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1-Introduction 

 

With the development of large networks, huge quantities of continuous recordings have been 

made available. The extraction of deterministic information about the Earth structure from 

long ambient-noise time series opens new opportunities for seismologists. Correlations of 

ambient seismic vibrations are effectively and widely used to reconstruct impulse responses 

between two passive receivers as if a source was placed at one of them. This provides the 

opportunity for imaging without a source, or passive imaging. Applications include 

seismology, helioseismology, underwater acoustics, and structural health monitoring, to cite 

only a few. This chapter is a brief presentation of the principles leading to the use of seismic 

ambient-noise correlations as virtual seismograms that correspond to the responses of the 

Earth between two stations. While the correlation technique went through great development 

in seismology in the 2000’s, the interest in this kind of approach was already stated in earlier 

studies, such as those of Aki (1957) and Clearbout (1968). Indeed, the same principles have 

been successfully applied in helioseismology (Duvall et al. 1993). The literature on the 

subject has grown rapidly, and it would be difficult to include all approaches in this summary. 

Courtland (2008) related the recent emergence of the method in seismology. Some review 

papers have already been published (e.g., Campillo 2006, Larose et al. 2006, Gouédard et al. 

2008, Wapenaar et al. 2010a, b). The reader can also usefully refer to the book by Sato et al. 

(2012). This chapter is mostly focused on ambient noise in seismology, while the correlation 

methods have also undergone important developments with the construction of virtual 

seismograms from active-source records in exploration (e.g., Rickett and Claerbout 1999, 

Schuster 2006, Curtis and Halliday 2010, Wapenaar et al. 2010a, b). 

In Section 2, we give a brief overview of the nature of the ambient noise in the 

relevant frequency band for broadband seismometer records. We introduce the correlation 

method through heuristic approaches in Section 3. Some mathematical results for simple 

media or simple noise-source distributions are given in Section 4. The limitations of the 

approach in actual situations are discussed in Section 5. The strategies of processing are 

presented in Section 6, and examples of applications to imaging and monitoring are presented 

in Section 7. 

 

2-Noise origin   

 

We recall here some aspects that are important for the applications discussed in the following. 
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Seismic ambient noise has been studied from the beginning of seismology, largely because of 

the need to improve the level of detection of deterministic arrivals. From early studies (e.g., 

Gutenberg  1958), it was recognized that the origin of the permanent agitation of the ground 

surface is different for different frequency bands. The high frequency noise (f >1 Hz ) is 

generally due to human activity (e.g., machinery, traffic). The energy of these signals is 

strongly variable in time, and is correlated with human life rhythms, with day and week 

periodicities. On the contrary, the natural origin of long-period ambient noise was recognized 

through the correlation of the amplitude with meteorological conditions. The frequency 

limiting the domain of human activity is dependent on local conditions (e.g., Bonnefoy-

Claudet et al. 2004). As no generalities can be drawn for high frequency noise, we will 

concentrate our discussion in a low frequency band that is well defined globally as associated 

with the interaction of the oceanic swell with the solid Earth. In the band of 0.3 Hz to 0.05 Hz, 

the ambient noise is often referred to as ‘microseisms’. Note that the general issues discussed 

in the following for the correlation of microseism records also apply for anthropic noise at 

high frequency. Microseisms have large amplitudes that provide an obstacle for the detection 

of weak arrivals produced by earthquakes. As the detectability level is an important issue in 

seismology, microseisms have been extensively studied. In the microseism spectral band, the 

noise is dominated by surface waves, which are predominantly Rayleigh waves (e.g., Toksoz 

and Lacoss 1968). The presence of body waves has nevertheless been attested (e.g., Vinnik 

1973). The coincidence between periods of strong microseisms and high swells that reach the 

coast-line was noted early on (Gutenberg 1924). Toksoz and Lacoss (1968) used array 

analysis to demonstrate the correlation between microseism sources and regions of low 

atmospheric pressure. 

Two peaks dominate the spectrum of microseisms, the principal one being for a period 

between 5 s and 7 s, while a less marked peak is also observed at twice the period of the main 

peak (e.g., Peterson 1993). These general characteristics are interpreted as the footprint of the 

spectrum of oceanic gravity waves.   

The less energetic, single-frequency or primary microseisms peak, at periods around 

14 s, is similar to the spectrum of wind-generated ocean gravity waves (Haubrich et al. 1963). 

With the limited penetration of gravity waves at this period, the noise is expected to be 

produced in shallow waters, and to be amplified by shoaling. To decipher the geographical 

origin of the primary microseism, Stehly et al. (2006) analyzed the energy of long-term 

average noise cross-correlations as a function of the azimuth of the station direction. The 

distribution of sources shares great similarity with the map of average ocean wave heights 
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obtained from satellite observations, which shows zones of primary microseism excitation in 

oceanic deep basins, with a seasonality of the global contributions from northern and southern 

oceans.  

The stronger double-frequency, or secondary microseism, peak at a period around 7 s 

is interpreted as the result of nonlinear interactions between ocean gravity waves propagating 

in opposite directions, as shown by Longuet-Higgins (1950) based on earlier studies of Miche 

(1944). This nonlinear process produces a pressure at the sea bottom, even when the height of 

the water column is greater than the gravity-wave wavelength. The amplitude of the excitation 

depends on the response of the resonant water layer for specific periods and bathymetry. The 

microseism excitation depends on the ocean-wave state (swell amplitude), the existence of 

wave trains in opposite directions, and the bathymetry (resonance condition). The existence of 

gravity waves that propagate in opposite directions can be due either to reflection along the 

coast or to specific conditions of storm systems in the deep oceanic basins (e.g., Kedar et al 

2008, Zhang et al. 2010). Teleseismic body waves are identified using beam forming, by their 

high apparent velocity, and they have been used to map the actual sources in the oceans (e.g., 

Landès et al. 2010). Recent analyses have suggested that both coastal and deep-water origins 

are represented in the actual observations (Ardhuin et al. 2011, Hillers et al. 2012), and it has 

been demonstrated that global oceanographic models of sea state coupled with the physical 

description of the excitation allows for independent prediction of the main patterns of 

secondary microseism sources. 

At long periods, i.e., below 50 s, the ambient noise that is often referred to as hum has 

the spectral structure of the free oscillations of the Earth (e.g., Kobayashi and Nishida 1998, 

Tanimoto et al. 1998). The origin of this excitation is assumed to be the interaction of the 

ocean infragravity waves with the solid Earth. This mechanism was confirmed by the 

correlation between the apparent locations of hum sources with regions of large wave heights 

(e.g., Rhie and Romanowicz 2004). Nishida et al. (2008b) showed that the generation of 

background ambient noise at long periods occurs both in coastal regions and in deep oceans. 

The normal pressure caused by oceanic waves on the sea bottom can account for spheroidal 

motions. However, large toroidal contributions (e.g., Kurrle and Widmer-Schnidrig 2008) and 

long-period Love waves (Nishida et al. 2008) have been observed. This was explained by 

Fukao et al. (2010), who proposed a model for the coupling of infragravity waves with the 

topography of the sea bottom. 

In conclusion of this short presentation, it appears that the origin of the seismic 

ambient noise is still the object of on-going research and discussion. Different processes are 
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invoked exclusively for the two main spectral peaks and the long period domain in spite of the 

continuous character of the noise spectrum. 

 

3-Principle of the method: the heuristic approach 

 

In this section we present simple physical views of the principle of the ambient-noise 

correlation method. The mathematical developments are discussed in the next section. 

The results presented here originate from previous studies in seismology that were 

aimed at using ambient noise to extract deterministic information relating to the Earth 

structure (e.g., Aki 1957, Clearbout 1968). In seismic exploration, the ‘daylight imaging’ 

method was pioneered by Claerbout (1968), who proposed the conjecture stating that the 

cross-correlation of two daylight traces at surface locations A and B is equivalent to a 

reflection trace at B generated by a source at A. A formal demonstration was given for the 

one-dimensional (1D) case. The same idea was then successfully applied in time-distance 

helioseismology (e.g., Duvall et al. 1993). 

The correlation function of the fields recorded at two points is used as a virtual 

seismogram for which the source is acting at one point and the receiver at the second. For two 

signals of duration T, the correlation of the signal ( )1u t at 1  rG  and ( )2u t at 2  rG is defined 

classically in the time domain as: 

 

 ( ) ( )1 2 1,2 1 2
0

1, ; ( ) ( )
T

C r r t C t u u t d
T

τ τ τ= = +∫
G G  (1), 

 

or equivalently in the frequency domain as: 

  ( ) ( )*
1 2 1,2 1 2, ; ( ) ( )C r r C u uω ω ω ω= =G G  (2). 

 

The correlation function is widely used to measure the resemblance of two signals, and 

when these signals are similar enough, the time delay that separates them. The ambient noise 

signals recorded at distant stations are considered to be uncorrelated, as these result from 

variable interference between numerous waves of different types emitted by different sources. 

The same argument holds for the scattered waves that comprise the coda of seismograms. 
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Noise-correlation methods aim at extracting the slight coherent part of the signals that 

contains deterministic information on wave propagation between the two stations. Indeed, in a 

medium governed by a wave equation, the motion at two points cannot be fully independent. 

The extraction of the wave response between the two points is made possible by averaging the 

correlation over the positions of the sources of the signals. Note that, in the reasoning, the 

sources include the scatterers viewed as secondary sources.   

 

3.1-The time-reversal approach 

A simple, heuristic approach is based on the analogy between a correlation and a time reversal 

experiment (e.g., Derode et al. 2003, Paul et al. 2005). While not completely rigorous in a 

general case, this analogy allows for an understanding of the physical processes behind the 

noise-correlation method. In a time-reversal experiment in the laboratory, signals from an 

active source are recorded, numerically reversed ( t t→ − ), and then re-emitted in the medium 

(e.g., Fink 1992). According to the time symmetry of the solutions of the wave equations, the 

waves propagate, and under certain conditions, they focus on the original source position. In a 

scalar case, the conditions in such an experiment are that the recording–re-emission point 

distribution is sufficient to reconstruct the angular range of the original wave field. Typically, 

this is the case with a closed cavity that contains the source. When the re-emitted field is 

perfectly focused, the focal point can be considered as a virtual source. In seismology, we 

have no device that can emit a complex signal with sufficient energy. Our approach to the 

construction of signals from virtual sources is completely passive. We consider the 

mathematical analogy between correlation and convolution by a time-reversed signal. Indeed, 

the cross correlation of the signal produced by a source in S at receivers at A and B is 

formally equivalent to having a source at A producing waves that are recorded at S, time-

reversed, and re-emitted from S, to be recorded at B (as written in the frequency domain in 

Equation (2)).  

We have illustrated these operations in Figure 1 with numerical simulations. For the 

sake of simplicity, we consider 2D scalar propagation in a weakly scattering medium (Paul et 

al. 2005). 

 

Figure 1. Numerical simulation of the reconstruction of the causal and anti-causal parts of 

the Green's function from cross-correlations. (a) Configuration of the numerical experiment. 

One thousand sources S (x) surround the reference point A (+). Dots indicate the point 

scatterers. (b) Snapshot of the cross-correlation between the field at A and the field at 
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location (x, y), after averaging over the sources S for the correlation time of 30 s. The weakly 

diffusive medium is characterized by the transport mean free path l* = 640 km, which is 

greater than the distance between the points where the correlations are computed. A 

converging wave front is well defined and constitutes the anti-causal part of the Green's 

function. (c) Snapshot for correlation time t = 0 s. The wave front is focused on A. (d) 

Snapshot for t = 30 s. The diverging wave front corresponds to the causal part of the Green's 

function (a to d are from Paul et al. 2005). (e) Snapshots of the actual noise correlation 

computed from a network in western USA showing the causal surface wave part of the 

Green's function (from Lin et al. 2009). 

 

The field produced by each of several sources S along a circle is computed at each 

point of the medium (Figure 1a). The signals are cross-correlated with the signal of a central 

reference point. The correlations are shown in Figure 1b-d for correlation times -30 s, 0 s and 

30 s. At time 0t = , all of the energy is focused on A, as if A was a source. We observe a 

converging wave front for negative correlation times, and a diverging wave front for positive 

correlation times. These wave fronts correspond to the causal (positive times) and anti-causal 

(negative time) parts of the Green's function between A and any point R in the medium. The 

nearly perfect reconstruction of the Green's function, similar to a perfect time-reversal mirror, 

is explained but the perfect distribution of the source around A and R. To illustrate a practical 

application, snapshots of ambient noise correlations produced with USArray data (Lin et al. 

2009) are presented in Figure 1e. The clear diverging surface wave front suggests that the 

array is surrounded by distant noise sources.  

 

3.2-Stationary phase and end-fire lobes 

Following the time-reversal analogy, it can be asked whether the noise sources that surround 

the two receivers in the correlation process all contribute in the same manner to the 

reconstruction of the Green's function. In the absence of scatterers that can redirect the field in 

all directions, the Green’s function emerges from the correlations that contain noise sources 

where their acoustic path passes through one receiver to reach the other one. 

An experimental demonstration of this process was performed from ocean data 

simultaneously recorded on two sono-buoys at a few hundred meters from each other in a 

shallow-water environment. Noise was generated over 16 min in the 100 Hz to 300 Hz 

frequency interval using a ship, the track of which is represented in Figure 2a. The two 16-

min-long time-series are then cross-correlated using different time windows (Figure 2b-f). 
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When the correlation is performed on 1-s-duration time series (Figure 2b), the ship track is 

clearly observed. If the length of the cross-correlated time series is increased to 5 s, 10 s, 20 s 

and up to 30 s (Figure 2b-e, respectively), the signature of the ship track tends to disappear 

and the only signal left is obtained when the ship crosses the end-fire main lobes, which is 

defined as the directivity pattern of the time-domain cross-correlation between the two 

sensors (Figure 2a).   

 

Figure 2. (a) Representation in latitude-longitude coordinates of a 16-min-long ship track 

(blue full line) with respect to the sono-buoy locations (blue ‘*’). The approximate distance 

between the sono-buoys is R, at ca. 650m. The average ship speed was constant, at 4.8 m/s. 

The labels along the ship track correspond to each minute of the recording time window. The 

end-fire directivity pattern of the two sono-buoys is plotted in red. (b-f) Representations of the 

temporal evolution of the time-domain cross-correlation function between the two sono-buoys 

along the 16-min-long ship track. The x-axis and y-axis correspond to the time axis of the 

correlation function and the recording time, respectively. The duration of the time windows 

on which the cross-correlation was performed was (b) 1 s, (c) 5 s, (d) 10 s, (e) 20 s, and (f) 40 

s. Each cross-correlation pattern is normalized relative to its maximum. The color scales are 

in dB (from Roux et al. 2004). 

 

When coming from the end-fire lobe of the two receivers, the signal is produced by a 

noise source where its acoustic path that passes through one receiver naturally reaches the 

other receiver. The signals are then similar at the two receivers and contribute coherently to 

the correlation process with a unique delay time that corresponds to the travel time between 

the receivers. On the contrary, for a noise source outside the end-fire lobe, the ray paths that 

connect the source to each receiver do not superimpose. The sources out of the end-fire lobes 

do not contribute coherently to the correlation, as the correlated waveforms correspond to 

time delays that vary rapidly with the noise-source position. 

Obviously, we observe in Figure 2b-f that the longer the correlation window, the 

higher the signal-to-noise ratio (SNR), because more acoustic sources participate coherently 

to the correlation function when the incoherent contribution averages out. Indeed, assuming 

that the speed of the ship was constant during the track, it generates a uniform density of 

sources over time. For long time windows, the SNR of the correlation process can be defined 

as the ratio of the number of coherent versus incoherent sources inside the recording time 

window. 
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In summary, the averaging of the correlation process over time magnifies the coherent 

versus incoherent contributions of the noise sources. Following the geometrical interpretation, 

the coherent versus incoherent ratio corresponds to the area enclosed by the end-fire beam to a 

non end-fire beam. 

Finally, note that the time-averaged correlation function in Figure 2f shows different 

bottom-reflection and surface-reflected paths that correspond to the arrival-time structure of 

the Green's function in a shallow-water environment. 

 

Figure 3. (a) Experimental geometry when considering sources that surround a receiver-pair. 

The selection was for 240 sources located between two circles of radius R1 = 300 m and 

R2 = 370 m, which were centered at the middle of the receiver pair. (b) Average intensity of 

the raw traces with definition of the time windows corresponding to direct arrivals and to 

coda. (c) Cross-correlation functions obtained from each source and plotted as a function of 

azimuth θ (see definition on the insert). (d) Actual experimental Green’s function and cross-

correlation averaged over the sources (see panel (a)). (From Gouedard et al. 2008). 

 

Another way to understand the Green's function reconstruction is to separate the 

contribution that each noise source has to the correlation process. This was made possible 

with actual data from a high-resolution survey performed by Petroleum Development Oman 

(PDO) in North Oman. During this active-seismic survey, a large set of 1600 vibrators were 

used in combination with 1600 receivers over a 1-km square area, to measure the 1600 × 1600 

time-domain signals that constituted an exhaustive measurement of the transfer function of 

the half-space medium. 

From this dataset, we select a pair of receivers that are separated by a distance of 

d = 158 m, with a midpoint that coincides with the center of the ring in Figure 3a. This 

ensures the same scattering regime for both of the receivers at a given time of the records. 

Integrating over a line surrounding the receiver pair is theoretically sufficient to get the 

Green's function, as in our case the medium is lossless. As shown in Figure 3a, we selected 

sources inside a ring to increase the SNR when computing the cross-correlation. We define 

the azimuth with respect to the receiver pair, denoted by θ, as the difference between the 

azimuth defined by one source and the receiver pair center and the receiver pair azimuth 

(Figure 3c, insert). 

The end-fire lobes of the receiver pairs are the areas located in the alignment of the 

receivers (one on each side). The end-fire lobe aperture depends on the ratio between the 
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wavelength and the range between the receivers (Roux and Kuperman 2004), and corresponds 

to the misalignment of the source with respect to the receiver pair. Sources exclusively 

located within the end-fire lobes induce time delays between the apparent travel time at the 

two receivers that are smaller than 1/8 of the central period associated to the source spectrum 

(Fig. 2a). In other words, the end-fire lobes are areas in which the phase of the correlation 

function of direct waves is stationary with respect to azimuth θ.  

Figure 3c shows that when considering direct arrivals, the cross-correlation function is 

highly dependent on the source azimuth when it is computed independently for each source. 

When stacking the contributions of all of the sources (viz. all of the azimuths), all of the 

phases are averaged, and only the contributions of sources in the end-fire lobes do not vanish, 

where the delays are stationary. This leads to a good estimate of the actual direct-wave 

component of the Green's function. The average cross-correlation and the actual response as 

recorded in the field are compared in Figure 3d. Satisfactory reconstruction of the direct 

waves was achieved. Following Snieder (2004), the same approach was also proposed with 

the correlation of coda waves (Fig. 3b) where the scatterers play the role of virtual sources 

surrounding the receiver pair (Gouedard et al. 2008). 

 

4-Mathematical results 

 

4.1-Homogeneous body approximation 

The goal of this section is to investigate the following problem theoretically: can we retrieve 

the Green’s function between two points by performing a cross-correlation of the ambient-

noise field received on those two points? 

For the sake of simplicity, we will consider the scalar-wave problem for which the 

Green's function G is defined as the solution of the wave equation: 

 

 ( ) ( ) ( ) ( )2 2

;1;
G x t

G x t x t
c t

δ δ
∂

Δ − =
∂

G
G G  (3). 

 

4.1.1-The plane-wave representation in free space 

From a theoretical point of view, earlier studies have investigated the problem of spatial 

correlation with noise fields or with wave fields obtained from a distribution of random 

sources. For example, this problem was studied by Aki (1957) for surface waves. He 
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considered the 2D case with scalar waves in a homogeneous medium from the perspective of 

isotropic illumination by plane waves.  

The plane waves at angular frequency ω generated from sources at large distances and 

propagating in direction ψ are of the form:  

 

 ( ) ( ) ( )1 1; exp .u r F ik r n=G G Gω ω  (4), 

 

where ( )1;u rG ω  is a displacement at position 1r
G  of a Cartesian frame, k cω=  is the wave 

number, for a plane wave incoming from the direction ( )cos ,sinn ψ ψ=G  with amplitude 

( )F ω . Assuming an omni-directional distribution of incident plane waves, the field 

correlation between two points 1r
G  and 2r

G  reduces to the well-known form of a Bessel 

function: 

  ( ) 2*
1 2 0 1 2( ; ) ( ; ) ( )u r u r F J k r rω ω ω= −G G G G  (5), 

 

where 0 1 2( )J k r r−G G  is the Bessel function of the first kind and order 0. This is the essence of 

the spatial correlation methods proposed originally by Aki (1957), and which have been 

extensively used to study the structure of shallow structures.  

From there, we can identify J0 is a constituent of the 2D scalar Green's function:  
 

( ) ( )(1)
1 2 0 1 2 0 1 2 0 1 2

1 1, ; ( ) ( ) ( )
4 4

G r r H k r r J k r r iY k r r
i i

ω = − = − + −G G G G G G G G

 (6), 

 

where Y0 and (1)
0H are the Neumann and Hankel functions of zero order.  

 We finally obtain: 
  ( ) [ ]2*

1 2 1 2( ; ) ( ; ) 4 Im ( , ; )u r u r F G r rω ω ω ω= −G G G G  (7). 

 

As shown in Equation (7), the correlation theorem links the average correlation 

function (left term) to the imaginary part of the Green's function. The time domain signal 
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associated with ( )Im G  by Fourier transform is the causal Green's function plus its even anti-

causal time-symmetrical counterpart, as shown in the next paragraph. 

The generalization to the 3D free-space medium with a spatially uniform noise-source 

distribution is straightforward, as the field at each receiver can be decomposed as a 

superposition of uncorrelated plane waves from various directions. It has been established that 

the normalized cross-spectral density C1,2(ω) at frequency ω between two receivers as 1 and 2 

separated by a distance 1 2r r r= −G G  is: 

  ( ) ( )
1,2

sin kr
C

kr
ω =  (8). 

 

In the time domain, the normalized correlation function is: 

  ( ) ( ) ( )1,2 1,2
1 exp

2
C t C i t dω ω ω

π

∞

−∞

= ∫  (9), 

 

which can be written as: 

 

 ( ) ( ) ( )
1,2

exp exp1 1
4 4

i t r c i t r c
C t d d

ikr ikr
ω ω

ω ω
π π

∞ ∞

−∞ −∞

⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦= −∫ ∫  (10). 

 

The time derivative of the correlation function is then: 

  ( ) ( ) ( )1,2
1

4
d C t t r c t r c
dt r c

δ δ
π

⎡ ⎤= + − −⎣ ⎦  (11) 

 

The two terms in Equation (11) correspond to the backward and forward Green’s 

function between the receivers, which demonstrates the connection between the correlation 

function and the Green’s function.  

Note that Nakahara (2006) studied in detail the relations between the spatial 

correlation functions and the Green's function, in 1D, 2D and 3D cases. He emphasized the 

dimensional character of these relations, as essentially a Hilbert transform in 2D and a 

differentiation in 3D. 
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However, the drawback of the elegant result in Equation (11) is to start from a 

normalized correlation function, with the normalization required because the overall spatial 

contribution from noise sources in a lossless infinite medium is infinite. Experimentally 

though, ambient noise signals are always finite, as is the noise correlation function. The 

contradiction arises as the theory is developed in lossless environments while experiments are 

always performed in the presence of attenuation. Thus, normalization acts as a subterfuge for 

avoiding the inclusion of the required attenuation in the theory.  

 

4.1.2-Case of a homogeneous distribution of noise sources  

The goal of the present section is to show how the result in Equation (11) can be derived 

rigorously without the need for normalization when attenuation is present in the medium.  

To be as general as possible, we deal here with two receivers that are simultaneously 

recording ambient noise in a 3D homogeneous medium with an omni-directional and uniform 

distribution of noise sources. The incident field on the two receivers comes from a 

homogeneous spatial-temporal distribution of uncorrelated broadband noise sources. Volume 

attenuation is included in the medium with an attenuation parameter κ. 

The Green’s function between points A (in 1
Gr ) and B (in 2

Gr ) is then defined as follows: 

 

 ( ) ( )2 1
1 2 2 1

2 1

1 1, ; exp exp
2 4

r r
G r r t d i t r r

r r c
ω ω κ

π π

+∞

−∞

⎡ ⎤⎛ ⎞−
= − − −⎢ ⎥⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦

∫
G G

G G G G
G G  (12). 

 

Assuming a random spatial-temporal distribution of noise source amplitudes ( ),s sS r tG , 

the total field received at A is: 

  ( ) ( ) ( )1 1; , , ;
t

x x xP r t dx dt S x t G r x t t
∞

−∞ −∞

= −∫ ∫
G G G G G  (13).  

 

Here, the causality requires that the noise sources in ( ; )xx tG that contribute to the 

pressure field at A at a given time t satisfy the condition 1
x

r x
t t

c
−

= +
G G

. Then the cross-

correlation of the two signals recorded at A and B is defined as in Equation (1): 
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 ( ) ( ) ( )1 2 1,2 1 2
0

1, ; ( ) ; ;
T

C r r t C t P r P r t d
T

τ τ τ= = +∫
G G G G  (14). 

 

C1,2(t) corresponds to one realization of the ambient noise cross-correlation function. 

To evaluate the average noise correlation function 1,2 ( )C t  over an ensemble of realization, 

we use the idea that noise sources are spatially and temporally uncorrelated: 

  ( ) ( ) ( ) ( )2
' ', ', 'x x x xS x t S x t Q t t x x= − −G G G Gδ δ  (15), 

 

where the notation <X> corresponds to the ensemble average of X, and Q2 is the acoustic 

power of the noise sources and is taken as constant over time and space. Then it follows that: 

 

( )

2
1 2

1,2 4 2 10

1 2

( ) exp
64

exp

T r x r xd dxdQC t i t
r x r x c cT

r x r x

τ ω ω
π

κ

+∞ +∞

−∞ −∞

⎡ ⎤⎛ ⎞− −
= + −⎢ ⎥⎜ ⎟− − ⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤× − − + −⎣ ⎦

∫ ∫ ∫
G G G GG

G G G G

G G G G
  (16). 

 

Note that as written in Equation 14, τ corresponds to the running time of the signals 

received at A and B. The cross-correlation function ( )1,2C t  is a comparison between these 

two signals, meaning that ( )1,2C t  will extract the relative propagation times between the 

noise source in xG , and the receivers in 1
Gr  and 2

Gr . As a consequence, the integration over τ 

corresponds to just an accumulation of noise sources over time. In a practical experimental 

case, the pressure fields at A and B have first to be recorded over a finite interval time T 

before the cross-correlation is performed.  

Assuming that the random noise sources have a creation rate n, the integral over τ  is 

changed into the product T N . Finally, using this approach, Equation (9) becomes: 

 

 
( )

2
1 2

1,2 4 2 1

1 2

( ) exp
64

exp

r x r xQ N dxdC t i t
r x r x c c

r x r x

ω ω
π

κ

+∞ +∞

−∞ −∞

⎡ ⎤⎛ ⎞− −
= + −⎢ ⎥⎜ ⎟− − ⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤× − − + −⎣ ⎦

∫ ∫
G G G GG

G G G G

G G G G
   (17). 
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Equation (16) shows that the noise correlation function in free space reduces to the 

calculation of a spatial integral over the noise-source locations. In the following, we show that 

a geometrical argument allows us to obtain an analytical solution for ( )1,2C t . We first define 

a Cartesian coordinate system for the 3D space in which A is (a,0,0), B is (-a,0,0). The 

argument of the time-dependent exponential in Equation (17) gives a contribution to the 

correlation function at time t if xG  is such that 2 1r x r x ct− − − =G G G G .  

For a time t satisfying the condition 2 2a c t a− ≤ ≤ , the noise sources must lie on a 

hyperboloid (Figure 4) that will contribute to ( )1,2C t  at a given time t. This implies that 

( )1,2 0=C t  for t outside the interval [-2a/c, 2a/c]. Similarly, the ellipse in Figure 4 is made 

of the noise sources G
sr  such that 2 1r x r x constant− + − =G G G G , i.e. sources that contribute to the 

correlation function with the same attenuation. 

 

Figure 4. Representation in the x-y plane of the hyperbola that contributes to a given time t in 

the noise-correlation function. On each hyperbola, the noise sources satisfy 

2 1r x r x ct− − − =G G G G . For example, the horizontal axis corresponds to ct = 0. The vertical axis 

corresponds to ct = 2a for x ' a≥ , and ct = -2a for 'x a≤ − . The ellipse (dashed line) 

represents the noise sources for which 2 1r x r x ct− − − =G G G G , for ct = 4a. The receivers A and B 

are at (a,0) and (-a,0). From Roux et al. (2005). 

 

Note that these conical shapes are invariant by rotation around the axis of the two 

receivers (Figure 4, x-axis). This means that in 3D, the hyperbola and the ellipse turn out to be 

a hyperboloid and an ellipsoid where the symmetry axis is the lines between the two receivers. 

As can be seen in Figure 2, every noise source in space belongs to a unique hyperbola.  

Using a change of variable from the Cartesian coordinates to the Prolate spheroidal 

coordinates, it follows that: 

 

( )2

1,2

exp 21 2 2( ) exp exp
64 2

aQ Nc a aC t d i t i t
i c c a

κ
ω ω ω

πκ ω

+∞

−∞

−⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= + − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
∫   (18). 

 

In the case of a medium with attenuation, the time derivative of the correlation 

function gives: 
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 ( )

( )

2
1,2

1 2( ) exp exp 2
64 2

1 2exp exp 2
2

d Q Nc aC t d i t a
dt a c

ad i t a
a c

ω ω κ
πκ

ω ω κ

+∞

−∞
+∞

−∞

⎧ ⎡ ⎤⎪ ⎛ ⎞= + −⎨ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪⎩
⎫⎡ ⎤ ⎪⎛ ⎞− − − ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎪⎭

∫

∫

 (19). 

 

The physical interpretation of Equation (19) is: 

  ( ) ( )2
1,2 1 2 1 2( ) , ; , ;

2
d cC t Q N G r r t G r r t
dt κ

⎡ ⎤= − −⎣ ⎦
G G G G  (20). 

 

The amplitude term in the factor of the causal and anti-causal Green's function is made 

up of two contributions: (1) 2Q N , which corresponds to the noise power during the recording 

time window T; and (2) the other factor
2
c
κ

 is directly related to the attenuation introduced in 

the Green's function (Equation (12)). In section 4.3, we will see the importance of this 

attenuation parameter in the more general formulation of the Ward Identity. Indeed, the 

introduction of a small attenuation in the medium makes the correlation function converge on 

the noise-source spatial distribution without any constraint. Finally, the derivative of the 

ambient noise correlation function gives birth to the causal and anti-causal (or time-reversed) 

Green’s functions between the two points at which the noise has been recorded. 

 

4.2-The case of a single scatterer   

We generalize the correlation theorem to the case where there is one punctual and isotropic 

weak scatterer in the propagation medium. The Green's function is now made up of both the 

direct path between the source and the receiver and the scattering contribution from the 

scatterer. Before a generalization to a more complex heterogeneous medium (section 4.3), the 

goal of this paragraph is to show how the two-point correlation function provides the two 

contributions of the Green's function.  

The mathematical demonstration was proposed by Sato et al. (2012), who considered 

the scattering contribution in the first Born approximation. The Green's function 

( )0 0
1 1, ; xG r x G=G G ω  of the free-space medium that is the solution of the Helmoltz equation 

between one source in 1r
G  and one receiver in xG , as: 
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 ( ) ( )20 0
1 1 1x xG k i G r xΔ + + = −G Gκ δ  (21), 

 

is transformed into ( )1 1, ; xG r x G=G G ω , such that: 

 

 ( ) ( ) ( )2
1 1 0 1 1x x xG k i G V x y G r xκ δ δΔ + + + − = −G G G G

 (22), 

 

where yG  is the position of the scatterer, and V0 is the scattering coefficient.  

Assuming 0
1 1 1

s
x x xG G G= + , we have in the first Born approximation ( 0

1 1
s
x xG G� ) for 

the scattering contribution: 

 

 ( ) ( )2 0
1 1 0 1
s s
x x xG k i G V x y GΔ + + = − −G Gκ δ  (23), 

 

from which we obtain: 

 

( )
( ) ( )1

1 1 0
1 1

exp exp1 exp
4 4 4

y xy
x x

x y xy

ik r ik r
G ik r V

r r r

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎡ ⎤= − − +⎣ ⎦
κ κ

κ
π π π   (24), 

 

where 1 1x xr r r= −G G  and xy x yr r r= −G G
.  

The correlation function is defined in the frequency domain as: 

 

 
( ) ( )*

1,2 1 2( ) x xC G G dx
+∞

−∞

= ∫
Gω ω ω

 (25), 

 

with noise sources that spread to infinity. Replacing G1x and G2x by their expression in 

Equation (24), it follows from the Born approximation that: 

 

( ) ( ) ( ) ( ) ( ) ( )* * *0 0 0 0
1,2 1 2 1 2 1 2( ) s s

x x x x x xC G G G G G G dx
+∞

−∞

⎡ ⎤= + +⎣ ⎦∫
Gω ω ω ω ω ω ω

  (26), 
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from which we obtain: 

 

( ) ( )

( ) ( ) ( )
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1 2
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1 2

1 2
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2 1
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V dx

r r r

+∞

−∞

+∞

−∞

+∞

−∞

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦=

⎡ ⎤ ⎡ ⎤− − − − ⎡ ⎤−⎣ ⎦ ⎣ ⎦ ⎣ ⎦−

⎡ ⎤ ⎡ ⎤− −⎡ ⎤− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦−

∫

∫

∫

G

G

G

κ κ
ω

π π

κ κ κ
π π π

κ κκ
π π π   (27). 

 

Using the change of variable and the spatial integration performed in section 4.1 (from 

Equation (17) to Equation (18)), we have: 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

12
1,2 12

12

21
0 2

1 2

12
0 1

2 1

sin1( ) exp
2 4

sinexp 1 exp
4 2 4

sinexp 1 exp
4 2 4

yy
y

y y

yy
y

y y

kr
C r

k r

krik r
V r

r k r

krik r
V r

r k r

= −

⎡ ⎤− −⎣ ⎦− −

⎡ ⎤−⎣ ⎦− −

ω κ
κ π

κ
κ

π κ π

κ
κ

π κ π    (28), 

 

which can be simplified as: 

 

( ) ( )

( ) ( )

12
1,2 12

12

1 2
0 1 2

1 2

sin1( ) exp
2 4

sin1 exp
2 4 4

y y
y y

y y

kr
C r

k r

k r r
V r r

k r r

= −

⎡ ⎤+⎣ ⎦⎡ ⎤− − +⎣ ⎦

ω κ
κ π

κ
κ π π

   (29). 

 

We recognize in Equation (29) the part of the Green's function that is associated to the direct 

path between the receiver and the contribution of the scatterer. From the integral in Equation 

(26), it is interesting to highlight the location of the noise sources that contribute to the 

reconstruction of the direct path or the scatterer contribution (Figure 5). As well as the end-
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fire lobe that defines the angle interval in which noise sources coherently contribute to the 

direct path of the Green's function (Figure 5, red), there are new angle intervals associated to 

the coherent contribution of the scattered field (Figure 5, blue). As the path length of the 

scattered ray is longer than the A-to-B direct path, the width of this beam is smaller than the 

end-fire lobe.  

 

Figure 5. Schematic representation of the end-fire lobes (red) associated to the coherent 

contribution of noise sources (gray dots in the background) to the correlation function 

between two receivers at A and B. The part of the Green's function associated to the scatterer 

(blue square) is reconstructed from noise sources located in different beams (blue). For the 

sake of clarity, the dashed lines (red and blue) represent the direct and scattered ray paths, 

respectively.  

 

Taking into account the Green's function formulation in Equation (24), we finally 

have: 

 

 
( )1,2 12( ) Im

2
cC G

i
ω ω

ωκ
⎡ ⎤= ⎣ ⎦

 (30). 

 

Recognizing the time-derivative as the iω term at the denominator in Equation (30), it 

follows that the correlation theorem is still valid for a medium with one local heterogeneity. 

Note that an extension of the plane-wave approach has also been performed in the presence of 

a scatterer (Sanchez-Sesma et al. 2006). 

Following the same mathematical approach as in Equations (23) to (29), Sato et al. 

(2012) extended this result to a set of scatterers in the Born approximation. Finally, Margerin 

and Sato (2012) went one step further, showing that all of the scattering orders in the Dyson's 

equation (including multiple scattering) can be taken into account in the correlation function 

for the same result as in Equation (30).  

 

4.3-Arbitrary heterogeneous medium 

We now generalize the correlation theorem to the case of scalar waves propagating in any 

heterogeneous medium. This approach was first developed by Weaver et al. (2004) and then 
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by Snieder (2007). It indicates the role of attenuation in the connection between the 

correlation function and the Green's function. 

We start from the Helmholtz equation that defines the Green's function 

( )1 1, ;xG G r x= G G ω for scalar waves in a heterogeneous medium at frequency ω: 

  ( ) ( ) ( )2
1 1 1 1x x xG V x G k i G x rΔ + + + = −G G Gκ δ  (31). 

 

where the potential ( )V xG  describes the scattering contribution to the wavefield that is 

assumed to be finite in space, meaning that it does not extend to infinity. 

Using two points in 1r
G  and 2r

G , we define the flux of the Poynting vector through a 

closed surface S located far away from any medium heterogeneity as: 

  ( ) ( )* *
1 2 2 1x x x x

S

I G G G G dS⎡ ⎤= ∇ − ∇⎣ ⎦∫
JJGG G

v  (32). 

 

Using the divergence theorem, we can transform this flux integral into a volume 

integral V: 

  ( ) ( )* *
1 2 1 2x x x xI G G G G dV⎡ ⎤= ∇ ∇ − ∇⎣ ⎦∫

G G G
V

 (33). 

 

This can be simplified into: 

  ( )* *
1 2 1 2x x x xI G G G G dV= Δ − Δ∫V  (34). 

 

From Equation (31), we have: 

  ( ) ( ) ( )2* * *
2 2 2 2x x xG x r V x G k i GΔ = − − − −G G Gδ κ  (35), 

  ( ) ( ) ( )2
1 1 1 1x x xG x r V x G k i GΔ = − − − +G G Gδ κ  (36), 
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which assumes that the potential ( )V xG  is real. Physically speaking, this means that there is no 

vortex or flow in the medium that would break the spatial reciprocity theorem. 

Combining Equations (35) and (36) into Equation (34), it follows that: 

  * *
12 21 1 2

4
x x

iI G G G G dV
c

= − − ∫
ωκ

V
 (37). 

 

Finally, using Equations (32) and (37), and taking into account that 12 21G G= , due to 

the reciprocity theorem, we can conclude that: 

 

( ) ( )* * * *
12 12 1 2 1 2 1 2

4
x x x x x x

S

iG G G G dV G G G G dS
c

⎡ ⎤− = + ∇ − ∇⎣ ⎦∫ ∫
JJGG G

vωκ
V

   (38). 

 

In Equation (38), the left-hand side corresponds to the causal and anti-causal Green's 

function. Using an equivalent formulation (see paragraph 4.3.3) of the representation theorem, 

Snieder (2007) detailed the different contributions of the volume and surface integrals in a 

simple configuration. For sake of simplicity, we propose to separately examine the volume 

and surface integrals in the two following cases.  

 

4.3.1-If the attenuation parameter 0≠κ  

In the case where the attenuation parameter 0κ ≠ , we make the choice to extend the volume 

V to infinity. This means that the volume integral over the ‘noise sources’ x spreads over 

infinity. The product *
1 2x xG G  corresponds to the correlation between the field received in 1r

G  

and 2r
G  from a source in xG . Far from the medium heterogeneities, the Green's function decreases as: 

  ( )1 1
1

1 exp
4xG x r

x r
− −

−
G G∼ G G κ

π
 (39). 

 

Then, we have in the far field, with 1 2,x r rG G G� : 
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 ( ) ( ) ( )
2

* *
1 2 1 2 1 22

1 2

exp
16x x x x

kG G G G x r x r
x r x r

κ
π

⎡ ⎤∇ ∇ − − + −⎣ ⎦− −

G G G G G G∼ ∼ G G G G   (40), 

 

such that ( ) ( )* *
1 2 1 2 0x x x x

S

G G G G dS⎡ ⎤∇ − ∇ →⎣ ⎦∫
JJGG G

v  even when the surface S expands to infinity, 

because of the exponential decrease due to attenuation.  

We then obtain: 

  * *
12 12 1 2

4
x x

iG G G G dV
c

− = ∫
ωκ

V
 (41), 

 

which has sometimes been defined as the Ward Identity in the recent literature. 

Equation (41) is the generalization of Equations (20) and (30) to any heterogeneous 

medium in the presence of attenuation. As in Equation (30), note that the iω term on the right-

hand side corresponds to the time-derivative of the correlation function. As shown in the 

above equations, the attenuation parameter κ is a key parameter in the Ward Identity. 

Physically speaking, the attenuation manages to balance the energy flux in the system. 

Another interpretation of the attenuation is related to the thermodynamic equilibrium as 

defined through the fluctuation-dissipation theorem. 

 

4.3.2-If the attenuation parameter 0=κ  

In the case where the attenuation parameter 0=κ , Equation (38) simplifies into: 

  ( ) ( )* * *
12 12 1 2 1 2x x x x

S

G G G G G G dS⎡ ⎤− = ∇ − ∇⎣ ⎦∫
JJGG G

v  (42). 

 

In Equation (42), the sources are only present on the closed surface S, and no source is 

present in the volume. If the surface is taken in the far field of the medium heterogeneities, for 

every point x on the surface S, we have: 

  ( )1 1
1

1 exp
4xG ik x r

x r
− −

−
G G∼ G Gπ

 and ( )1 1x xG ik G∇
GG

∼ , (43) 

 

from which it follows that:  
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  * *
12 12 1 22 x x

S

G G i G G dS
c

− = − ∫vω  (44). 

 

where the right-hand side corresponds to the correlation function calculated for sources 

located on the surface S. As previously, the iω term refers to the time-derivative of the 

correlation function.  

The last formulation of the correlation theorem is appealing for geophysicists that 

usually deal with noise sources at the Earth surface. However, according to Equation (44), the 

surface must surround the receiving points in 1r
G  and 2r

G , which never happens in practice. 

Note also that the approximation 0=κ  is not valid in most practical cases.  

 

4.3.3-Another formulation of the correlation theorem 

In the literature on ambient noise correlation, Equation (44) is classically defined as one 

formulation of the representation theorem, and a different mathematical expression is 

sometimes used [Wapenaar, 2004; Wapenaar and Fokkema, 2006; Godin, 2007]: 

  * *
12 12 1 2

2
x x

S

G G G G dS
c

+ = ∫� � � �v  (45). 

 

Compared to Equation (44), this other formulation of Equation (45) connects the 

summation of the causal and anti-causal Green's function to the correlation function without 

the time derivative. It is important to understand that the two expressions in Equations (44) 

and (45) are equivalent. Indeed, Equation (45) is obtained from a different definition of the 

Green's function (see Equation (31) for comparison): 

  ( ) ( ) ( )2
1 1 1x x xG V x G k i G i x aκ ω δΔ + + + = −G G G� � �  (46), 

 

this only differs in the source term on the right-hand side, which corresponds to a ‘mass 

injection’ in Equation (46) when the Green's function definition in Equation (31) refers to a 

‘momentum injection’. 
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Finally, some authors have dealt with the case of a complex potential ( )V xG , which 

would correspond, for example, to the presence of a vorticity field or a flow that breaks the 

condition of spatial reciprocity in the propagation medium. It appears then that the correlation 

function is no longer symmetric in time. The travel-time associated to the causal part can then 

be different from the travel-time of the anti-causal part, as the Green's function from one 

receiver to the other is not equivalent to the Green's function along the reverse path 

[Wapenaar, 2006]. 

Note also that Colin de Verdière (2009, 2011) proposed a very general and quite 

mathematical approach where the wave propagator is simply defined as a self-adjoint 

differential operator. Including attenuation and taking into account any type of scattering in 

the wave equation for a homogeneous noise distribution, he retrieved the same connection 

between the correlation function and the causal/ anti-causal Green's function (Equations (20) 

and (41)).  

 

4.4-Modal approach in finite bodies 

Up to this point, we have presented the formulation of the correlation theorem in open 

homogeneous or heterogeneous media. However, the first theoretical and experimental 

demonstration of the convergence of the correlation function towards the Green's function 

was performed in finite bodies in which the wave propagation is described from a modal 

approach [Weaver and Lobkis (2001)].  

For sake of simplicity, we deal with a 1D finite body, in which the Green's function 

can be written as an expansion in terms of the normal modes ( )nU x : 

 

 
( ) ( ) ( ) ( ) ( )2

1 2 1 2
sin

, ; n
n n

n n

t
G x x t c U x U x t= Θ∑

ω
ω

, (47) 

 

where ωn correspond to the eigenfrequency of mode n and ( )tΘ is the Heaviside function that 

is necessary to respect the causality of the Green's function. 

When uncorrelated noise sources are uniformly distributed in the volume V of the 

finite body, the correlation function between two receivers at 1x  and 2x  can be written as: 
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( ) ( ) ( )1,2 1 2

0

1 , ; , ;
T

V

C t d dxG x x G x x t
T

= +∫ ∫τ τ τ
 (48)

 

 

From Equation (47), it follows that: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )4

1,2 1 2
0

sinsinT
mn

n n m m
m n n mV

tcC t d dx U x U x U x U x
T

⎡ ⎤+⎣ ⎦= ∑∑∫ ∫
ω τω τ

τ
ω ω  (49) 

 

Using the orthonormality relation between modes: 

 

 
( ) ( )

0

L

n m nmdxU x U x =∫ δ , (50), 

 

we have: 

 

( ) ( ) ( ) ( ) ( )
4

1,2 1 22
0

1 sin sin
T

n n n n
n n

cC t U x U x t d
T

⎡ ⎤= +⎣ ⎦∑ ∫ ω τ ω τ τ
ω    (51). 

 

When the recording window T is long compared to the largest period of the excited 

modes ( nT 1 ω� , n∀ ), it follows that: 

 

 
( ) ( ) ( ) ( )4

1,2 1 2 2

cos
2

n
n n

n n

tcC t U x U x= ∑
ω

ω  (52), 

 

and then: 

 

( ) ( ) ( ) ( ) ( )
4 2

1,2 1 2 1 2 1 2
sin

( ) , ; , ;
2 4

n
n n

n n

td c cC t U x U x G x x t G x x t
dt

⎡ ⎤= − = − − −⎣ ⎦∑
ω

ω
    (53). 

 

As expected, the physics of the correlation theorem also applies to the modal 

formulation. As well as the thermal diffuse-noise experiment achieved by Weaver and Lobkis 

(2001) in a sample of duralumin, other demonstrations have been performed in bounded 
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media. For example, acoustic propagation in underwater waveguides is bounded by the air-

water and water-bottom interfaces that justify the presence of propagating modes. Different 

authors have studied the convergence of the correlation function towards the Green's function 

in underwater acoustics, with some successful applications to array element synchronization 

or bottom mapping.  

 

4.5-Equipartition and random fields 

As the Earth is a complex medium, scattering by small-scale heterogeneities is a relevant 

phenomenon to understand seismic-wave propagation, particularly for short period waves in 

the lithosphere. Scattering is revealed at the first order by the amplitude decay of the direct 

arrivals and by the long coda of seismograms. For coda waves, multiple scattering must be 

taken into account. This is a general issue in different domains that has led to considerable 

developments that were aimed at the quantitative description of the spatial and temporal 

evolution of the local energy, or intensity, of the scattered field, via the diffusion 

approximation or the more general radiative-transfer equation (see Sato et al. 2012, for a 

review on seismic waves). While the average energy density is successfully predicted by these 

theories, the phases, i.e., the details of the wave shapes, are assumed to be unpredictable 

random variables. At the same time, the deterministic phase of the waves that is neglected in 

the theory for energy or intensity is clearly expressed in phenomena like coherent back 

scattering (Larose et al. 2004) and long-range correlations in the form of the Green's function 

(Campillo and Paul 2003).  

For waves propagating in the heterogeneous Earth, the diffusive regime emerges after 

several scatterings at a time that depends on the scattering strength of the medium (e.g., Sato 

et al. 2012). Asymptotically for large times, the wavefield is expected to consist of random 

contributions of all of the possible modes of propagation, with equal weights on average (e.g., 

Weaver 1982, Ryzhik et al. 1996). This state is referred to as equipartition. Note that we refer 

here to the modes of a fictitious model close enough to the actual complex Earth to essentially 

share the same propagation properties (e.g., Campillo and Margerin 2010). In a realistic 

medium, the propagation modes are associated with complex eigenfunctions. Equipartition, 

therefore, does not imply that their contributions are the same everywhere. At a given 

observation point, equipartition results in a constant ratio of the relative contributions of the 

P-waves and S-waves to the time-dependent diffuse local energy, independent of the detail of 

the scattering. The stabilization of the S-to-P energy ratio is observed in the coda of actual 

seismograms (Hennino et al. 2001, Margerin et al. 2009, Yamamoto et al. 2011). This is a 
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good indication that the wavefield entered into a regime where the diffusion approximation 

can be applied to describe the average energy density.   

Equipartition and isotropy are asymptotic states of diffuse fields for large lapse times. 

Indeed these conditions are generally not reached in practice. In the presence of a single 

source, the overall divergent flux of energy precludes a perfect isotropy of the flux even for 

large lapse times. It must be noted that although it is an indicator of the diffusion, the 

stabilization of the energy ratios is not synonymous with equipartition, and therefore isotropy 

of specific intensity (Paul et al. 2005). 

We recast here a plausibility argument for the construction of Green’s function from 

correlation of diffuse fields that was originally proposed by Lobkis and Weaver (2001). In the 

case of a finite body, a diffuse field can be expressed in terms of the normal modes ( )nU rG  as: 

 

 ( ) ( ) ( ); cosn n n
n

r t a U r tφ ω=∑G G  (54), 

 

where the complex amplitudes na  are uncorrelated random variables, such that: 

 

 * ( )n m n nma a F ω δ< >=  (55). 

 

where F(ω)governs the shape of the spectral energy density. The cross correlation of the two 

fields at points 1r
G

 and 2r
G

 is: 

 

 ( )1,2 1 2
0
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T
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φ τ φ τ τ= +∫
G G  (56). 

 

Assuming a long recording interval T, this reduces to: 

 

 ( ) ( ) ( ) ( )1,2 1 2
1 ( ) cos
2 n n n n

n
C t F U r U r tω ω= ∑ G G  (57). 

 

This expression of the correlation function must be compared to the Green's Function: 
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 ( ) ( ) ( ) ( ) ( )1 2 1 2
sin

, ; n
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t
G r r t U r U r t

ω
ω

= Θ∑G G G G  (58). 

 

For positive times, C1,2(t) and 
( )1 2, ;G r r tG G

 only differ by a time derivation and the spectrum of 

the diffuse field. While limited to the case of finite bodies, this simple demonstration is a 

justification for the pioneering experiments performed in acoustics by Lobkis and Weaver 

(2001). 

 

4.6-Example with elastic waves  

In the homogeneous 2D case with surface waves discussed in section 4.1.1, the wavefield is 

projected on plane waves that propagate in every direction with constant amplitude. The 

equipartition then reduces to isotropy. The correlation of equipartioned field at two points 

therefore reduces to the case discussed in section 4.1. The elastic case is more informative. 

In the elastic 2D case, the equation of motion for the velocity vector uG  is: 

 

 ( )
22 2

2 2 2
2 2

ji i

i jj

uu u
x xx t

β α β
∂∂ ∂

+ − =
∂ ∂∂ ∂

 (59), 

 

where ui is one component of the velocity vector, and α and β correspond to the P-wave and 

S-wave velocities, respectively. 

Assuming a homogeneous medium, we project the elastic wavefield on the P and S 

plane waves. For the 2D case, the ratio of S-wave to P-wave energies of an equipartioned 

field can be obtained by a simple mode-counting argument: 

 
2

2
S

P

E
E

α
β

=    (60). 

 

Let us consider an isotropic 2D field in which P-waves and S-waves are propagating in 

all directions, with spectral densities S2 and P2 independent of the direction of propagation. 

We denote by qG  and k
G

 the wavenumber for the P-waves and S-waves, respectively. 

Following Sanchez-Sesma and Campillo (2006), we assume an energy ratio between 
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the S-waves and P-waves such that: 
2

2
S

P

E
E

αε
β

= with 1ε =  for equipartition. We consider the 

cross-correlation of the resulting field uG  at positions xG  and yG . We assume yG  to be at the 

origin. Position xG  is written as ( )1 1 2 2,x r x rγ γ= = . After averaging over the incidence 

direction for an isotropic plane wave distribution, the correlation can be written as: 

 

 ( ) ( ) ( )
2 2

*; ; 2
2i j ij i j ij

Su y u x A Bβω ω δ γ γ δ⎡ ⎤= − −⎣ ⎦
G G  (61), 

 

where,  
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B ε
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 (62). 

 

When the equipartion energy ratio is assumed, i.e., 1ε = in Equation (60), we 

recognize the exact compact form of the 2D elastic Green's function, and the cross correlation 

is simply given by (Sanchez-Sesma and Campillo 2006): 

 

 ( ) ( ) ( )* 2; ; 8 Im , ;i j S iju y u x E k G x yω ω ω− ⎡ ⎤= − ⎣ ⎦
G G G G  (63), 

 

where 2 2 2SE Sρω= . 

Note that in the present case, we use the definition of the Green's function for the 

elastodynamic equation (Equation (59)) as the response in the displacement to a unit force. 

This simple canonical case can be extended to 3D and illustrates the close relations between 

equipartition of the wavefield and the extraction of the Green's function from the cross 

correlations. 

In the literature, different definitions of the equipartition are presented that can depend 

on: (1) the use of a time-domain or frequency-domain approach; (2) the properties of the 

propagation medium (open or bounded medium, presence of scatterers); and (3) the nature of 

the incident wavefield (stationary random noise, spatial distribution of pulsed sources, plane 

waves or modal excitations). Even though equipartitioning is at the basis of the noise 

correlation theorem, all situations are not equivalent. For example, we will consider in the 
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next paragraphs and in practical applications some cases where parts of the Green's function 

can be extracted in the absence of equipartitioning. 

 

5-Practical limitations 

 

5.1-Partial focusing 

We have seen that the correlation of an even distribution of sources can lead to the Green's 

function of the medium. Indeed in the actual application of ambient-noise correlation, the 

sources are likely to result in a form of non-isotropy of the incoming flux to the pair of 

stations of interest. In this case, it cannot be expected that the exact response of the Earth will 

be retrieved. It is important to determine how an improper distribution of the source affects 

the cross-correlation, and how reliable the measurements of travel-times or of amplitude 

become. 

We start with an intuitive argument that follows the time-reversal analogy presented in 

the Introduction. Figure 6a shows a numerical test similar to that in Figure 1, except for the 

distribution of the sources. The sources are now located along a segment (Figure 6a), which 

offers poor azimuthal coverage of the medium. The presence of scattering partly compensates 

for this uneven distribution of the sources. We now observe relatively poor focusing and a 

clearly different pattern for snapshots at positive and negative times. Figure 6 illustrates 

clearly the impact of the physical flux of energy on the reconstruction. The reconstructed 

Green's function does not show the expected temporal symmetry. Furthermore, for receiver 

pairs oriented perpendicular to the flux, there is no detectable trace of the propagating wave.  

In general, it is therefore clear that correlations of noise cannot be considered directly 

as actual Green's functions for imaging purposes. The distribution of the noise sources has to 

be considered as a constituent of observables, such as arrival times or amplitudes. This can be 

formulated explicitly for a general imaging approach in the expression of the sensitivity 

kernels for noise correlations (Tromp et al. 2010, Hasanoge 2013)). In practice, the space-time 

distribution of the noise sources is not known precisely. With simple assumptions, it is 

nevertheless possible to quantitatively determine the bias between noise correlations and true 

Green's functions. 

 

Figure 6. Snapshots of cross correlations with respect to the field at the center (+), as in 

Figure 1 but with a distribution of sources limited to a line ((a), x symbols). (b), (c) and (d) 

correspond to correlation times of -30 s, 0 s and 30 s. 
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5.2-Travel-time measurements  

Even when a propagating wave is identified, it is important to quantitatively evaluate the 

quality of the measurements that can be performed when the distribution of sources leads to 

nonisotropic illumination of the station pairs. Let us consider a simple 2D case, where a pair 

of stations is surrounded by a distant distribution of incoherent sources that leads to 

nonisotropic specific intensity (Weaver et al. 2009). This is a geometry of interest when 

dealing with surface waves from distant noise sources (Tsai, 2009). 

We assume that we measured the derivative of the correlation between the signal 

observed at the two receivers over the angle θ between the direction of incidence and the 

strike of the two receivers (Fig. 3c). ( )B θ  is the azimuthal distribution of the energy of the 

sources, and it can be expanded as: 

 

 ( ) 0 1 2cos cos 2 ...B B B Bθ θ θ= + + +  (64) 

 

Note that only even terms contribute to this problem, because of the symmetry of the 

apparent velocity with respect to θ = 0. Let us consider the case of distant receivers, i.e., kx 

>>1. We are in the high frequency limit where the contributions to the correlations are 

dominated by the contributions of the end-fire lobes, i.e., θ � 0. The goal is to evaluate the 

time error that is induced by the anisotropy of the sources. To be under conditions useful to 

seismological applications, the induced bias (delay) δt is evaluated as the time of the 

maximum of the cross-correlation between a Gaussian pulse of central frequency ω0 in the 

isotropic source ideal case ( ( ) 1B θ ≡ ) and that of the nonisotropic case. Under the high-

frequency approximation,  it can be shown that (Weaver et al, 2009):  
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where ( )''B θ refers to the second-order derivative of ( )B θ . 

These formulae indicate that the error decays with frequency and with interstation 

distance. This is in agreement with the conclusion of Yao and van der Hilst (2009). The decay 

of the bias with interstation distance can be understood as the diminution of the angular size 

of the end-fire lobes with increasing distance. 
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The stationary phase theorem helps in the interpretation of the physics aspect of this 

observation (see section 3.2). Only the sources almost in the alignment of the receivers can 

contribute to the reconstruction. The aperture of the zone where the coherent sources are 

located varies with the square root of the ratio between the wavelength and the distance 

between the receivers. At higher frequencies, the end-fire lobes are narrower (Roux et al. 

2004, Spetzler and Snieder 2004, Larose 2005) and the correction term is smaller. For 

simplicity, we have discussed here only the positive correlation time, but the argument is the 

same for negative time, and a formula similar to Equation (65) is obtained with direction 

π instead of 0. 

 

Figure 7. Bias in travel-time measurements for a source amplitude distribution of the form B. 

Different values of B2 then correspond to different source intensity distributions. (a) Shape of 

the azimuthal distribution for B2 = 0 (left panel, isotropic distribution) and B2 = -0.6 (right 

panel, anisotropic distribution). (b) Correlations of direct waves as defined in Figure 3(b). 

Measured (crosses) and predicted (dashed line) relative time shifts for B2 ranging from 0 to -

0.6. The theoretical values result from Equation (65). Error bars correspond to standard 

deviations of 18-pair measurements. The reference travel-time corresponds to the correlation 

function obtained for an isotropic distribution of sources. (c) The same measurements as in 

(b), but with cross-correlations of time windows that correspond to coda waves (Figure 3(b)). 

 

These formulae have been validated numerically and experimentally. Froment et al. 

(2011) used actual Green's functions obtained during the seismic exploration experiment that 

was presented in section 3.2 (Figure 3), and they found excellent agreement between 

observation and theory. This is illustrated in Figure 7, which shows the evolution of the 

travel-time bias with increasing anisotropy of the incoming field. The anisotropy of intensity 

is produced by a modulation of the amplitude of individual source records of the form 

( ) ( )21 cos 2B Bθ θ= + , where θ is defined as in the insert of Figure 3b. B2 varies from 0 

(isotropy) to -0.6. The two extreme cases are plotted in Figure 7a. To be under the conditions 

of the theoretical formula (Equation (65)), the correlations are computed for the direct waves 

(Figure 3b), weighted according to ( )B θ for each source, and then averaged over the set of 

sources. Figure 7b shows the very good agreement between the theoretical expectations given 

by Equation (65) and the actual measurements. 
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5.3-Amplitude and spreading 

When the conditions for the perfect reconstruction of the Green's function are fulfilled, the 

amplitude of correlation can be used to study the attenuation properties along the path, or the 

local amplification produced by specific local geological structures. In Figure 6, we show how 

an uneven distribution of sources results in poor focusing in a simple medium for a scalar 

problem. It is noticeable that poor focusing means that the natural curvature of the Green's 

function wave front is not correctly reconstructed, and that consequently the geometrical 

decay of amplitude is not reproduced. In general cases, it is dangerous to mix noise cross-

correlations for pairs in different azimuths to retrieve the attenuation properties of the crust.   

The simplest case of the illumination by a plane illustrates the specific difficulty 

associated with decay measurements. This occurs when a strong localized source is acting far 

away from the two receivers. If the noise includes such a predominant plane wave 

propagating in the direction of the two receivers, the cross-correlation is not the Green's 

function, although the time of transport of energy is the same, even if the phase is not 

retrieved correctly (see section 4.1). The effect is obviously much more severe for the 

amplitude, as the plane wave has no geometrical spreading, in contrast to the Green's function. 

Attenuation measurements would be strongly biased by this effect, which cannot be corrected 

by energy normalization (e.g., Gouédard et al. 2008). 

It was nevertheless convincingly showed by Prieto et al. (2009) and Lawrence and 

Prieto (2011) that attenuation studies can be performed with ambient noise. These authors 

used the coherency, a normalized version of the cross-correlation, in place of correlation (see 

Section 6 below). A discussion of the feasibility and limitations of attenuation studies with 

ambient noise is presented in Prieto et al. (2011) and Weemstra et al. (2013). 

Considering only the reconstruction of the direct waves in the scalar case can hide 

some difficulties that arise in practical applications, with ambient noise or with active sources 

at the surface. In the presence of several waves (P and S, reflections) and imperfect 

illumination, the correlation can show pulses associated to stationary-phase conditions, but 

not to physical arrivals. These spurious arrivals correspond to correlation times of waves of 

different natures; i.e., which are not propagating between the two points of observations. For a 

distribution of sources at the surface, Snieder et al. (2006) give an example of interest for 

exploration. They considered a simplified case with two reflections at different depths. When 

considered as a function of the position of the source, the difference in travel-time between 

the two reflected waves at the receivers had a maximum at a finite distance. According to the 

stationary-phase argument, a spurious arrival can therefore be expected at a time that is 
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actually a difference of travel-time between the reflector levels at depth, without significance 

for the actual paths between the receivers. Indeed, this problem vanishes if the source 

distribution extents at depth, or if scatterers acting as sources mimic an even distribution of 

sources. 

 

5.4-Influence of scattering 

Although it is impossible to directly separate the contributions of direct and scattered waves 

in the ambient noise produced by a distribution of uncorrelated sources, we can easily 

evaluate the behavior of the correlation of scattered waves in the experiment presented in 

section 5.2 and in Figure 7. The results of Figure 7b, which were obtained with direct waves, 

were repeated for the correlation of coda windows as defined in Figure 3b. The resulting 

measurements are presented in Figure 7c as a function of the anisotropy coefficient 2B . The 

bias in travel-time observed for coda-wave correlations is much smaller than for the case of 

direct waves. In the worst case, i.e., 2 0.6B = − , /t tδ  only reaches 2 ×10-3. This is due to the 

smooth azimuthal distribution of the intensity of the coda waves. This shows the important 

part played by scattered waves for the effectiveness of the correlation method. 

 

6-Processing  

 

6.1-Processing and convergence 

The basic expectation when correlating noise time series is that for long times of observation, 

the noise source distribution is averaged towards a distribution that is acceptable with respect 

to the mathematical requisites discussed in section 4. An obvious difficulty is the presence of 

strong energy transients that potentially dominate in the correlation. Those transients can be 

large earthquakes, local storms in the microseism spectral band or various other sources 

depending on the frequency range considered. Different strategies are used to improve the 

temporal stationary of the records before correlation. 

The first possibility is to remove the time windows with earthquakes. This can be done 

from earthquake bulletins, at least for large events. In practice, a detection algorithm is 

required to identify small events if no further normalization is applied.  

Indeed strong direct waves generally contribute to nonphysical signals in the 

correlation. On the other hand, the scattered waves of the coda are a valuable contribution to 

the reconstruction of the Green's function. As the duration of the coda is much longer than 
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that of the direct waves, efficient processing consists of the normalization of the signal. This 

normalization is necessary in most cases, even after earthquake rejection. 

One-bit normalization was used for the correlation of seismic codas by Campillo and 

Paul (2003), to balance the temporal exponential decay of the intensity in the coda. This was 

then used in numerous studies on noise correlation (e.g., Shapiro and Campillo 2004, Shapiro 

et al. 2005, Cupillard et al., 2011). That the correlation function of two hardly clipped signals 

is very close to that of the original signals has been discussed in detail in communication 

theory (e.g. van Vleck and Middleton 1966). The numerical simulations of Cupillard and 

Capdeville (2010) showed that even geometrical spreading and attenuation can be retrieved 

from correlations of 1-bit clipped data. Instead of using 1-bit correlation, Sabra et al. (2005) 

introduced a clipping procedure to limit the contribution of high-amplitude transients, while 

leaving the background noise unaffected. Bensen et al. (2007) proposed to apply a running-

average procedure to ensure the temporal stationarity. 

Instead of affecting the data by a form of nonlinear processing, Prieto et al. (2011) and 

Poli et al. (2012a) proposed to use short time windows, as short as 1 h, to compute the 

correlation. Transients can be removed after statistical analysis of the total energy of the 

signal in all of the windows. Each correlation is normalized according to its energy before 

stacking.  

Sabra et al. (2004) analyzed the quality of the reconstruction for a set of station pairs 

within a range of 180 km to 220 km in Southern California, USA. As shown in Figure 8a, the 

cross-correlations are relatively stable over time, as seen for each day of July 2004 for a single 

station pair. While there are some fluctuations in the small-amplitude waveforms, the main 

arrivals are stable. The SNRs for each day and each station pair show moderate variations as 

the noise and seismicity varies. We sum the cross-correlation time series for each day to 

obtain the time series for N number of days and to compute the SNR (Figure 8b). Each day is 

treated as an independent observation, and therefore for each N the sum is computed for all of 

the combinations of the 18 days. The accumulated SNR based on the summed traces shows 

clearly that the SNR increases in proportion to the square root of the recording time, in 

agreement with Sabra et al. (2005a) and Snieder (2004). 

 

Figure 8. (a) Estimated noise correlation function for one station pair at a distant of 182 km, 

for each day of July. The summed trace for the whole month of July is shown as the thick solid 

line. (b) Mean and standard deviations of the SNR (in dB scale) computed by summing all of 
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the combinations of the correlation functions over a number of days. The square root 

dependence is shown as a dotted line (from Sabra et al. 2005a). 

 

Larose et al. (2008) studied the role of scattering in the convergence towards the 

Green's function. In this context, the SNR is the ratio between the level of signal in the 

correlations and the level of remnant fluctuations. They analyzed the SNR dependence in the 

context of a discrete random distribution of noise sources in a scattering medium. Indeed the 

SNR increases with the number of sources. When scattering is present, the SNR increases 

with scattering strength. This is due to the increase in the duration of the individual source 

signals with stronger scattering, in addition to the previously discussed isotropization of the 

intensity. Disorder here improves the quality of the reconstruction. On the contrary, the SNR 

is directly dependent on the amplitude of the actual Green's function. The amplitude decreases 

with travel-time or distance, and it is sensitive to scattering and absorption. 

As the ambient noise spectrum in the microseism band shows clear peaks, it is 

convenient to introduce spectral whitening (e.g., Bensen 2007). With the nature of a 

seismogram as non-stationary, it is natural to introduce multidimensional filtering to de-noise 

the correlations. Adaptive filtering based on the S transform (Stockwell et al. 1996) was used 

by Baig et al. (2009), while Schimmel et al. (2011) proposed the use of instantaneous phase 

coherence to weigh the stack of individual correlations. 

Stehly et al. (2011) used filters in the curvelet transform space to improve the SNR of 

stacked correlations. The previous approaches were based on the use of signal-processing 

tools. A physics-based approach can be expected to improve the reconstruction. In the noise-

correlation context, this consists of minimizing the effects of the nonisotropic illumination. 

This was done by using an optimization scheme, which was referred to as multidimensional 

deconvolution by Wapenaar et al. (2008), or as a passive inverse filter by Gallot et al. (2011). 

Velocity measurements and the evaluation of their uncertainties can be improved by 

using the nine correlations obtained with three-component records, with each correlation 

being defined for positive and negative times. The correlation matrix is expected to show the 

symmetry of the Green's tensor (e.g., Campillo and Paul 2003, Sabra et al. 2005). For 

practical applications, the computation of the complete correlation matrix allows redundant 

measurements to be made of Rayleigh wave velocities and their variance (e.g., Stehly et al. 

2010). 

 

6.2-Correlation of correlations 
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We have seen that the cross-correlation function of long ambient-noise time series can be 

identified as the sum of the causal and acausal Green's function. So far, we have discussed the 

reconstruction of ballistic arrivals. The Green's function also contains the late arrivals 

associated with scattered waves. According to the discussion in section 4, we expect these 

arrivals to also be present in the noise cross-correlations, as has been verified with numerical 

simulations (e.g., Derode et al. 2003). In the ideal case, the later part of the noise correlation 

should contain the coda part of the Green’s function, and it might be possible to correlate 

these waves as we correlate standard earthquake codas, to reconstruct the Green’s function 

(Campillo and Paul 2003). This is the concept of the so-called C3 method; i.e., re-correlating 

the coda of the noise-correlation functions to reconstruct the Green’s function (Stehly et al. 

2008, Froment et al. 2011, Ma and Beroza 2012). Garnier and Papanicolaou (2009) 

demonstrated the validity of this method based upon stationary-phase analysis of the C3 

function leading terms, and they confirmed that this method can enhance the quality of travel-

time estimates in the case of anisotropic source distributions. 

 

Figure 9. From the noise correlations (C1) to the correlation of correlations C3. (a) 

Construction of the noise cross-correlations (red arrows) between stations A and B and all of 

the other stations S of the network. The blue stars represent distant sources of noise. (b) 

Construction of C3 between A and B using the stations of the network as virtual sources (red 

stars). 

 

For a network of N stations, the C3 function between two stations A and B is 

computed through the successive steps illustrated in Figure 9. Let a third station in the 

network be represented by S. The noise correlation is computed between A-S and B-S (Figure 

9a, C1). The noise correlation corresponds to the signals recorded at A and B, respectively, if 

a source was present at S. The receivers S have the role of virtual sources. The same operation 

is repeated for all of the stations S in the network. A time window in the later part of the noise 

correlations is selected (at twice the Rayleigh wave travel-time in Stehly et al. (2008)). Note 

that the codas for both the positive and negative parts of the noise correlation are selected. 

The correlations of the codas of the A-S and B-S noise correlations are computed for positive 

and negative times. The results are finally averaged for all of the virtual sources S of the 

network, to obtain the C3 function between A and B (Figure 9b).  

Note at this point that the geometry of the network controls the illumination of virtual 

sources for the C3 computation. With this procedure, Stehly et al. (2008) showed that C3 
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shows the ballistic Rayleigh waves of the Green's function, as demonstrated for actual coda-

wave correlations (Campillo and Paul 2003). This demonstrates that the late part of the 

ambient-noise correlation function contains a physical signal, namely the scattered coda 

waves. This is important, as it opens the way for using this signal for further applications (see 

Section 7.2). 

Froment et al. (2011) illustrated the concept of a virtual source used for C3 

computation. They compared the time symmetry of both correlation functions (C1 and C3) for 

the particular case of the station pair of HAU-BOURR, as illustrated in Figure 10. In the C3 

correlation process, only the 55 network stations south of HAU-BOURR are considered (see 

Figure 10a). The noise records were filtered in the frequency band from 0.1 Hz to 0.2 Hz. 

 

Figure 10. (a) Map of Europe with orange stars corresponding to the 55 stations of the 

network used as virtual sources to construct the C3 function between stations HAU and 

BOURR (red triangles). Note that all of the stations considered are located south of the HAU-

BOURR path and opposite to the main source of noise located in the North Atlantic Ocean or 

on the northern European coast (gray zone). The black arrow indicates the main direction of 

ambient seismic noise in the vicinity of the station pair HAU-BOURR. (b) Noise correlation 

C1 (orange curve) and C3 (black curve) functions between stations HAU and BOURR for the 

geometry displayed in (a). Note the different vertical scales (left and right, respectively) for 

the two normalized correlation functions. (from Froment et al. 2011). 

 

This means that the theoretical C3 virtual sources are located south of the station pair 

of interest and opposite to the incident-noise direction, as the main source of noise is located 

in the North Atlantic Ocean or on the northern European coast (e.g., Friedrich et al. 1998, 

Kedar et al. 2008, Landès et al. 2010, Stehly et al. 2006). Figure 10b shows the results of both 

the C1 and C3 correlation functions for this geometry. The time symmetry of both of the 

signals shows two opposite peaks of maximum amplitude, which reflect a main energy flux 

that propagates in opposite directions: from north to south for C1, and from south to north for 

C3. Note that the same convention is used for all of the correlation functions; i.e., the signal in 

negative (resp. positive) correlation times corresponds to waves propagating from north to 

south (resp. south to north). This observation indicates that the time symmetry of the two 

correlation functions is consistent with the location of their expected contributing source 

distributions (actual or virtual). However, the C3 function has a better time symmetry than C1. 

This indicates that the coda waves used to compute the C3 function constitute a more isotropic 
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field than the ambient seismic noise. Back-scattered waves produce a north-to-south energy 

flux propagation and therefore contribute to a clear pulse in the negative correlation times. 

Furthermore, Froment et al. (2011) also discussed the possibility of using the C3 coda 

to reconstruct part of the Green's function. They computed a C5 function, the correlation of 

the coda of C3, and they found that the Rayleigh wave is reconstructed. This shows that some 

coherent signal is still present in the coda of the C3 function. This result supports the idea that 

the C5 function can also be used in noise-based tomography or for monitoring techniques. 

However, the SNR in the C5 function is smaller than that in the C3 function, due to the 

reduction in the time-window length used for the computation of the correlation. This might 

limit the practical interest of this iterative correlation process. 

The computation of the correlation of correlations is a way to control the illumination, 

and its isotropy, by using a network of stations as the part of the virtual sources. Furthermore, 

it allows for the separation of scattered and direct waves for the final correlation. This 

selection is obvious with the selection of an ad-hoc time window in noise correlations. From 

the opposite side, it is impossible to perform this separation with noise records in which direct 

and scattered waves from various sources are mixed. Although the coda of correlation takes 

advantage of the properties of multiply-scattered waves, it is also possible to compute the 

correlation of complete noise correlations, including the ballistic part (Froment et al., 2011). 

This is indeed of interest for long period waves for which the scattering is weak. The 

distribution of the stations, that play the role of virtual sources, is determinant in this case. 

 

Ma and Beroza (2012) used the C3 approach with data from stations that operate 

asynchronously, showing that it is practically possible to complement the virtual network with 

stations that were recording at different periods. Curtis and Halliday (2010) presented a series 

of integral relations essentially based on correlation or convolution of correlation functions 

that allowed for reconstructions of virtual seismograms from non-synchronous records; i.e., a 

record at a station that was not operating at the time of an event. Curtis et al. (2012) showed 

the application of these principles for an earthquake in New Zealand. 

 

7- Applications 

 

7-1 Surface-wave tomography 

It is generally assumed that noise is related to surface activity, which ranges from human 

activity at high frequency to the forcing of the oceans and the atmosphere at low frequency. 
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As a consequence, the seismic noise observed at the surface has a strong component of 

surface waves, as has the Green's function between two surface points. The first attempts to 

extract the Green's function from coda or noise seismic records demonstrated the retrieval of 

surface waves (Campillo and Paul 2003, Shapiro et al. 2004). Numerous studies have 

confirmed that Rayleigh waves are easily retrieved from ambient-noise correlations. When 

surface waves are identified in ambient-noise correlations, the methods previously developed 

for earthquake records can be used to infer dispersion properties, and eventually tomographic 

images. Ambient-noise surface-wave measurements have been extensively used for 

tomography at the crustal and lithospheric scales (e.g.. Sabra et al. 2005b, Shapiro et al. 2005, 

Kang and Chin 2006, Yang et al. 2007, Lin et al. 2008, Nishida et al. 2008a, Yao et al. 2008, 

Zeng et al. 2008, Li et al. 2010, Saygin and Kennett 2010, Stehly et al. 2010, Ritzwoller et al. 

2011, Poli et al. 2012c, Verbeke et al. 2012). Anisotropy has also been inferred (e.g., Huang 

et al. 2010, Ritzwoller et al. 2011). Harmon et al. (2007) and Yao et al. (2001) studied the 

oceanic lithosphere with ambient noise records from ocean bottom seismometers. 

Ambient-noise tomography takes advantage of the dense networks by providing a 

large number of interstation measurements. This allows for improved resolution with respect 

to using distant earthquake records. This is particularly true for the short periods that are 

difficult to use when dealing with distant sources. With large dense networks, specific 

approaches can be applied. An example was presented by Ritzwoller et al. (2011) with 

eikonal tomography. This technique is based on direct measurement of the local velocity of a 

surface wave. This is achieved by use of the eikonal equation, with maps of travel-times 

measured and interpolated on a dense array. In the context of ambient-noise tomography, this 

operation can be performed with each station acting as a virtual source. When considering all 

possible virtual sources, a map of the seismic speed can be built, as a function of the azimuth 

of propagation. An application of these principles is illustrated in Figure 11, where the dense 

array of western USA is used to build a high-resolution map of Rayleigh wave speeds at 24 s, 

and a map of the amplitude of anisotropy and the direction of the fast axis (Ritzwoller et al. 

2011). 

 

Figure 11. (a) The 24-s Rayleigh wave isotropic phase speed map taken from the ambient 

noise by averaging all of the local phase-speed measurements at each point on the map. (b) 

The amplitudes and fast directions of the 2c component of the 24-s Rayleigh wave phase 

velocities. The amplitudes of the anisotropy are given by the lengths of the bars, which point 

in the fast-axis direction, and the background is color-coded. At the 24-s period, the Rayleigh 
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wave anisotropy reflects conditions in a mixture of the crust and the uppermost mantle (from 

Ritzwoller et al. 2011). 

 

Ambient-noise surface-wave tomography has also been applied successfully at smaller 

scales, to volcanic structures (e.g., Brenguier et al. 2007), shallow surface layers (e.g., Picozzi 

et al. 2008) and landslides (e.g., Renalier et al. 2010). It is of note that Larose et al. (2005) 

reported a study of the lunar subsurface from the ambient noise recorded during the Apollo 17 

mission. 

 

7.2-Body waves  

 

Although usually with weak amplitudes, body waves are present in the noise records. This 

was clearly shown with array analysis in recent studies (e.g., Gerstoft et al. 2008, who 

identified mantle and core phases), and body waves have been used to map the regions were 

noise is produced at a global scale (e.g., Landès et al. 2010).  

There is therefore substantial hope of extracting the body-wave part of the Green’s 

function, albeit with a lower SNR than for the dominant surface waves. Actually, body waves 

have indeed been reported from short-distance range correlations. Roux (2005a) identified 

direct P-waves from noise correlation, using data from a small array in California, USA. Their 

noise-derived P-waves were linearly polarized, and with an apparent velocity compatible with 

a known velocity model of the area. Several studies have claimed that there are reflected 

phases in ambient-noise autocorrelations and cross-correlations. Draganov et al. (2009) used 

data from oil exploration surveys to extract reflected P-waves from shallow interfaces. Their 

observations appeared to be in good agreement with the active source reflection response 

measured in the same area. Tibuleac and von Seggern (2012) reported that a vertical Moho 

reflection can be identified in autocorrelations in Nevada, USA. Ito and Shiomi (2012) used 

ambient noise to extract reflections associated with a subducting slab beneath Japan.  

Zhan et al. (2010) identified S reflected phases from the Moho interface at the critical 

distance in two shield areas. Poli et al. (2012a) built a short-period seismic section across 

Finland from ambient-noise correlation. They used the continuous records of 42 temporary 

broadband three-component stations located in the northern part of the Fenno-Scandian region 

(Figure 12a). Here, they identify high-frequency body waves (0.5-2.0 Hz) emerging from 

noise correlations for inter-station distances up to 550 km. The comparisons of the noise 

correlations with earthquake data confirmed that the observed waves can be interpreted as P-
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waves and S-waves that are reflected from the Moho. As the crustal model of the area is well 

known, the noise correlations can be compared with synthetic seismograms. Figure 12 shows 

an example of such a comparison for two different components of motion: it indicates that the 

travel-times of all of the observed phases are in excellent agreement. Poli et al. (2012) also 

performed a polarization analysis that confirmed that reflected body waves are positively 

extracted from ambient noise. 

 

Figure 12. (a) Map of the stations of the LAPNet experiment in Finland. (b) ZZ and (d) RR 

cross-correlations plotted as functions of inter-station distances. (c) The vertical component 

(Z) of synthetic seismograms for a vertical point force at the surface. (e) The radial 

component (R) of synthetic seismograms for a horizontal point force at the surface. All of the 

signals were filtered between 0.5 Hz and 1.0 Hz (modified from Poli et al. 2012a). 

 

A step further is to demonstrate that deep seismic phases can be retrieved from 

ambient noise. Poli et al. (2012b) used noise in the microseism band to retrieve P-waves 

reflected at the top (ca. 410 km deep) and at the bottom (ca. 660 km deep) of the transition 

zone. Figure 13 shows the stacked correlations for the pairs of the LAPNet array (see Figure 

12a), as compared with the preferred velocity model. This demonstration that deep interfaces 

can be imaged with ambient noise at the surface confirms that the ambient noise in the 

microseism band consists partly of body-waves propagating at the global scale and 

illuminating the deep interior. This opens the way for the use of ambient-noise correlations to 

image the deep Earth using body waves. Deep core reflexions were reported from correlations 

at regional distances by Lin et al. (2013). Nishida (2013) and Boué et al. (2013) presented 

global sections of cross-correlations indicating that most of the deep phases could be extracted 

from ambient noise.  

 

Figure 13. (a) Comparison of stacked cross-correlation (data) with synthetic traces computed 

for the global model AK135, and for the final preferred model beneath Finland depicted in (b). 

The map of the stations used in this study is shown in Figure 12a. 

 

7.3-Monitoring 

Monitoring of slight changes in velocity in the Earth can be performed with active sources 

(e.g., Reasenberg and Aki 1973, Niu et al. 2008) or with repeating earthquakes (Poupinet et al. 

1984, Ratdomopurbo and Poupinet 1995). 
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The possibility of using the ambient noise to perform repeated measurements of 

speeds between fixed stations is appealing. In the previous sections we discussed the 

convergence of the cross-correlation towards the Green's function for continuous records of 

ambient noise of finite duration. Careful attention must be paid to the quality of the 

reconstruction and to the possible bias associated with the angular distribution of the 

incoming noise energy. With these precautions, it is possible to repeat the processing at 

different dates, and therefore to track temporal changes in the medium. 

The first requirement is to study the stability of the measurements and to detect 

possible instrumental errors when using cross-correlations. As the unbiased physical signals 

have to be time symmetric, the comparison of the arrival times in the positive and negative 

correlation times of the Rayleigh and Love waves allows the separation of time shifts 

associated with any form of physical change in the medium, so those resulting from clock 

drift or other instrumental errors, and those due to changes in the localization of the noise 

sources (e.g., Stehly et al. 2007). Physical changes of the medium speed result in delays of the 

same amplitude for positive and negative times. Instrumental changes produce a global shift 

of the correlation with opposite time-delays. Bias due to nonisotropic illumination (see 

section 5) is associated with different noise sources, and is not likely to be equal for positive 

and negative times. These arguments allow for the detection of instrumental errors and for the 

correcting for them. 

Measuring very small relative velocity changes requires the evaluation of delays 

between traces. Under the assumption of a global change, these delays increase with the travel 

times, making the detection much easier for large lapse times. For this reason, it is often more 

difficult to detect small material changes with direct waves than with waves that have 

sampled the medium for much longer times, as is the case with coda waves.  

In section 6.2, we discussed the properties of the C3 function. The convergence of C3 

towards the Green's function demonstrates that the late part of the correlation functions 

contains scattered waves. Schönfelder and Wegler (2006) found that the envelope of the 

correlation of noise is similar for the different components of the correlation tensor, as 

expected for coda waves, and that this envelope can be modeled with a diffusion equation. 

Indeed, these arguments do not demonstrate that the entire coda is perfectly reconstructed. 

This is not a requirement to use the correlations for monitoring changes in velocity. With 

laboratory ultrasound experiments, Hadziioannou et al. (2009) showed that passive 

monitoring can be successful without complete reconstruction of the Green's function from 

cross-correlations. While the noise source is variable, it is observed that the late part of the 
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noise correlation function is very stable and allows for the monitoring of slight changes in 

velocity. 

 

7.3.1-Velocity change detection and measurement 

The delay dt measured before and after a global change in a medium increases linearly with 

lapsed time t, according to the simple relationship: 

 

 dt dV
t V

= −  (66), 

 

where dV/V is the relative velocity change. This is the basis for very precise measurements of 

velocity change with coda waves. Poupinet et al. (1984) and Snieder et al. (2002) proposed to 

measure dt in moving windows along seismograms, to evaluate dV/V through linear 

regression (moving-window cross-spectral analysis; MWSPA). Alternatively, the stretching 

technique consists of optimization of a stretching parameterε  (e.g., Lobkis and Weaver 2003, 

Sens-Schönfelder and Wegler 2006). The effect of a global small velocity change is to deform 

the trace by changing the time t by t’ = t (1-ε0 ). The strategy is to interpolate the coda at 

times t (1 − ε ) with various stretching factors ε . 

The actual relative velocity change is the stretching factor ε0  = dV/V that maximizes 

the cross-correlation coefficient between the traces that is acquired before and after the 

change. Hadziioannou et al. (2009) showed that the stretching technique is more adapted to 

data with low SNRs in the presence of an actual global velocity change. 

Repeated delay measurements have been applied to autocorrelations and cross-

correlations, which have demonstrated the possibility to observe relative changes in speed of 

the medium as small as 10-4. The evaluation of uncertainties is an important issue. Clarke et al. 

(2010) analyzed the uncertainties of MWSPA in the context of ambient-noise monitoring of a 

volcano. They concluded that the formal error deduced from the linear regression in MWSPA 

underestimated the observed fluctuations of velocity when a small amount of noise was added 

to the correlations. With the stretching method, the dependence of the uncertainty on the 

correlation coefficient between the traces and the parameters of measure (bandwidth, time 

window) was given by Weaver et al. (2011). 

 

7.3.2-Observations  
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The velocity changes observed with ambient noise are likely to be of various origins. 

Schönfelder and Wegler (2006) studied the autocorrelations of noise records on a volcano, 

and they detected a seasonal velocity change that they interpreted as being related to the 

variations of the water-table depth. Meier et al. (2010) attributed the seasonal changes of 

velocity observed in the Los Angeles basin to a thermo-elastic effect. Brenguier et al. (2008a) 

used long time series and detected a velocity change that was precursory to volcanic eruptions 

of the Piton de la Fournaise volcano. This was interpreted as the effect of the inflation of the 

edifice prior to the eruption. Mainsant et al. (2012) also used ambient noise to detect a drop in 

velocity prior to a landslide. 

Recently, several studies have shown the detection of velocity changes associated with 

the activity of fault systems, earthquakes and transient creep, with correlations of ambient 

noise. Wegler and Schönfelder (2007) detected a change in velocity after the Mw 6.6 mid-

Niigata earthquake in Japan. Brenguier et al. (2008b) observed velocity drops associated with 

two earthquakes in central California, USA (Figure 14). 

 

Figure 14. Seismic velocity changes, surface displacements from GPS, and tremor activity 

near Parkfield. The red curve represents the post-seismic fault-parallel displacements along 

the San Andreas fault, as measured by GPS at a local station. The tremor rates are averaged 

over a centered 30-day-length moving time window (from Brenguier et al. 2008b). 

 

More recently, Hadziioannou et al. (2011) used the adaptive filtering approach of Baig 

et al. (2009) to improve the time resolution of the monitoring, and they concluded that the 

velocity drop associated with the Parkfield earthquake is co-seismic with a precision of one 

day. Considering the apparent similarity of the temporal evolution of the velocity change, 

GPS position, and tremor activity at depth, Brenguier et al. (2008b) proposed that the velocity 

change is not only related to the well-documented nonlinear response of the shallow layers to 

strong motion. Wegler et al. (2009) reached a similar conclusion on the existence of a change 

at depth for the sudden drop in velocity observed after the 2004 Mw 6.6 mid-Niigata 

earthquake in Japan. Chen et al. (2010) and Froment et al. (2013) studied the case of the 2008 

Mw 7.9 Wenchuan earthquake, and they also found a velocity drop associated with the 

earthquake. They used broadband ambient-noise records and preformed the measurements in 

the two separate period bands of 1 s to 3 s and 12 s to 20 s. The amplitude of the velocity drop 

was larger for the long-period band. As the measurements are performed with coda waves, 

they have the depth sensitivity of the predominant surface waves. The results therefore 
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suggest that the change occurs also at depth and affects the middle crust. Furthermore, 

whether the temporal velocity change is related to deformation at depth can be investigated in 

the case of slow-slip events that produce significant deformation at depth without strong 

ground motion at the surface. Rivet et al (2011) found a transient change in the velocity at 

depth associated with a large (Mw 7.5) slow-slip event on the Mexican subduction. 

Despite promising evidence for the feasibility of monitoring deformation at depth with 

seismic ambient noise, it is noticeable that the origin of the changes can be obscured by the 

coincidence of signals of tectonic and hydrological origins (e.g., Yu and Hung 2012, Froment 

et al. 2013). 

 

8-Conclusions 

 

Ambient-noise correlation is emerging as a new tool in seismic data processing. It is 

complementary to the traditional use of earthquake or active source records. The correlation 

of ambient-noise records at distant points can be regarded, under certain conditions, as the 

virtual seismogram recorded at one point if a source was acting at the other.  

We have shown physical representations that allow the reader to have an intuitive 

understanding of the method. The emergence of the Green's function in cross-correlation is 

the expression of the fundamental properties of wave fields. This is illustrated by the analogy 

with time-reversal mirrors that have shown the reconstruction of converging and diverging 

Green's functions in laboratory experiments. We have also presented a geometrical 

interpretation that shows that source averaging tends to select the contribution of sources 

located in the end-fire lobes. We have presented mathematical results that show that the 

construction of virtual seismograms is rigorous, and that the complete deterministic response 

of the Earth can be extracted from the records at distant points.  

In practice, the ambient noise is produced by sources that are unevenly distributed. In 

general, this results in incomplete or improper reconstruction. We have analyzed the impact of 

a nonisotropic distribution of incident noise intensity on the travel-times measured on 

correlations. There is bias, but it is predictable accurately, meaning that corrections can be 

applied when necessary. With realistic distributions, the method is robust and the bias in the 

travel-time is acceptable for most imaging applications.   

The presence of scattering due to the heterogeneous nature of the Earth results in 

complexity of the seismic wave field. As this complexity tends to spread the wave energy 

over a wide range of directions and to enhance the conversion between the types of waves, it 
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also has a positive role for the correlation of noise. For long lapse times, the field becomes 

diffuse, and has in itself the properties sufficient to obtain the Green's function by correlation. 

Theoretically, a single source would be sufficient to produce an equipartioned field, with its 

two-point average correlation being the Green's function. This can be understood by 

considering the scatterers as secondary sources that are uniformly distributed in the medium. 

With actual normalized noise records, the ballistic waves produced by noise sources are 

supplemented by the scattered waves of the Earth heterogeneity. 

The relatively easy extraction of surface waves by the correlation of noise records has 

made it possible to apply ambient surface tomography in different places around the world. 

With this technique, high-resolution crustal models have been proposed, including for shear-

wave velocity, anisotropy and attenuation. Applications have been realized at different scales. 

Based on the general mathematical properties discussed in section 4, and the observation of a 

teleseismic body-wave component in the noise records, the reconstruction of body waves is 

expected and has been confirmed by recent studies. This opens the way to the generalization 

of ambient-noise tomography to all types of waves, including deep phases. 

As ambient-noise cross-correlation can be repeated at different dates, these cross-

correlations can be used to monitor slight changes in the elastic properties of the crust. The 

late part of correlations, corresponding to the coda waves, computed at different dates are 

very stable and allow for the measuring of slight relative changes of seismic speeds, as small 

as 10-4. Changes in seismic velocity have been observed after large earthquakes in several 

studies, including for slow-slip events. Velocity drops have been proposed to be precursory to 

volcanic eruptions and landslides. 

The exploitation of ambient seismic noise is an emerging field. The huge datasets 

produced nowadays by dense permanent and temporary networks offer new opportunities for 

the development of innovative techniques to construct virtual seismograms that correspond to 

paths in regions of the planet that are poorly covered. Ambient-noise analysis will continue to 

provide new insights into the structure of the Earth and into its continuous evolution.  
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