

Origin, mobility and temporal evolution of arsenic from low-contaminated catchments in Alpine crystalline rocks

Delphine Tisserand¹, Eric Pili^{2,3}, Sarah Bureau¹

Abstract

A study conducted in a French alpine basin, in an unsaturated zone, exhibits total Arsenic concentrations [As] in water higher than the WHO guideline fixed at $10 \,\mu\text{g}/\text{l}$. New tools are used to study As at low concentrations where many processes may be masked. [As], As speciation (As^V/As^{III}), isotopic compositions of pyrites ($\delta^{34}\text{S}_1$), sulfate ($\delta^{34}\text{S}_{SO4}$, $\delta^{18}\text{O}_{SO4}$) and water ($\delta^{18}\text{O}_{H2O}$) show a geogenic source of arsenic linked to the dissolution of pyrite. The negative correlation between $\delta^{34}\text{S}_{SO4}$ and [As] is interpreted as successive fractionations during pyrite dissolution. Oxygen isotopes are good tools to retrieve both initial redox and aerobic/anaerobic conditions. A 3-year monitoring at high-resolution showed that droughts enhance pyrite dissolution.

Origin of Arsenic

Type of Minerals	As content (mg/Kg)	δ ³⁴ S _{mineral} (% VCDT)	ε ³⁴ S _{sulfate-mineral} (% VCDT)	As concentration in water (μg/l)
Arsenopyrite FeAsS	19.6	8.25	-2	5.16
Chalcopyrite CuFeS ₂	4.20	7.8	-1.55	5.16
Pyrite FeS ₂	4.40	15	-15.1	14.85

Table 1. Comparison of isotopic signature, As content of three sulfides minerals with As concentration in water dripping from this zone and computed fractionation factors between sulfates and minerals.

- → The ORIGIN OF AS mobilization are SULFIDES MINERALS.
- → SUCCESSIVE OXIDATIONS of intermediate sulfoxy species during pyrite dissolution may be responsible for CUMULATED FRACTIONATIONS.
- → The NEGATIVE CORRELATION can be explained by APPARENT FRACTIONATION FACTORS that become progressively larger as DISSOLUTION OF PYRITE PROGRESSES and MORE ARSENIC IS RELEASED.

Figure 1. Negative correlation of $\delta^{34}S_{SO4}$ with [As]

Exceptions are samples where precipitates of Fe or Mn oxides are observed. A high As mobilization is associated with cumulative fractionations during pyrite dissolution.

Conditions of Pyrite Dissolution

Figure 2. $\delta^{18}O_{SO4}$ correlates positively with As $^{V}/As^{III}$ ratio

Figure 3. $\delta^{18}O_{SO4}$ versus $\delta^{18}O_{H2O}$

On a Pourbaix diagram, measured Eh and pH show As under ${\sf HAsO_4^{2^-}(As^V)}$ form whereas ${\sf As^{III}}$ and ${\sf As^V}$ are detected. $\delta^{18}{\sf O}_{SO4}$ value is a good tool to keep the memory of ${\sf As^V/As^{III}}$ in water at depth.

 $\delta^{18}O_{SO4} = X(\delta^{18}O_{H2O} + \epsilon_{SO4\text{-}H2O}) + (1\text{-}X)(\delta^{18}O_{O2} + \epsilon_{SO4\text{-}O2})$

 $\varepsilon_{\text{SO4-H2O}}$ = 1.6‰, 2.3‰, 2.4‰ are for samples in strong reducing conditions.

 ϵ_{SO4-O2} taken at -10.2 +/- 0.5% and $\delta^{18}O_{O2}$ = 23.5% \rightarrow Upper limit for Aerobic conditions.

- → AS SPECIATION keeps in memory the more reducing conditions of pyrite oxydation.
- → Pyrite dissolution lies within a range of AEROBIC/ANAEROBIC conditions.

Temporal evolution

Figure 4. [SO4] and flow rates monitored over a [2002-2005] period

The 2003 summer and 2004-2005 winter droughts enhanced pyrite dissolution and produced a high increase of [SO4] due to water recharges (high flow rates).

- → [SO4] and consequently [As] mobilized are higher during summer drought than winter drought.
- → TEMPERATURE effect and/or better NUTRIENT availability.

Ackowledgments

This research is funded by CEA.

The authors thank Hydrosciences Montpellier and CRPG-Nancy.

Conclusions

- 1. Pyrites dissolutions are at the origin of As mobilization in a range of aerobic to anaerobic and more reducing conditions compared to measured Eh in water.
- 2. Sulfate and oxygen isotopes enable to know (1) the [As] initially mobilized in the absence of precipitation, (2) the memory of initial redox conditions considering As^v/As^{III} and (3) the part of water-derived oxygen proportion in sulfate.
- 3. Drought waves enhance pyrite dissolution resulting in an increase of [As] in waters due to water recharges.

References:

- [1] Pili et al. (submitted) Journal of Hazardous Materials
- [2]Smedley et al. (2002) Applied Geochemistry 17 517-568
- [3] Heidel et al. (2011) Chemical Geology 281 305-316
- [4] Balci et al. (2007) *Geoch. And Cosm. Acta* **71** 3796-3811