
09/09/2011 1

FORTRAN programming

General introduction

M2PGER 2011-2012

Virginie DURAND and Jean VIRIEUX

09/09/2011 2

Why learning programming ???

09/09/2011 3

Why learning programming ???

ACQUISITION
numerical

 Recording on
magnetic
supports

MODELLING
Empirical or theoretical

from our understandings of
natural phenomenons

09/09/2011 4

Why learning programming ???

● IMPORTANT to master the processing line
acquisition modelling

● To know how to modify the programs at your disposal to
do the job asked.

ACQUISITION
numerical

 Recording on
magnetic
supports

MODELLING
Empirical or theoretical

from our understandings of
natural phenomenons

09/09/2011 5

Computer environment

● CPU : processor controlling the whole system

● Main memory : enable the temporary memorization
of the data during program execution

● External mass storage : storage of informations on
the long range (hard disk, CD-ROM,...)

09/09/2011 6

Integrated tools
● Excel, Matlab, Scilab, Octave,...
● Allow easy and quick data handling
● Enable quick test of an idea

● BUT

– They are slow
– They can have some difficulties during heavy

applications
Because each step is analysed by the computer each time it is
met !!

Solution : avoid this repeated analysis !!! (compiled tools)

 Cycle Steps/Compilation+Link editing /Execution

09/09/2011 7

Languages

● Why using a programming language ??

09/09/2011 8

Languages
● Why using a programming language ??

Language = practical way to give instructions to a
computer

● Language setting
● Key words
● Handleable tools
● Syntax rules
● Logical structures

Programming is writing a text observing
language rules, and likely to solve a given

problem

09/09/2011 9

Languages

● Sequential language (declarative programming)

● Program = series of instructions brought together in
blocks

● There are some conditional jumps ==> back to an
instruction block if the condition is true

● C, ADA, FORTRAN

09/09/2011 10

Languages

● Object-oriented language

● Program built with relations
● Relations : define objects and links between objects

==> user defines properties, the language makes the
deductions

● C++, ADA, smalltalk

09/09/2011 11

Why fortran ?

● Archetypal scientific language since 1957
● Portability on various architectures
● Allows quick executions

09/09/2011 12

Program edition,
Compilation et link editing,

Execution

3. Execution

1. Edition

Steps definition

2. Compilation

Link editing

09/09/2011 13

● Compilation : translation of the program in binary

● Link editing : process allowing to create runnable
(executable) files from the objects files (intermediate
files)

Link editor links object files with the environment

Program edition,
Compilation et link editing,

Execution

09/09/2011 14

3. Execution

./toto

1. Edition

 toto.f90

 program toto
 do i = 1,100
 write(*,*) i
 enddo
 stop
 end

2. Compilation

gfortran -c toto.f90

==> toto.o

Link editing

gfortran -o toto toto.o

09/09/2011 15

09/09/2011 16

Basic Unix
(shell)

09/09/2011 17

Shell definition and aim

What ?
● Interface for the system user
● Command interpreter

Why ?
● Interactive use : command line
● Programming (script conception)
● File handling

 Automate tasks

09/09/2011 18

Various types of shell (cf P.Fuchs)

● Bourne shell(/bin/sh) :
● Shell standard
● The most compact and the easiest
● It is on all systems

● Bourne again shell (/bin/bash)
● Extensive version of Bourne shell

● C shell (/bin/csh)

09/09/2011 19

How to travel in the directories

● pwd : displays the current directory path from
your home

● Absolute or relative path :

ex : If I am in toto and I want to go in tata, 2
possibilities :
– cd ../tata = relative path
– cd ~/tata = absolute path (+++ if we have to go back up a

lot, be carefull if you move your file)

09/09/2011 20

Permission modifications

● Chmod -u permission file

● u = user
● Permission : r read 4 +/-

 w write 2 +/-

 x run 1 +/-
chmod +r+w+x file <==> chmod 777 file

09/09/2011 21

Shell in command line interface

● 2 states:
● Work
● Inactivity : - waits for orders, executes them, waits

 for a new order

 - display a prompt :

[durandv@lgit-1197]$

09/09/2011 22

Interpretation and execution of the
commands

● Ex : ls -l file
● To interpret a line, Bash splits it up in words :

● 1st word = command name : ls
● Then the arguments of the command = data

processed by the command : file
● Options will change the behaviour of the command :

-name_option : -l
● End of the command :

– « ; » if several commands on the same line
– Next line

or

09/09/2011 23

How does shell find the
commands ??

● Example : I write « Hello »

shell will look at ≠ places :

(1) Is « Hello » an integrated command ?
● If yes : execution
● If no --> (2)

(2) Reads the content of a variable, PATH (points out the path
of the command)

In PATH : /usr/bin look for: /usr/bin/Hello

 /bin /bin/Hello

(3) If (2) negative error message : Hello:command not found

09/09/2011 24

Arguments and options
● Argument = series of characters given to a command

---> tells how to behave
● Options = special case of arguments ---> all kind of

informations
● Metacharacter = character with an other signification

than its literal one.
ex : replace other characters :

– * = any character/group of characters

– ? = 1 character

● « \ » : - prevent the special interpretation of a character
 (* --> écrit *)

 - at the end of a line ==> command continues at the
next line

09/09/2011 25

Command hystory

● Shell keeps an history of the commands
===> history number

command history
● arrows : back up/go down in the history
● Recall of a command :

● !x : run again the command N° x in the history
● !! : run again the last command
● !cp : run again the last command beginning with cp

09/09/2011 26

Process

● Run a programm is create a process
● Process = execution of a series (more or less

long) of instructions (program, script,...)
● Unix commands listing the processes : pstree,

ps, ps -l, ps aux

Ex : ps gives:

[durandv@lgit-1197]$ ps
 PID TTY TIME CMD
3195 pts/1 00:00:00 bash
3366 pts/1 00:00:00 okular
3375 pts/1 00:00:00 ps

mailto:durandv@lgit-1197

09/09/2011 27

State of a process (cf P.Fuchs)

● Foreground process (fg) :
– shell waits for the death of the son process to take the hand

again
– In abstentia, each command is run fg

● Background process (bg) :
– We keep the hand in the shell
– To run in bg : name_commande &
– Usefull to run a long process

● Rq : if we want to be able to close the shall during a
pgm is running : nohup program

!!!! put the errors in a file !!!!

09/09/2011 28

Commands acting on a process
state (cf P.Fuchs)

● jobs : lists the jobs of a shell and their state
● Option -l gives the PID
● Allocates a n° x of job, that you can recall with %x

● Kill : kills a process
● kill %1 : kills the process n°1
● kill -9 PID : kills the process

● Ctrl-Z : stops the job
● Ctrl-C : kills the job

09/09/2011 29

 top command
PID

owner Ressources Process name

09/09/2011 30

Flux

● Flux = flow of data coming in and out of the
processes (or programs) :
● Standard input (stdin) : keyboard
● Standard output (stdout) : screen
● Error output (stderr) : Screen

[durandv@lgit-1197]$ cat
 Bonjour
 Bonjour

Commande cat without
argument

Bonjour is written
with the keyboard
(stdin)

Bonjour is displayed on the
screen (stdout)

mailto:durandv@lgit-1197

09/09/2011 31

Flux redirection
● A > file : stdout of A is put in file overwritting its

content or creating it
● A >> file : stdout of A is put at the end of file
● A 2 > file : stderr is put in file (overwritting,

creation)
● A < file : executes A with the content of file in

stdin
● A | B : executes A then sends stdout(A) in

stdin(B)

Ex : ls -l | sort : gives the list of the files sorted

09/09/2011 32

Some filter commands

● head file : displays the 1st lines of file
● tail file : displays the last lines of file
● grep expression file : displays all the lines of

file with expression
● sort file : sorts each line of file
● wc -l fichier : displays the nbr of lines of file

(option -c : nbr of characters, -w : nbr of words)
● cat file1 file2 ... : concatenation of file1, file2,...

09/09/2011 33

Variables

● Access to the content of a variable : $var

Ex : echo $HOME --> display the content of the
variable HOME

● Some environment variables

(contain the user environment caractéristics)
● PATH : stores the access path to find the command

asked by the user
● USER : stores the name of the user
● HOSTNAME : stores the name of the machine
● ...

09/09/2011 34

Shell programming

● Script = text file, serries of commands
● Execution of the script : each command is

analyzed and translated in machine language
● !!! Comment your program !!!
● Make the script runnable !!

chmod +x file.sh

● Write where is the interpreter on the 1st line :

#!/bin/bash

● In an other line # = commentaire

09/09/2011 35

Summary
● Main commands to travel in the directories

09/09/2011 36

Summary
● Main commands to travel in the directories (cd, mkdir,

cp, rm,...)

09/09/2011 37

Summary
● Main commands to travel in the directories (cd, mkdir,

cp, rm,...)
● How to change the permission of a file

09/09/2011 38

Summary
● Main commands to travel in the directories (cd, mkdir,

cp, rm,...)
● How to change the permission of a file
● Never forget to organize your work space !

09/09/2011 39

Summary
● Main commands to travel in the directories (cd, mkdir,

cp, rm,...)
● How to change the permission of a file
● Never forget to organize your work space !
● Remember to open your 3 windows when

programming in fortran

 3 steps :

09/09/2011 40

Summary
● Main commands to travel in the directories (cd, mkdir,

cp, rm,...)
● How to change the permission of a file
● Never forget to organize your work space !
● Remember to open your 3 windows when

programming in fortran

 3 steps :
● Writing the program
● Compiling and link editing

 gfortran -c toto.f90, gfortran -o toto toto.o

● Execution

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40

