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multiple scattering, unknown piecewise smooth wave speed

disentangling multiple scattering
e instantaneous time mirrors in an extended subsurface

e scattering control, detection of kinetic energy, projections

extensive (composite) data manipulations

inverse problem
e broken boundary normal (‘time’) coordinates

e wave-based coordinate transformation reconstruction from
partial data — wave speed, discontinuities

e interface detection without the wave speed









controlling multiple scattering — dimension 1
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background

e Marchenko's classical integral equation solves the inverse
scattering problem in dimension one

e Rose (2002) developed an iterative procedure in dimension one,
single-sided autofocusing, which focuses (geodesic coordinate)
and related it to Marchenko's equation



background

e Marchenko's classical integral equation solves the inverse
scattering problem in dimension one

e Rose (2002) developed an iterative procedure in dimension one,
single-sided autofocusing, which focuses (geodesic coordinate)
and related it to Marchenko's equation

extend Marchenko approach to higher dimensional inverse
problems (related work: Wapenaar, Thorbecke, Van der Neut,
Broggini, Snieder, Curtis and others): key components are unique
continuation (Tataru) and boundary control (Belishev)



unique continuation property
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(Tataru)

D(wo, T)

a solution of the wave equation that is zero on the neighborhood
on the left must be zero on the ‘light diamond’



setting inside-outside

assumptions

e Q CR" (part of Earth’s interior) is a Lipschitz domain

e C is a scalar wave speed:

e unknown and piecewise smooth on 2
e known and smooth on Q* = R"\ Q



initial value problem (IVP) and data model
let h = (ho, hy)c H'(R") & L%(R"); consider the IVP

0?u—c?Au=0 inRxR"
F:h—ust. u(0,-)=hg inR"
O0wu(0,-)=hy  inR"

response after time s
Rs: HY(R™) @ L*(R")— HY(R") & L*(R")
h > (Fh,d;Fh)

t=s

known: Rgrh‘ for Cauchy data h supported in Q*,

xeQ*
T € (0, 3 diam ©)

data operator: F: H(Q*) @ L2(Q*) — C(R, HY(QY))



sets

e let T > 0, choose Lipschitz ©, T s.t.
QcoOcoecT

(think of © ~ Q, and T a large ambient space)



sets, signed distance
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Cauchy data, spaces
sublevel sets (d§: signed distance to the boundary 0O)

©:r = {xeT|di(x)>t}
O = {xeT|ds(x) <t}

(sub)spaces of Cauchy data



Cauchy data, spaces
sublevel sets (d§: signed distance to the boundary 0O)

©:r = {xeT|di(x)>t}
O = {xeT|ds(x) <t}

(sub)spaces of Cauchy data

C=Hi(") @ L3(T)

H. = Hj(0:) & L2
Hy = Hyep e
H* N (Ryr(HA(R"\ ©) @ L2(R"\ ©))): space of Cauchy data in C

)
whose wave fields vanishon ©@ at t =0and t =2T; Ro1: (~: —C
isometrically mc: C—C

C : its orthogonal complement inside (::
H}: its orthogonal complement inside H}



norms and inner product

inner product on C

((for ). (g0.81)) = /T (V(x) - VEo(x) + cA(x)E1(x)) dx

energy in open set W C R”"

Ew(h) _/ (yVh0\2+c*2\h1\2) dx
w

kinetic energy
KEW(h):/ c2|hy)? dx
w



projections inside and outside ©;

e orthogonal projections

m : C— Hy, ™ =T

7y C— Hf, ™ =7

_ ) - B h(X), X € et
e =1—7r, (Teh)(x)= { ((x),0), x €O

where ¢ is the harmonic extension of h|pe, to T
(with zero trace on 97T)



projections inside and outside ©;

e orthogonal projections
m : C— Hy, ™ = TQ
7y C— Hf, ™ =7
_ . _ h(x), x €O
T =1—m;, (Teh)(x) = { (é(i) 0), x€ @%

where ¢ is the harmonic extension of h|pe, to T
(with zero trace on 97T)

e set R=wvo RyT, where v: (hg, h1) — (hg, —h1)

7*R: reflection response operator



scattering control ho := (ho,0, ho,1)

scattering control series: T € (0, 3 diam ©)

given Cauchy data hy supported in © \ ©, define Neumann series

o
heo = (I = 7*R7*R)Thy = Y (n*R7*R)'ho
i=0
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scattering control ho := (ho,0, ho,1)

scattering control series: T € (0, 3 diam ©)

given Cauchy data hy supported in © \ ©, define Neumann series

o
heo = (I = 7*R7*R)Thy = Y (n*R7*R)'ho
i=0

double reflection
response 1 Rm*Rh

L+ add to i,

reflection
response 7 Rh



almost direct transmission (ADT)

definition
o the T-sublevel setis ©1 = {x € © | d§(x) > T}

e the almost direct transmission of hg is RThO‘eT

e the harmonic almost direct transmission is its harmonic
extension, hpt = T RThg

90 1 [ | Support of wave field, t = T

o0 . Almost direct transmission

T 1/ 7T —> Directly transmitted ray
l —> Scattered rays



series behavior (1)

let ho € H and T € (0, % diam ©); finding the wave field of the
harmonic almost direct transmission of hy is equivalent to
summing the scattering control series:

R_17RyThee = hpT
(I = ™ R7T*R)hs = hg < and
hoo — hg € H*
such an h, if it exists, is essentially unique

by unique continuation and finite speed of propagation; works for
any ¢ with these properties



series behavior (1)

let ho € H and T € (0, % diam ©); finding the wave field of the
harmonic almost direct transmission of hy is equivalent to
summing the scattering control series:

RfsﬁTstTJrshoc - hDT
(I =™ R7T*R)hs = hg < and se[0,T]
hoo — hg € H*,
such an h, if it exists, is essentially unique

by unique continuation and finite speed of propagation; works for
any ¢ with these properties



series behavior (1)

let hy be the Neumann series’ k" partial sum

k
he =Y (7*R7*R)’ho
i=0

e the wave field that hpT generates can be recovered from {hy}
regardless of convergence of the scattering control series:

lim R_t7Rythy = Rrxho = hpT

k—00

e {hx} converges in energy space on a dense set

e {hy} always converges in a larger weighted space
(spectral theorem)



<

o

«F

o>



ScatteringControl.mp4
Media File (video/mp4)


energy recovery (1)

e energy conservation allows us to find the energy of the almost
direct transmission using only outside-observable data

the energy of the harmonic almost direct transmission
(including harmonic extension) is

E(hpT) = E(heo) — E(7* Rhoo)

the kinetic energy (not including harmonic extension) is

1
KE(hor) = 3 (ho, ho — Rr*Rhs — Rhec)



energy recovery (Il)

e even without convergence, one can recover the same energies as
monotone limits

the energy of the harmonic almost direct transmission
(including harmonic extension) is

E(hpT) [E(hi) — E(7* Rhy)]

= lim
k—00
the kinetic energy (not including harmonic extension) is

KE(hot) = = lim [E(hk) + E(ho) — E(n*Rr* Rhy)

4 koo

+ 2<7T*th, hy, — RT[‘*th> — 2<h0, R?T*th + th>



broken boundary normal (‘time') coordinates

e set of disjoint, closed, connected, smooth hypersurfaces:
r=yr;

e {Q;}: the connected components of R"\ I

o we call x € Q regular if x ¢ T and the infimum in
d(x,09Q) = d({x},0Q) is achieved by a unique purely
transmitted broken path that is nowhere tangent to I

Assumption A: almost every x € Q is regular



broken boundary normal (‘time') coordinates

e set of disjoint, closed, connected, smooth hypersurfaces:
r=yr;

e {Q;}: the connected components of R"\ I

o we call x € Q regular if x ¢ T and the infimum in
d(x,09Q) = d({x},0Q) is achieved by a unique purely
transmitted broken path that is nowhere tangent to I

Assumption A: almost every x € Q is regular

suppose € is compact and the interfaces I'; are strictly convex,
viewed from their interiors €);, then the set of regular points, L,
is open and dense in <



recovery of transformation of coordinates

for any hy € C, f, g harmonic

#rRrho, (f,8)) [(hi, (F—Tg,8))—(m* Rt hi,, (F+Tg, g))]

= lim

k—o0
if the scattering control series converges, hy can be replaced above
by hoo and the limit omitted

e the appeal of this result is that the harmonic almost direct
transmission ™1 R1hg may be arbitrarily spatially concentrated
(aside from harmonic extensions in the first component)

e taking inner products with the harmonic data (0, x') and (0, 1),
we may now recover weighted averages of x' over this support



direct transmission, limit
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recovery of transformation of coordinates

let y = Y. .,y eQ., p=p(y) €99, and T = d(y,d9); let
x' denote the ith Euclidean coordinate function

choose a nested sequence of Lipschitz domains
01 50@) 5... 5 Q such that N; ol) = QU {p} and
diam ©U) \ Q — 0; then

. . K](].@(j)\Q,Xi)
y’ g (b’ p’ T = ||m
( ) Jj—oo li(le(j)\Q, ].)

where
K‘(gv f) = <7TFTRT(07 ch)a (07 f)>
moreover

_|o®
“TloT



wave speed — uniqueness

then c is uniquely determined on Q3 by Rot a

proof

e completely constructive

e makes use of behavior of solutions near the boundary of their
domains of influence

e uses the piecewise smooth structure to get information about
the behavior of a progressive wave solution near the wavefront
(avoiding times when the wavefront is tangent to an interface);

to obtain the Euclidean coordinates of the interfaces, find the
singularities of ¢ after reconstruction



computational experiment — smooth wave speed

e T=1.0
e [=[-3.0,3.0] x {0}

o R =[-45,45] x {0}

c(x1,x) =1+ %XQ — %exp (—4 (X12 + (2 — 0.375)2))




coordinate reconstruction from the data

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0




wave speed reconstruction

(dH, Kepley & Oksanen, '17)




detection of interfaces — direct broken transmission

transformation to half wave equations

171 B
_1_7
A _2[/ —iB™1

e principal symbol (amplitude) of the directly transmitted
component DT of Rt at (p(y),v), where v is the
inward-pointing normal covector at p: dt™(y)

], B? = -c’A

e wave packet of ‘frequency’ X centered at (x,£): P x.ePrxe

strategy: send in a wave packet, vary T, and track ADT energy
e energy lost at each interface (discontinuity) to reflection
e drop sharper as frequency () increases

e recover depths of interfaces in broken boundary normal
coordinates through scattering control



detection of interfaces

lety € Q,, p=ply), T=d(y,p), € >0 be sufficiently small;
then there exists a domain © D Q and covector (p*,v*) € $*©
such that

1
—ICB™pxpr ur Ox pr v

2 .
‘dt—i_(y)‘ = A'me KE@T+s RT el 0

because dt™(y) is constant along a geodesic except at a
discontinuity in ¢, we can recover the discontinuities of ¢ in
boundary normal coordinates:

if vy, is the broken geodesic connecting y to the surface,

7, (1) = sing supp(|dt™ o 7 |)



movies: imaging interfaces without the wave speed



summary

‘many’ experiments (data),
piecewise smooth wave speed — completely unknown interfaces

e instantaneous time mirrors in extended subsurface

e scattering control and detection of kinetic energy by ‘data
manipulations’

e imaging interfaces without the wave speed

e coordinate transformation reconstruction — wave speed,
discontinuities

o convex foliation condition implies stability
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microlocal analysis — setup

microlocal adaptations

projections 7, #* — smooth cutoffs o, ¢*
(supp o = 0O)
exact propagator R — FIO parametrix R

wave speeds
e singsuppc =1 = U;l;
e [; closed, connected, disjoint, smooth hypersurfaces in ©

e R includes cutoffs removing glancing rays

microlocal scattering control equation

(I — 6*Ro*R)hao = ho



microlocal scattering control

microlocal scattering control equation
(I — 0*Ro*R)hso = ho

if it exists, the tail hoo — hg still “erases the history” of hy's wave
field up to singularities at depth T; unlike exact analysis, depth is
measured in T*©

the depth d7.g of a covector { € T*R"\ 0 is the length of the
shortest broken bicharacteristic segment connecting it to 9 T*O:




microlocal “distance”

the distance of a covector { € T*(R"\ T') from the boundary of
MCR"is

d(&, 0T*M) =min{|la— b| | v(a) =&, ~v(b) € OT*M}

minimum taken over broken bicharacteristics 7y (lack of continuity)

depth is the same as distance, but with a sign indicating whether
£ is inside or outside M

o [ (€ 0T M), g€ TM
T-m(8) = —d(&, OT*M), otherwise



microlocal almost direct transmission — definition

the T-sublevel setis (T*©)r ={{ € T*O\ 0| d5.o(&) > T}

the microlocal almost direct transmission hypt of hg is a
microlocal restriction of Rrhg to a neighborhood of (T*©'),

Qcoe co
Al

1 hvmpr

der(©)

-
[

0 hO T

suppose Ra1hy|le = RThvpTl|e then hy, satisfies microlocal
scattering control equation



microlocal T-sublevel set

one fiber from (T*0©)r




microlocal T-sublevel set

schematic illustration of (T*©)




constructive parametrix for | — c*Ro*R

if ¢ were krlown, can construct a microlocal inverse A for
| — 0*Ro*R valid for WF(hp) in some conic S C T*©'\ 0

A works by constructing appropriate singularities in the tail
hoo — hg to prevent outside singularities from entering the
domain of influence of AuypT:

2T

Ay

N

hvpr

.
&

ho
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constructive parametrix for | — c*Ro*R

if ¢ were krlown, can construct a microlocal inverse A for
| — 0*Ro*R valid for WF(hp) in some conic S C T*©'\ 0

A works by constructing appropriate singularities in the tail
hoo — hg to prevent outside singularities from entering the
domain of influence of AuypT:

A,
2T Rrhwvmpt
Tr hMpT
| Ao (§)
| >

hoo — h() ho T



constructive parametrix for | — c*Ro*R

define (+£)-escapability through mutual recursion:
ve(to,ty) = TH(RA\T)

one of the following holds
e all of its connecting bicharacterisrics at ty are (+)-escapable

e one of its connecting bicharacterisrics at ty. is (+)-escapable,
the opposing bicharacteristic is (F)-escapable; if this
(+£)-escapable connecting bicharacteristic is a reflection, ¢ must
be discontinuous at y(t+) (non-vanishing principal symbol)

o (base case) yisdefinedatt=T £ T and (T T)¢ T*O; v
reaches t = 0 (— case) or t = 2T (+ case) at a point outside ©

may produce a singularity along a (—)-escapable bicharacteristic

S C T*©': the set of ¢ so that every returning bicharacteristic ~
with (0) = £ is (+)-escapable



returning and (+)-escapable bicharacteristics

t
2Tt 7 7 7 g
S
N\ e
T 4 ;
hmpt
- i
N .
L ‘ 3 Dypr
+ !
. L A €)
1 ‘ -]
oN T
heo — ho ho

control initial pulse



convergence of Neumann iteration

Neumann iteration
let N be the Neumann series partial sum operators (order-0 FIOs)

k
N => (c*Ro*R)
i=0
in general limy_,, Nx has no meaning = consider principal symbol

convergence

principal symbols

e standard microlocal splitting into +: split initial data
R" - R"=R"UR", etc
e define principal symbols og of each graph component of the
Lagrangian (polar decomposition)
(each sequence of reflections, transmissions, and time-reversal)

e restrict to fiber G,: all covectors reachable
from 7 with knowledge of the paths; principal symbols on G,



convergence of Neumann iteration

Theorem
on S the principal symbols of the Ny converge in 62(9,7) to some
Neo; furthermore oo(RNk) — oo(RA) in (2(G, N S*O")

e the space 62(@7) is microlocal analogue of bounded operators in
energy space

e A reveals hypT in the sense that §2TAh0 = ﬁThMDT in ©

e convergence of principal symbols implies Ny “reveals hypT in
the limit” when possible



convergence of Neumann iteration

Theorem
on S the principal symbols of the Ny converge in 62(9,7) to some
Neo; furthermore oo(RNk) — oo(RA) in (2(G, N S*O")

e the space 62(@7) is microlocal analogue of bounded operators in
energy space
e A reveals hypT in the sense that §2TAh0 = ﬁThMDT in ©

e convergence of principal symbols implies Ny “reveals hypT in
the limit” when possible

proof: show composition with o*R is an €2(gn)—bounded operator
of norm < 1 (microlocal energy conservation); analyze convergence
with spectral theorem
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boundary rigidity — dim Q2 > 3, convex foliation

we can use geometric results on boundary and lens rigidity due to
Stefanov, Uhlmann, and Vasy to recover the smooth parts of ¢ —
this also gives stability

we need an extension of their convex foliation condition to our
piecewise smooth setting

Assumption B: p: Q — [0, T] is a (piecewise) convex foliation for
(Q,¢),
e 00 = p~1(0) and p=1(T) has measure zero
e cach level set p~1(t) is strictly convex when viewed from

p (¢, T)), for t €0, T)
e the interfaces of c are level sets of p:  TI'; = p~1(t;) for some t;
e pis smooth and dp # 0 on p~1((0, T))\ T



boundary rigidity, proof by contradiction

singular part of the data, F, determine ¢ almost everywhere

on € there are two notions of depth: d*, the Riemannian distance
to the boundary, and p that is defined by the foliation

by Snell's law and uniqueness of geodesics for smooth metrics, for
any (x,&) € T*Q\ 0 there is a unique maximal transmitted
bicharacteristic v, ¢ satisfying v, (0) = (x,§)

e suppose ¢ # ¢, let a= c —¢; consider S =, Nsupp a, and
take 7 = ming p

e let ¥, = p~1(7) be the corresponding level set; let
Q. = p~Y((7, T]) be the corresponding sublevel set: so ¢ = ¢
above Q., but by compactness there is a point x € p~(7)N S



boundary rigidity — orientation of a covector

a foliation downward (resp. upward) covector (x,§) is one pointing
in the direction of increasing (resp. decreasing) p

Definition

TiQ=A{(x,£) € T"Q- | £(£ dp) >0}

upward-traveling geodesics are not trapped



layer stripping — interior lens relation

o let (x,&) € TIQ\ 0, 7 = p(x); if there exists a purely
transmitted bicharacteristic v with lim;_o+ v(t) = (x,§), we
define the travel time {(x, &) as the unique ¢ > 0 for which
~(¢) € T*Q N T*X,, the (interior) lens relation: L(x,&) = ~y(¢)

e on the interfaces T*Q|r, define L by continuity from below

Lemma

(a) Let (x,£) € 0T*Q, N T;Q. Suppose c, ¢ are smooth near X,
and there are smooth bicharacteristics from (x, &) to
O0T*Q N T*Q with respect to both wave speeds. If F = F
and c = ¢ outside ), then ¢ and ¢ have identical subsurface
lens relations w.r.t. the leaf ¥ at (x,¢§).

(b) Assume the same conditions as (a), except that c, ¢ are
discontinuous on ¥, near x, and ¢ — ¢ vanishes on both sides
of 2, near x. Then the same statement holds.



boundary rigidity, proof by contradiction

e x ¢ I': we use the fact that ¢, ¢ are equal above Q; to show
that they locally have the same lens relation on X ;; the
additional wrinkle is that we must ensure that ¢ is also smooth
near x, which is where scattering control enters

e x €I ¢, ¢ must have the same jump in wave speed at x
because we can measure the transmission coefficient; once the
jump is known (using convexity of '), the lens relation on the
other side of the interface can be locally determined

e apply the local boundary rigidity theorem



