefficient of water (the most common volatile in magma) is low
(between ∼10–13 and ∼10–10 m2 s–1; Zhang & Behrens 2000) so that
mass transfer between the melt and gas phases is negligible (i.e. the
diffusive ratio is > 1) when changes in pressure are faster than
∼10–2–10–4 Hz for bubbles of 10–100 μm in radius, respectively.
Similarly, the rates of the precipitation or melting of the crystals in
magmas are small (e.g. ∼10–13 and 10–12 m s–1 for crystal growth;
Hawkesworth et al. 2004) so that we do not expect the mass transfer
between the liquid and solid phases to have a significant influence
on the velocity of a compressional wave in magma.

Heat and mass exchanges between the phases are controlled by
the coupling terms (β ls, β lg, γ ls and γ lg), which are based on empir-
ical correlations. The choice for the correlations employed to calcu-
late the coefficients of momentum exchange, β ls and β lg, influences
the two critical frequencies, ν ls and ν lg, at which the translational
relative velocities between the suspended and carrier phases start to
significantly influence sound speed (when f > 105 Hz in Fig. 8b).
Here, we considered the creeping and steady flow of the liquid
around the discrete phases because of the dynamic viscosity of the
melt allowing us to neglect inertial and unsteady terms. We em-
ployed a Stokes law for high porosity (φl > ∼0.893) as usually used
in the coupled phase theory (e.g. Harker & Temple 1988; Atkinson

& Kytömaa 1992; Evans & Attenborough 1997). For lower porosity
(φl < ∼0.893), we used a Kozeny–Carman relationship instead of
the Stokes law to account for the influence of the presence of the
surrounding crystals and the associated decrease in permeability.
The maximum difference between the momentum exchanges coef-
ficients predicted by the Stokes and Kozeny–Carman relationships
occurs at the maximum packing fraction and reaches ∼1 order of
magnitude. Therefore, account for the Stokes law instead of the
Kozeny–Carman law would result in a decrease of the critical fre-
quencies, β ls and β lg, of ∼1 order of magnitude at maximum. The
two critical frequencies, β ls and β lg, calculated considering a Stokes
law remain above the range of frequency considered (10–3–103 Hz).
As a result, in the range of the frequency considered here, the choice
of the law for the exchange of momentum has a negligible influence
on the calculated speed of sound in magma.

Similarly, the choice of the empirical relationship employed to
predict Nusselt number in the coefficient of heat transfer between
the phases, γ ls and γ lg, impacts the critical frequencies at which the
transition between thermal equilibrium and disequilibrium regimes
occurs. We used the correlation proposed by Gunn (1978) to obtain
an expression depending on the porosity of the suspension. This
expression also accounts for the influence of the relative velocity
between the carrier and suspended phases. We showed that within
the range of frequency considered, the relative velocity between the
constituents is negligible. As a result, the influence of the relative
motion between the constituents on the rates of heat exchange is
weak and can be neglected. Furthermore, other empirical relation-
ships predicting the Nusselt number exist (e.g. Ranz 1952; Li &
Mason 2000) but often reduce to Nu = 2 in the absence of relative
flow between the constituents, which is the same Nu as predicted
by eq. (31) when φl = 1. At the minimum porosity (φl = 0.36), eq.
(31) predicts Nu = ∼4. As a result, employing another empirical
correlation to calculate the Nusselt number will tend to decrease
the two critical frequencies, τ g

–1 and τ g
–1, by a factor of 2 at maxi-

mum. The two theoretical maximum and minimum wave velocities
(eqs 45 and 47) remain unchanged since the correlation of the Nus-
selt number only affects the rate of the heat exchanges but not the
equilibrium temperature predicted by eq. (46).

4.3 Implication in volcanology

Our results have implications for the interpretation of seismic
signals recorded around volcanoes. Long period (LP) events are
thought to result from the acoustic excitation of cracks (e.g. Chouet
1986; Kumagai & Chouet 2000) or in the volcanic conduits filled
with fluid (magmas, water, gas, etc., e.g. Jousset et al. 2003, 2004)
with the surrounding solid rock. The velocity of compression waves
in the magma located in the cracks or conduit affects the resonance
frequency, radiation attenuation. Our model shows that compres-
sional waves propagate faster at high frequency (>100 Hz) than
at low frequency (< 1 Hz) when the magma contains exsolved
volatiles. Consequently, the resonance frequency of a crack filled
with bubbly magma will be higher (and the radiation attenuation
lower) at a high frequency than at a low one. This effect accentuates
the dispersive behavior of the crack and tube waves that propagate
in volcanic cavities (Chouet 1986; Ferrazzini & Aki 1987).

The detection of exsolved volatiles and estimation of their volume
fraction in magma is important to assess volcanic hazards. Tomogra-
phy images of seismic waves velocity are an interesting tool to map
compositional changes in magma reservoirs. Our model provides a
way to assess how the speed of sound in magma depends on both
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Figure 9. Evolution of the compressional wave velocity as a function of the
solid volume fraction. The red and blue curves were computed with φg = 0
and 0.01, respectively. The solid curves, dashed and dotted–dashed curves
correspond to frequencies of 1, 10 and 100 Hz, respectively (when φg = 0,
the three curves collapse because of the vertical resolution). The material
properties of the constituents are indicated in Table 2.

the crystal and the exsolved volatiles contents. Crystals increase the
velocity of compressional waves but weakly affect the dispersion
of sound in the magma (Fig. 9). The presence of gas bubble greatly
decreases compressional wave velocity and induces the dispersion
of sound. The difference between the speed of sound at high and
low frequencies is proportional to the gas volume fraction (Fig. 7).
Consequently, the comparison of tomography images computed for
different frequencies at low and high frequencies might help in
highlighting the presence of gas when mapping magma reservoirs.

5 C O N C LU S I O N

We developed an analytical model to estimate the speed of sound in
magmas consisting of a suspension of solids and/or gas bubbles in a
viscous liquid. Our model shows that the velocity of compressional
waves in a magma varies nonlinearly with frequency between two
asymptotic bounds. The nonlinearity is caused by two successive
speed increases as frequency increases caused by increasing levels
of thermal disequilibrium between the phases. These two bounds
correspond to the speed of sound when all the constituents of the
magma are in thermal equilibrium (lower bound) and when the heat
exchanges between the phases are neglected (upper bound). Our
results show that below 103 Hz, lubrication forces have a negligible
influence on the speed of sound (δv < 10–4 m s–1). We simulated the
cooling of three magmas representative of the diversity of compo-
sitions commonly encountered in arc magmatism and applied our
model to calculate corresponding the speed of sound. Results show
that the presence of gas in a magma yields a sharp decrease in the
velocity of sound and enhances significantly its dispersion. The ex-
istence of crystals in a magma increase P-wave velocity but does
not affect significantly its dispersion. We found that the exchanges
of heat between the constituents may be neglected in crystal-bearing
magmas, but that they cannot be ignored once a gas phase is present.
Finally, we compared the speed of sound in a water–gas mixture that

is predicted by our model to those given by other relationships usu-
ally used by authors for magmas or water in the range 10–3–103 Hz.
The difference between our model of the velocity of compressional
waves and literature values results from the simplifications and as-
sumptions made when considering the evolution of the temperature
of the phases and the heat exchanges. In water, these differences
typically range from 0.5 to 8 per cent and are largest at frequen-
cies > 10 Hz.
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