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ACQUISITION
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 Recording on 
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Why learning programming ???

● IMPORTANT to master the processing line
acquisition                 modelling

● To know how to modify the programs at your disposal to 
do the job asked.

ACQUISITION
numerical

 Recording on 
magnetic 
supports

 

MODELLING
Empirical or theoretical

from our understandings of 
natural phenomenons
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Computer environment

● CPU : processor controlling the whole system  

● Main memory : enable the temporary memorization 
of the data during program execution

● External mass storage : storage of informations on 
the long range (hard disk, CD-ROM,...)
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Integrated tools
● Excel, Matlab, Scilab, Octave,...
● Allow easy and quick data handling 
● Enable quick test of an idea

● BUT 

– They are slow
– They can have some difficulties during heavy 

applications
Because each step is analysed by the computer each time it is 
met !!

Solution : avoid this repeated analysis !!! (compiled tools)

                  Cycle Steps/Compilation+Link editing /Execution
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Languages

● Why using a programming language ??
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Languages
● Why using a programming language ??

Language = practical way to give instructions to a 
computer                      

● Language setting
● Key words
● Handleable tools
● Syntax rules
● Logical structures

Programming is writing a text observing 
language rules, and likely to solve a given 

problem
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Languages

● Sequential language (declarative programming) 

● Program = series of instructions brought together in 
blocks

● There are some conditional jumps ==> back to an 
instruction block if the condition is true

● C, ADA, FORTRAN
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Languages

● Object-oriented language

● Program built with relations
● Relations : define objects and links between objects

==> user defines properties, the language makes the 
deductions

● C++, ADA, smalltalk
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Why fortran ?

● Archetypal scientific language since 1957
● Portability on various architectures
● Allows quick executions
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Program edition, 
Compilation et link editing, 

Execution

3.   Execution

1.     Edition

Steps definition

2.   Compilation

Link editing
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● Compilation : translation of the program in binary

● Link editing : process allowing to create runnable 
(executable) files from the objects files (intermediate 
files)

Link editor links object files with the environment

Program edition, 
Compilation et link editing, 

Execution



09/09/2011 14

3.   Execution

./toto

1.     Edition 

 toto.f90

 program toto
 do i = 1,100
 write(*,*) i
 enddo
 stop
 end

2.       Compilation

gfortran -c toto.f90

==> toto.o

Link editing

gfortran -o toto toto.o
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Basic Unix
(shell)
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Shell definition and aim

What ?
● Interface for the system user
● Command interpreter 

Why ?
● Interactive use : command line
● Programming (script conception)
● File handling

                      Automate tasks
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Various types of shell (cf P.Fuchs)

● Bourne shell(/bin/sh) :
● Shell standard
● The most compact and the easiest
● It is on all systems

● Bourne again shell (/bin/bash)
● Extensive version of Bourne shell

● C shell (/bin/csh) 
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How to travel in the directories

● pwd : displays the current directory path from 
your home

● Absolute or relative path :

ex : If I am in toto and I want to go in tata, 2 
possibilities :
– cd ../tata = relative path
– cd ~/tata = absolute path (+++ if we have to go back up a 

lot, be carefull if you move your file)



09/09/2011 20

Permission modifications

● Chmod -u permission file

● u = user
● Permission :  r        read               4    +/-

                          w      write               2    +/-

                          x       run                 1    +/-
chmod +r+w+x file   <==>  chmod 777 file
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Shell in command line interface

● 2 states:
● Work
● Inactivity : - waits for orders, executes them, waits    

                   for a new order

                 - display a prompt : 

[durandv@lgit-1197]$
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Interpretation and execution of the 
commands

● Ex : ls -l file
● To interpret a line, Bash splits it up in words :

● 1st word = command name : ls
● Then the arguments of the command = data 

processed by the command : file
● Options will change the behaviour of the command : 

-name_option : -l
● End of the command :

– « ; » if several commands on the same line
– Next line

or
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How does shell find the 
commands ??

● Example : I write  « Hello »

shell will look at ≠ places :

(1) Is « Hello » an integrated command ?
● If yes : execution
● If no --> (2)

(2) Reads the content of a variable, PATH (points out the path 
of the command)

In PATH : /usr/bin                      look for: /usr/bin/Hello

                      /bin                                    /bin/Hello

(3) If (2) negative      error message : Hello:command not found
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Arguments and options
● Argument = series of characters given to a command 

---> tells how to behave
● Options = special case of arguments ---> all kind of 

informations
● Metacharacter = character with an other signification 

than its literal one.
ex : replace other characters :

– * = any character/group of characters

– ? = 1 character

● « \ » :  - prevent the special interpretation of a character           
                (\* --> écrit *)

          - at the end of a line ==> command continues at the 
next line
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Command hystory

● Shell keeps an history of the commands     
===> history number

command history
● arrows : back up/go down in the history
● Recall of a command :

● !x : run again the command N° x in the history
● !! : run again the last command
● !cp : run again the last command beginning with cp
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Process

● Run a programm is create a process
● Process = execution of a series (more or less 

long) of instructions (program, script,...)
● Unix commands listing the processes : pstree, 

ps, ps -l, ps aux

Ex : ps gives: 

[durandv@lgit-1197]$  ps
 PID  TTY         TIME     CMD
3195 pts/1    00:00:00    bash
3366 pts/1    00:00:00    okular
3375 pts/1    00:00:00    ps

mailto:durandv@lgit-1197
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State of a process (cf P.Fuchs)

● Foreground process (fg) :
– shell waits for the death of the son process to take the hand 

again
– In abstentia, each command is run fg

● Background process (bg) :
– We keep the hand in the shell
– To run in bg : name_commande & 
– Usefull to run a long process

● Rq : if we want to be able to close the shall during a 
pgm is running : nohup program

!!!! put the errors in a file !!!!
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Commands acting on a process 
state (cf P.Fuchs)

● jobs : lists the jobs of a  shell and their state
● Option -l gives the PID
● Allocates a n° x of job, that you can recall with %x

● Kill : kills a process
● kill %1 : kills the process n°1
● kill -9 PID : kills the process 

● Ctrl-Z : stops the job
● Ctrl-C : kills the job
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 top command
PID

owner Ressources Process name
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Flux

● Flux = flow of data coming in and out of the 
processes (or programs) :
● Standard input (stdin) : keyboard
● Standard output (stdout) : screen
● Error output (stderr) : Screen

[durandv@lgit-1197]$ cat
   Bonjour
   Bonjour

Commande cat without 
argument

Bonjour is written 
with the keyboard 
(stdin)

Bonjour is displayed on the 
screen (stdout)

mailto:durandv@lgit-1197
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Flux redirection
● A > file : stdout of A is put in file overwritting its 

content or creating it
● A >> file : stdout of A is put at the end of file
● A 2 > file : stderr is put in file (overwritting, 

creation)
● A < file : executes A with the content of file in 

stdin
● A | B : executes A then sends stdout(A) in 

stdin(B)

Ex : ls -l | sort : gives the list of the files sorted
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Some filter commands

● head file : displays the 1st lines of file
● tail file : displays the last lines of file
● grep expression file : displays all the lines of 

file with expression
● sort file : sorts each line of file
● wc -l fichier : displays the nbr of lines of file 

(option -c : nbr of characters, -w : nbr of words)
● cat file1 file2 ... : concatenation of file1, file2,...
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Variables

● Access to the content of a variable : $var

Ex : echo $HOME --> display the content of the 
variable HOME

● Some environment variables

(contain the user environment caractéristics)
● PATH : stores the access path to find the command 

asked by the user
● USER : stores the name of the user
● HOSTNAME : stores the name of the machine
● ...
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Shell programming

● Script = text file, serries of commands
● Execution of the script : each command is 

analyzed and translated in machine language
● !!! Comment your program !!!
● Make the script runnable !!

chmod +x file.sh

● Write where is the interpreter on the 1st line :

#!/bin/bash

● In an other line # = commentaire
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Summary
● Main commands to travel in the directories 
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● Main commands to travel in the directories (cd, mkdir, 
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● How to change the permission of a file
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Summary
● Main commands to travel in the directories (cd, mkdir, 

cp, rm,...)
● How to change the permission of a file
● Never forget to organize your work space !
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Summary
● Main commands to travel in the directories (cd, mkdir, 

cp, rm,...)
● How to change the permission of a file
● Never forget to organize your work space !
● Remember to open your 3 windows when 

programming in fortran

               3 steps : 
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Summary
● Main commands to travel in the directories (cd, mkdir, 

cp, rm,...)
● How to change the permission of a file
● Never forget to organize your work space !
● Remember to open your 3 windows when 

programming in fortran

               3 steps : 
● Writing the program
● Compiling and link editing 

         gfortran -c toto.f90, gfortran -o toto toto.o

● Execution
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