Scattering control without knowing the wave speed

 inverse problem for the wave equation with piecewise smooth wave speeds

M.V. de Hoop P. Caday, V. Katsnelson, G. Uhlmann

Rice University

Simons Foundation NSF-DMS, Geo-Mathematical Imaging Group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

disentangling multiple scattering

- instantaneous time mirrors in an extended subsurface
- scattering control, detection of kinetic energy, projections

extensive (composite) data manipulations

inverse problem

- broken boundary normal ('time') coordinates
- wave-based coordinate transformation reconstruction from partial data \rightarrow wave speed, discontinuities
- interface detection without the wave speed

	the second s
	the second se

-

- Marchenko's classical integral equation solves the inverse scattering problem in dimension one
- Rose (2002) developed an iterative procedure in dimension one, *single-sided autofocusing*, which focuses (geodesic coordinate) and related it to Marchenko's equation

- Marchenko's classical integral equation solves the inverse scattering problem in dimension one
- Rose (2002) developed an iterative procedure in dimension one, *single-sided autofocusing*, which focuses (geodesic coordinate) and related it to Marchenko's equation

extend Marchenko approach to higher dimensional inverse problems (related work: Wapenaar, Thorbecke, Van der Neut, Broggini, Snieder, Curtis and others): key components are unique continuation (Tataru) and boundary control (Belishev)

unique continuation property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

a solution of the wave equation that is zero on the neighborhood on the left must be zero on the 'light diamond'

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

assumptions

- $\Omega \subseteq \mathbb{R}^n$ (part of Earth's interior) is a Lipschitz domain
- *c* is a scalar wave speed:
 - unknown and piecewise smooth on $\boldsymbol{\Omega}$
 - known and smooth on $\Omega^{\star} = \mathbb{R}^n \setminus \overline{\Omega}$

initial value problem (IVP) and data model

let $h = (h_0, h_1) \in H^1(\mathbb{R}^n) \oplus L^2(\mathbb{R}^n)$; consider the IVP

$$F: h \mapsto u \text{ s.t. } \begin{cases} \partial_t^2 u - c^2 \Delta u = 0 & \text{ in } \mathbb{R} \times \mathbb{R}^n \\ u(0, \cdot) = h_0 & \text{ in } \mathbb{R}^n \\ \partial_t u(0, \cdot) = h_1 & \text{ in } \mathbb{R}^n \end{cases}$$

response after time s

$$R_{s} \colon H^{1}(\mathbb{R}^{n}) \oplus L^{2}(\mathbb{R}^{n}) \to H^{1}(\mathbb{R}^{n}) \oplus L^{2}(\mathbb{R}^{n})$$
$$h \mapsto (Fh, \partial_{t}Fh)\Big|_{t=s}$$

known: $R_{2T}h|_{x\in\Omega^{\star}}$ for Cauchy data *h* supported in Ω^{\star} , $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$

data operator: \mathcal{F} : $\mathcal{H}^1(\Omega^*) \oplus L^2(\Omega^*) \to C(\mathbb{R}, \mathcal{H}^1(\Omega^*))$

• let T > 0, choose Lipschitz Θ , Υ s.t. $\overline{\Omega} \subset \Theta \subset \overline{\Theta} \subset \Upsilon$

(think of $\Theta \approx \Omega$, and Υ a large ambient space)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

sets, signed distance

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cauchy data, spaces

sublevel sets (d_{Θ}^* : signed distance to the boundary $\partial \Theta$)

$$\begin{array}{rcl} \Theta_t &=& \{x \in \Upsilon \mid d^*_{\Theta}(x) > t\} \\ \Theta^{\star}_t &=& \{x \in \Upsilon \mid d^*_{\Theta}(x) < t\} \end{array}$$

(sub)spaces of Cauchy data

$$\widetilde{\mathsf{C}} = H^1_0(\Upsilon) \oplus L^2(\Upsilon)$$

$$\begin{aligned} \mathbf{H}_t &= H_0^1(\Theta_t) \oplus L^2(\Theta_t), \qquad \mathbf{H} = \mathbf{H}_0 \\ \widetilde{\mathbf{H}}_t^{\star} &= H_0^1(\Theta_t^{\star}) \oplus L^2(\Theta_t^{\star}) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cauchy data, spaces

sublevel sets (d_{Θ}^* : signed distance to the boundary $\partial \Theta$)

$$egin{array}{rcl} \Theta_t &=& \{x\in \Upsilon\mid d^*_{\Theta}(x)>t\}\ \Theta^{\star}_t &=& \{x\in \Upsilon\mid d^*_{\Theta}(x)$$

(sub)spaces of Cauchy data

$$\widetilde{\mathsf{C}} = H^1_0(\Upsilon) \oplus L^2(\Upsilon)$$

$$\begin{split} \mathbf{H}_t &= H_0^1(\Theta_t) \oplus L^2(\Theta_t), \qquad \mathbf{H} = \mathbf{H}_0 \\ \widetilde{\mathbf{H}}_t^{\star} &= H_0^1(\Theta_t^{\star}) \oplus L^2(\Theta_t^{\star}) \end{split}$$

 $\widetilde{\mathbf{H}}^{\star} \cap (R_{2T}(H^1_0(\mathbb{R}^n \setminus \overline{\Theta}) \oplus L^2(\mathbb{R}^n \setminus \overline{\Theta})))$: space of Cauchy data in $\widetilde{\mathbf{C}}$ whose wave fields vanish on Θ at t = 0 and t = 2T; $R_{2T} : \mathbf{C} \to \mathbf{C}$ isometrically $\pi_{\mathbf{C}} : \widetilde{\mathbf{C}} \to \mathbf{C}$

 \mathbf{C} : its orthogonal complement inside \mathbf{C}

 \mathbf{H}_{t}^{\star} : its orthogonal complement inside \mathbf{H}_{t}^{\star}

norms and inner product

inner product on \boldsymbol{C}

$$\langle (f_0, f_1), (g_0, g_1) \rangle = \int_{\Upsilon} \left(\nabla f_0(x) \cdot \nabla \overline{g}_0(x) + c^{-2} f_1(x) \overline{g}_1(x) \right) dx$$

energy in open set $W \subseteq \mathbb{R}^n$

$$\mathbf{E}_{W}(h) = \int_{W} \left(|\nabla h_{0}|^{2} + c^{-2} |h_{1}|^{2} \right) \, dx$$

kinetic energy

$$\mathsf{KE}_W(h) = \int_W c^{-2} |h_1|^2 \, dx$$

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → ○ < ⊙

projections inside and outside Θ_t

orthogonal projections

$$\pi_t: \mathbf{C} \to \mathbf{H}_t, \qquad \pi = \pi_0$$
$$\pi_t^*: \mathbf{C} \to \mathbf{H}_t^*, \qquad \pi^* = \pi_0^*$$

$$\overline{\pi}_t = I - \pi_t^\star, \quad (\overline{\pi}_t h)(x) = \begin{cases} h(x), & x \in \Theta_t \\ (\phi(x), 0), & x \in \Theta_t^\star \end{cases}$$

where ϕ is the harmonic extension of $h|_{\partial \Theta_t}$ to Υ (with zero trace on $\partial \Upsilon$)

projections inside and outside Θ_t

• orthogonal projections

$$\pi_t: \mathbf{C} \to \mathbf{H}_t, \qquad \pi = \pi_0$$
$$\pi_t^*: \mathbf{C} \to \mathbf{H}_t^*, \qquad \pi^* = \pi_0^*$$
$$\overline{\pi}_t = I - \pi_t^*, \quad (\overline{\pi}_t h)(x) = \begin{cases} h(x), & x \in \Theta_t \\ (\phi(x), 0), & x \in \Theta_t^* \end{cases}$$
where ϕ is the harmonic extension of $h|_{\partial \Theta_t}$ to Υ

where ϕ is the harmonic extension of $h|_{\partial \Theta_t}$ to Υ (with zero trace on $\partial \Upsilon$)

• set
$$R = v \circ R_{2T}$$
, where $v : (h_0, h_1) \mapsto (h_0, -h_1)$
 π^*R : reflection response operator

・ロト・西ト・西ト・日・ 日・ シュウ

scattering control series: $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$

$$h_{\infty} = (I - \pi^{\star} R \pi^{\star} R)^{-1} h_0 = \sum_{i=0}^{\infty} (\pi^{\star} R \pi^{\star} R)^i h_0$$

scattering control series: $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$

$$h_{\infty} = (I - \pi^{\star} R \pi^{\star} R)^{-1} h_0 = \sum_{i=0}^{\infty} (\pi^{\star} R \pi^{\star} R)^i h_0$$

scattering control series: $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$

$$h_{\infty} = (I - \pi^{\star} R \pi^{\star} R)^{-1} h_0 = \sum_{i=0}^{\infty} (\pi^{\star} R \pi^{\star} R)^i h_0$$

scattering control series: $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$

$$h_{\infty} = (I - \pi^{\star} R \pi^{\star} R)^{-1} h_0 = \sum_{i=0}^{\infty} (\pi^{\star} R \pi^{\star} R)^i h_0$$

definition

- the *T*-sublevel set is $\Theta_T = \{x \in \Theta \mid d_{\Theta}^*(x) > T\}$
- the almost direct transmission of h_0 is $R_T h_0 \Big|_{\Theta_T}$
- the harmonic almost direct transmission is its harmonic extension, $h_{\rm DT} = \overline{\pi}_T R_T h_0$

- Support of wave field, t = T
 - Almost direct transmission

- → Directly transmitted ray
- → Scattered rays

let $h_0 \in \mathbf{H}$ and $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$; finding the wave field of the harmonic almost direct transmission of h_0 is equivalent to summing the scattering control series:

$$(I - \pi^* R \pi^* R) h_{\infty} = h_0 \iff \begin{array}{c} R_{-T} \overline{\pi} R_{2T} h_{\infty} = h_{DT} \\ and \\ h_{\infty} - h_0 \in \mathbf{H}^* \end{array}$$

such an h_{∞} , if it exists, is essentially unique

by unique continuation and finite speed of propagation; works for any c with these properties

let $h_0 \in \mathbf{H}$ and $T \in (0, \frac{1}{2} \operatorname{diam} \Theta)$; finding the wave field of the harmonic almost direct transmission of h_0 is equivalent to summing the scattering control series:

$$(I - \pi^* R \pi^* R) h_{\infty} = h_0 \iff \begin{array}{c} R_{-s} \overline{\pi}_{T-s} R_{T+s} h_{\infty} = h_{DT} \\ and \qquad s \in [0, T] \\ h_{\infty} - h_0 \in \mathbf{H}^*, \end{array}$$

such an h_{∞} , if it exists, is essentially unique

by unique continuation and finite speed of propagation; works for any c with these properties

let h_k be the Neumann series' k^{th} partial sum

$$h_k = \sum_{i=0}^k (\pi^* R \pi^* R)^i h_0$$

 the wave field that h_{DT} generates can be recovered from {h_k} regardless of convergence of the scattering control series:

$$\lim_{k\to\infty} R_{-T}\overline{\pi}R_{2T}h_k = R_T\chi h_0 = h_{DT}$$

- {*h_k*} converges in energy space on a dense set
- {h_k} always converges in a larger weighted space (spectral theorem)

▲ロト ▲園ト ★臣ト ★臣ト ―臣 ― のへで

• energy conservation allows us to find the energy of the almost direct transmission using only outside-observable data

the energy of the harmonic almost direct transmission (including harmonic extension) is

$$\mathsf{E}(h_{\mathsf{DT}}) = \mathsf{E}(h_{\infty}) - \mathsf{E}(\pi^{\star}Rh_{\infty})$$

the kinetic energy (not including harmonic extension) is

$$\mathbf{KE}(h_{\mathrm{DT}}) = \frac{1}{2} \langle h_0, \ h_0 - R\pi^{\star} R h_{\infty} - R h_{\infty} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 even without convergence, one can recover the same energies as monotone limits

the energy of the harmonic almost direct transmission (including harmonic extension) is

$$\mathbf{E}(h_{\mathsf{DT}}) = \lim_{k \to \infty} \left[\mathbf{E}(h_k) - \mathbf{E}(\pi^* R h_k) \right]$$

the kinetic energy (not including harmonic extension) is

$$\begin{aligned} \mathbf{\mathsf{KE}}(h_{\mathsf{DT}}) &= \frac{1}{4} \lim_{k \to \infty} \left[\mathbf{\mathsf{E}}(h_k) + \mathbf{\mathsf{E}}(h_0) - \mathbf{\mathsf{E}}(\pi^* R \pi^* R h_k) \right. \\ &+ 2 \langle \pi^* R h_k, \ h_k - R \pi^* R h_k \rangle - 2 \langle h_0, \ R \pi^* R h_k + R h_k \rangle \right] \end{aligned}$$

broken boundary normal ('time') coordinates

- set of disjoint, closed, connected, smooth hypersurfaces: $\Gamma = \bigcup \Gamma_i$
- $\{\Omega_j\}$: the connected components of $\mathbb{R}^n \setminus \Gamma$
- we call x ∈ Ω regular if x ∉ Γ and the infimum in d(x, ∂Ω) = d({x}, ∂Ω) is achieved by a unique purely transmitted broken path that is nowhere tangent to Γ

Assumption A: almost every $x \in \Omega$ is regular

broken boundary normal ('time') coordinates

- set of disjoint, closed, connected, smooth hypersurfaces: $\Gamma = \bigcup \Gamma_i$
- $\{\Omega_j\}$: the connected components of $\mathbb{R}^n \setminus \Gamma$
- we call x ∈ Ω regular if x ∉ Γ and the infimum in d(x, ∂Ω) = d({x}, ∂Ω) is achieved by a unique purely transmitted broken path that is nowhere tangent to Γ

Assumption A: almost every $x \in \Omega$ is regular

suppose Ω is compact and the interfaces Γ_i are strictly convex, viewed from their interiors Ω_i , then the set of regular points, Ω_r , is open and dense in Ω

recovery of transformation of coordinates

for any $h_0 \in \mathbf{C}$, f, g harmonic

 $\langle \overline{\pi}_T R_T h_0, (f,g) \rangle = \lim_{k \to \infty} \left[\langle h_k, (f - Tg,g) \rangle - \langle \pi^* R_{2T} h_k, (f + Tg,g) \rangle \right]$

if the scattering control series converges, h_k can be replaced above by h_∞ and the limit omitted

- the appeal of this result is that the harmonic almost direct transmission $\pi_T R_T h_0$ may be arbitrarily spatially concentrated (aside from harmonic extensions in the first component)
- taking inner products with the harmonic data $(0, x^i)$ and (0, 1), we may now recover weighted averages of x^i over this support

direct transmission, limit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

recovery of transformation of coordinates

let $y = (y^1, ..., y^n) \in \Omega_r$, $p = p(y) \in \partial\Omega$, and $T = d(y, \partial\Omega)$; let x^i denote the ith Euclidean coordinate function

choose a nested sequence of Lipschitz domains $\Theta^{(1)} \supset \Theta^{(2)} \supset \cdots \supset \Omega$ such that $\bigcap_j \Theta^{(j)} = \Omega \cup \{p\}$ and diam $\Theta^{(j)} \setminus \Omega \rightarrow 0$; then

$$y^{i} = \Phi^{i}(p, T) = \lim_{j o \infty} rac{\kappa(\mathbf{1}_{\Theta^{(j)} \setminus \Omega}, x^{i})}{\kappa(\mathbf{1}_{\Theta^{(j)} \setminus \Omega}, 1)}$$

where

$$\kappa(g,f) = \langle \bar{\pi}_T R_T(0,\pi_{\mathbf{C}}g), (0,f) \rangle$$

moreover

$$c = \left| \frac{\partial \Phi}{\partial T} \right|$$

then c is uniquely determined on Ω_T^* by $R_{2T}|_{\Omega^*}$

proof

- completely constructive
- makes use of behavior of solutions near the boundary of their domains of influence
- uses the piecewise smooth structure to get information about the behavior of a progressive wave solution near the wavefront (avoiding times when the wavefront is tangent to an interface); to obtain the Euclidean coordinates of the interfaces, find the singularities of c after reconstruction

computational experiment - smooth wave speed

 $c(x_1, x_2) = 1 + \frac{1}{2}x_2 - \frac{1}{2}\exp\left(-4\left(x_1^2 + (x_2 - 0.375)^2\right)\right)$

(日)、

-

coordinate reconstruction from the data

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

detection of interfaces - direct broken transmission

transformation to half wave equations

$$\Lambda^{-1} = \frac{1}{2} \begin{bmatrix} I & iB^{-1} \\ I & -iB^{-1} \end{bmatrix}, \quad B^2 = -c^2 \Delta$$

- principal symbol (amplitude) of the directly transmitted component **DT**⁺ of R⁺ at (p(y), ν), where ν is the inward-pointing normal covector at p: dt⁺(y)
- wave packet of 'frequency' λ centered at (x, ξ) : $\rho_{\lambda, x, \xi} \phi_{\lambda, x, \xi}$

strategy: send in a wave packet, vary T, and track ADT energy

- energy lost at each interface (discontinuity) to reflection
- drop sharper as frequency (λ) increases
- recover depths of interfaces in broken boundary normal coordinates through scattering control

detection of interfaces

let $y \in \Omega_r$, p = p(y), T = d(y, p), $\varepsilon > 0$ be sufficiently small; then there exists a domain $\Theta \supset \Omega$ and covector $(p^*, \nu^*) \in S^*\Theta$ such that

$$\left|\mathbf{dt}^{+}(y)\right|^{2} = \lim_{\lambda \to \infty} \mathbf{KE}_{\Theta_{\mathcal{T}+\varepsilon}} R_{\mathcal{T}+\varepsilon} \Lambda \left[\begin{array}{c} -icB^{-1}\rho_{\lambda,p^{*},\nu^{*}}\phi_{\lambda,p^{*},\nu^{*}} \\ 0 \end{array}\right]$$

because $dt^+(y)$ is constant along a geodesic except at a discontinuity in c, we can recover the discontinuities of c in boundary normal coordinates:

if γ_{y} is the broken geodesic connecting y to the surface,

$$\gamma_y^{-1}(\Gamma) = \operatorname{sing supp}(|\mathbf{dt}^+ \circ \gamma_y|)$$

movies: imaging interfaces without the wave speed

<ロ>

```
'many' experiments (data),
```

piecewise smooth wave speed - completely unknown interfaces

- instantaneous time mirrors in extended subsurface
- scattering control and detection of kinetic energy by 'data manipulations'
- imaging interfaces without the wave speed
- coordinate transformation reconstruction \rightarrow wave speed, discontinuities

o convex foliation condition implies stability

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

microlocal adaptations

 $\begin{array}{rcl} \text{projections } \overline{\pi}, \ \pi^{\star} & \to & \text{smooth cutoffs } \sigma, \ \sigma^{\star} \\ & (\text{supp } \sigma = \Theta) \\ \text{exact propagator } R & \to & \text{FIO parametrix } \widetilde{R} \end{array}$

wave speeds

- singsupp $c = \Gamma = \cup_i \Gamma_i$
- Γ_i closed, connected, disjoint, smooth hypersurfaces in Θ
- *R* includes cutoffs removing glancing rays

microlocal scattering control equation

$$(I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}) h_\infty \equiv h_0$$

microlocal scattering control

microlocal scattering control equation

$$(I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}) h_\infty \equiv h_0$$

if it exists, the tail $h_{\infty} - h_0$ still "erases the history" of h_0 's wave field up to singularities at depth T; unlike exact analysis, depth is measured in $T^*\Theta$

the depth $d^*_{T^*\Theta}$ of a covector $\xi \in T^*\mathbb{R}^n \setminus 0$ is the length of the shortest broken bicharacteristic segment connecting it to $\partial T^*\Theta$:

・ロト ・四ト ・ヨト ・ヨト ・ヨ

the *distance* of a covector $\xi \in T^*(\mathbb{R}^n \setminus \Gamma)$ from the boundary of $M \subseteq \mathbb{R}^n$ is

$$d(\xi, \partial T^*M) = \min\{|a - b| \mid \gamma(a) = \xi, \gamma(b) \in \partial T^*M\}$$

minimum taken over broken bicharacteristics γ (lack of continuity)

depth is the same as distance, but with a sign indicating whether ξ is inside or outside M

$$d^*_{T^*M}(\xi) = \begin{cases} +d(\xi, \,\partial T^*M), & \xi \in T^*M \\ -d(\xi, \,\partial T^*M), & \text{otherwise} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日)

microlocal almost direct transmission - definition

the *T*-sublevel set is $(T^*\Theta)_T = \{\xi \in T^*\Theta \setminus 0 \mid d^*_{T^*\Theta}(\xi) > T\}$

the microlocal almost direct transmission h_{MDT} of h_0 is a microlocal restriction of $R_T h_0$ to a neighborhood of $(T^*\Theta')_T$, $\Omega \subset \overline{\Theta'} \subset \Theta$

suppose $R_{2T}h_{\infty}|_{\Theta} = R_Th_{MDT}|_{\Theta}$ then h_{∞} satisfies microlocal scattering control equation

microlocal *T*-sublevel set

one fiber from $(T^*\Theta)_T$

microlocal *T*-sublevel set

schematic illustration of $(T^*\Theta)_T$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

constructive parametrix for $I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}$

if *c* were known, can construct a microlocal inverse *A* for $I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}$ valid for WF(h_0) in some conic $S \subseteq T^* \Theta' \setminus 0$

A works by constructing appropriate singularities in the tail $h_{\infty} - h_0$ to prevent outside singularities from entering the domain of influence of h_{MDT} :

constructive parametrix for $I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}$

if *c* were known, can construct a microlocal inverse *A* for $I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}$ valid for WF(h_0) in some conic $S \subseteq T^* \Theta' \setminus 0$

A works by constructing appropriate singularities in the tail $h_{\infty} - h_0$ to prevent outside singularities from entering the domain of influence of h_{MDT} :

constructive parametrix for $I - \sigma^* \widetilde{R} \sigma^* \widetilde{R}$

define (\pm) -escapability through mutual recursion:

$$\gamma\colon (t_-,t_+)\to T^*(\mathbb{R}^n\setminus\Gamma)$$

one of the following holds

- all of its connecting bicharacterisrics at t_{\pm} are (\pm) -escapable
- one of its connecting bicharacterisrics at t_± is (±)-escapable, the opposing bicharacteristic is (∓)-escapable; if this (±)-escapable connecting bicharacteristic is a reflection, c must be discontinuous at γ(t_±) (non-vanishing principal symbol)
- (base case) γ is defined at t = T ± T and γ(T ± T) ∉ T*Θ; γ reaches t = 0 (- case) or t = 2T (+ case) at a point outside Θ may produce a singularity along a (-)-escapable bicharacteristic

 $S \subset T^*\Theta'$: the set of ξ so that every returning bicharacteristic γ with $\gamma(0) = \xi$ is (+)-escapable

returning and (\pm) -escapable bicharacteristics

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

convergence of Neumann iteration

Neumann iteration

let N_k be the Neumann series partial sum operators (order-0 FIOs)

$$N_k = \sum_{i=0}^k (\sigma^* \widetilde{R} \sigma^* \widetilde{R})^i$$

in general $\lim_{k\to\infty} N_k$ has no meaning \Rightarrow consider principal symbol convergence

principal symbols

- standard microlocal splitting into \pm : split initial data $\mathbb{R}^n \to \mathbb{R}^n = \mathbb{R}^n \sqcup \mathbb{R}^n$, etc
- define principal symbols σ_0 of each graph component of the Lagrangian (polar decomposition) (each sequence of reflections, transmissions, and time-reversal)
- restrict to fiber G_η: all covectors reachable
 from η with knowledge of the paths; principal symbols on G_η

convergence of Neumann iteration

Theorem

on S the principal symbols of the N_k converge in $\ell^2(\mathcal{G}_\eta)$ to some n_∞ ; furthermore $\sigma_0(\widetilde{R}N_k) \to \sigma_0(\widetilde{R}A)$ in $\ell^2(\mathcal{G}_\eta \cap S^*\Theta')$

- the space $\ell^2(\mathcal{G}_\eta)$ is microlocal analogue of bounded operators in energy space
- A reveals h_{MDT} in the sense that $\widetilde{R}_{2T}Ah_0 \equiv \widetilde{R}_T h_{MDT}$ in Θ'
- convergence of principal symbols implies N_k "reveals h_{MDT} in the limit" when possible

Theorem

on S the principal symbols of the N_k converge in $\ell^2(\mathcal{G}_\eta)$ to some n_∞ ; furthermore $\sigma_0(\widetilde{R}N_k) \to \sigma_0(\widetilde{R}A)$ in $\ell^2(\mathcal{G}_\eta \cap S^*\Theta')$

- the space $\ell^2(\mathcal{G}_\eta)$ is microlocal analogue of bounded operators in energy space
- A reveals h_{MDT} in the sense that $\widetilde{R}_{2T}Ah_0 \equiv \widetilde{R}_T h_{MDT}$ in Θ'
- convergence of principal symbols implies N_k "reveals h_{MDT} in the limit" when possible

proof: show composition with $\sigma^* \widetilde{R}$ is an $\ell^2(\mathcal{G}_\eta)$ -bounded operator of norm ≤ 1 (microlocal energy conservation); analyze convergence with spectral theorem

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

we can use geometric results on boundary and lens rigidity due to Stefanov, Uhlmann, and Vasy to recover the smooth parts of c – this also gives stability

we need an extension of their convex foliation condition to our piecewise smooth setting

Assumption B: ρ : $\overline{\Omega} \to [0, T]$ is a (piecewise) convex foliation for (Ω, c) ,

- $\partial \Omega =
 ho^{-1}(0)$ and $ho^{-1}(T)$ has measure zero
- each level set $\rho^{-1}(t)$ is strictly convex when viewed from $\rho^{-1}((t, T))$, for $t \in [0, T)$
- the interfaces of c are level sets of ρ : $\Gamma_i = \rho^{-1}(t_i)$ for some t_i
- ρ is smooth and $d\rho \neq 0$ on $\rho^{-1}((0, T)) \setminus \Gamma$

singular part of the data, \mathcal{F} , determine c almost everywhere

on Ω there are two notions of depth: d^* , the Riemannian distance to the boundary, and ρ that is defined by the foliation

by Snell's law and uniqueness of geodesics for smooth metrics, for any $(x,\xi) \in T^*\Omega \setminus 0$ there is a unique maximal transmitted bicharacteristic $\gamma_{x,\xi}$ satisfying $\gamma_{x,\xi}(0) = (x,\xi)$

- suppose $c \neq \tilde{c}$, let $a = c \tilde{c}$; consider $S = \Omega_r \cap \text{supp } a$, and take $\tau = \min_S \rho$
- let Σ_τ = ρ⁻¹(τ) be the corresponding level set; let
 Ω_τ = ρ⁻¹((τ, T]) be the corresponding sublevel set: so c = c̃
 above Ω_τ, but by compactness there is a point x ∈ ρ⁻¹(τ) ∩ S

a foliation downward (resp. upward) covector (x, ξ) is one pointing in the direction of increasing (resp. decreasing) ρ

Definition

$$\mathcal{T}^*_{\pm}\Omega = \{ (x,\xi) \in \mathcal{T}^*\Omega_{\tau} \mid \pm \langle \xi, d\rho \rangle > 0 \}$$

upward-traveling geodesics are not trapped

layer stripping - interior lens relation

- let (x, ξ) ∈ T^{*}₊Ω \ 0, τ = ρ(x); if there exists a purely transmitted bicharacteristic γ with lim_{t→0+} γ(t) = (x, ξ), we define the *travel time* ℓ(x, ξ) as the unique ℓ > 0 for which γ(ℓ) ∈ T^{*}₋Ω ∩ T^{*}Σ_τ, the (interior) lens relation: L(x, ξ) = γ(ℓ)
- on the interfaces $\mathcal{T}^*\Omega|_{\Gamma}$, define L by continuity from below

Lemma

- (a) Let (x, ξ) ∈ ∂T*Ω_τ ∩ T^{*}₊Ω. Suppose c, č are smooth near x, and there are smooth bicharacteristics from (x, ξ) to ∂T*Ω_τ ∩ T^{*}₋Ω with respect to both wave speeds. If F = F̃ and c = c̃ outside Ω_τ, then c and c̃ have identical subsurface lens relations w.r.t. the leaf Σ_τ at (x, ξ).
- (b) Assume the same conditions as (a), except that c, \tilde{c} are discontinuous on Σ_{τ} near x, and $c \tilde{c}$ vanishes on both sides of Σ_{τ} near x. Then the same statement holds.

boundary rigidity, proof by contradiction

- x ∉ Γ: we use the fact that c, c̃ are equal above Ω_τ to show that they locally have the same lens relation on Σ_τ; the additional wrinkle is that we must ensure that c̃ is also smooth near x, which is where scattering control enters
- x ∈ Γ: c, č must have the same jump in wave speed at x because we can measure the transmission coefficient; once the jump is known (using convexity of Γ), the lens relation on the other side of the interface can be locally determined

(日) (同) (三) (三) (三) (○) (○)

apply the local boundary rigidity theorem