

Thermal fluctuations beneath continents

Nicolas Coltice, Tobias Rolf, Paul Tackley, Ben Phillips, Hervé Bertrand

The Central Atlantic Magmatic Province (200Ma): plume evidence?

- No hotspot track
- Region elongated over 8000km
- Low rate of magma supply (100-200m)
- No uplift
- No radial pattern

Same for the Karoo (180Ma)

Hypothesis

Boundary layer theory: continental insulation + longer wavelength of convection

Theory and experiments: temperature increases with continental size

2 small continents

1 big continents

3D spherical convection with plate-like behavior and continental rafts

Average subcontinental temperature vs. continental connectivity

Brandl et al. (2013)

Coltice et al. (2013)

