Scattering control without knowing the wave speed

- inverse problem for the wave equation with
piecewise smooth wave speeds

M.V. de Hoop
P. Caday, V. Katsnelson, G. Uhlmann

Rice University

Simons Foundation
NSF-DMS, Geo-Mathematical Imaging Group

multiple scattering, unknown piecewise smooth wave speed

disentangling multiple scattering

- instantaneous time mirrors in an extended subsurface
- scattering control, detection of kinetic energy, projections

> extensive (composite) data manipulations
inverse problem

- broken boundary normal ('time') coordinates
- wave-based coordinate transformation reconstruction from partial data \rightarrow wave speed, discontinuities
- interface detection without the wave speed

controlling multiple scattering - dimension 1

background

- Marchenko's classical integral equation solves the inverse scattering problem in dimension one
- Rose (2002) developed an iterative procedure in dimension one, single-sided autofocusing, which focuses (geodesic coordinate) and related it to Marchenko's equation

background

- Marchenko's classical integral equation solves the inverse scattering problem in dimension one
- Rose (2002) developed an iterative procedure in dimension one, single-sided autofocusing, which focuses (geodesic coordinate) and related it to Marchenko's equation
extend Marchenko approach to higher dimensional inverse problems (related work: Wapenaar, Thorbecke, Van der Neut, Broggini, Snieder, Curtis and others): key components are unique continuation (Tataru) and boundary control (Belishev)

unique continuation property

a solution of the wave equation that is zero on the neighborhood on the left must be zero on the 'light diamond'

setting

assumptions

- $\Omega \subseteq \mathbb{R}^{n}$ (part of Earth's interior) is a Lipschitz domain
- c is a scalar wave speed:
- unknown and piecewise smooth on Ω
- known and smooth on $\Omega^{\star}=\mathbb{R}^{n} \backslash \bar{\Omega}$

initial value problem (IVP) and data model

let $h=\left(h_{0}, h_{1}\right) \in H^{1}\left(\mathbb{R}^{n}\right) \oplus L^{2}\left(\mathbb{R}^{n}\right)$; consider the IVP

$$
F: h \mapsto u \text { s.t. }\left\{\begin{aligned}
\partial_{t}^{2} u-c^{2} \Delta u=0 & \text { in } \mathbb{R} \times \mathbb{R}^{n} \\
u(0, \cdot)=h_{0} & \text { in } \mathbb{R}^{n} \\
\partial_{t} u(0, \cdot)=h_{1} & \text { in } \mathbb{R}^{n}
\end{aligned}\right.
$$

response after time s

$$
\begin{aligned}
R_{s}: H^{1}\left(\mathbb{R}^{n}\right) \oplus L^{2}\left(\mathbb{R}^{n}\right) & \rightarrow H^{1}\left(\mathbb{R}^{n}\right) \oplus L^{2}\left(\mathbb{R}^{n}\right) \\
h & \left.\mapsto\left(F h, \partial_{t} F h\right)\right|_{t=s}
\end{aligned}
$$

known: $\left.R_{2 T} h\right|_{x \in \Omega^{\star}}$ for Cauchy data h supported in Ω^{\star}, $T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)$
data operator: $\mathcal{F}: H^{1}\left(\Omega^{\star}\right) \oplus L^{2}\left(\Omega^{\star}\right) \rightarrow C\left(\mathbb{R}, H^{1}\left(\Omega^{\star}\right)\right)$

sets

- let $T>0$, choose Lipschitz Θ, Υ s.t.

$$
\bar{\Omega} \subset \Theta \subset \bar{\Theta} \subset \Upsilon
$$

(think of $\Theta \approx \Omega$, and Υ a large ambient space)

sets, signed distance

Cauchy data, spaces

sublevel sets (d_{Θ}^{*} : signed distance to the boundary $\partial \Theta$)

$$
\begin{aligned}
& \Theta_{t}=\left\{x \in \Upsilon \mid d_{\Theta}^{*}(x)>t\right\} \\
& \Theta_{t}^{\star}=\left\{x \in \Upsilon \mid d_{\Theta}^{*}(x)<t\right\}
\end{aligned}
$$

(sub)spaces of Cauchy data

$$
\widetilde{\mathbf{C}}=H_{0}^{1}(\Upsilon) \oplus L^{2}(\Upsilon)
$$

$$
\begin{aligned}
\mathbf{H}_{t} & =H_{0}^{1}\left(\Theta_{t}\right) \oplus L^{2}\left(\Theta_{t}\right), \quad \mathbf{H}=\mathbf{H}_{0} \\
\widetilde{\mathbf{H}}_{t}^{\star} & =H_{0}^{1}\left(\Theta_{t}^{\star}\right) \oplus L^{2}\left(\Theta_{t}^{\star}\right)
\end{aligned}
$$

Cauchy data, spaces

sublevel sets $\left(d_{\Theta}^{*}\right.$: signed distance to the boundary $\left.\partial \Theta\right)$

$$
\begin{aligned}
& \Theta_{t}=\left\{x \in \Upsilon \mid d_{\Theta}^{*}(x)>t\right\} \\
& \Theta_{t}^{\star}=\left\{x \in \Upsilon \mid d_{\Theta}^{*}(x)<t\right\}
\end{aligned}
$$

(sub)spaces of Cauchy data

$$
\widetilde{\mathbf{C}}=H_{0}^{1}(\Upsilon) \oplus L^{2}(\Upsilon)
$$

$$
\begin{aligned}
\mathbf{H}_{t} & =H_{0}^{1}\left(\Theta_{t}\right) \oplus L^{2}\left(\Theta_{t}\right), \quad \mathbf{H}=\mathbf{H}_{0} \\
\widetilde{\mathbf{H}}_{t}^{\star} & =H_{0}^{1}\left(\Theta_{t}^{\star}\right) \oplus L^{2}\left(\Theta_{t}^{\star}\right)
\end{aligned}
$$

$\widetilde{\mathbf{H}}^{\star} \cap\left(R_{2 T}\left(H_{0}^{1}\left(\mathbb{R}^{n} \backslash \bar{\Theta}\right) \oplus L^{2}\left(\mathbb{R}^{n} \backslash \bar{\Theta}\right)\right)\right)$: space of Cauchy data in $\widetilde{\mathbf{C}}$ whose wave fields vanish on Θ at $t=0$ and $t=2 T ; R_{2 T}: \mathbf{C} \rightarrow \mathbf{C}$ isometrically
$\pi_{\mathbf{C}}: \widetilde{\mathbf{C}} \rightarrow \mathbf{C}$
C: its orthogonal complement inside $\widetilde{\sim}$
\mathbf{H}_{t}^{\star} : its orthogonal complement inside $\widetilde{\boldsymbol{H}}_{t}^{\star}$

norms and inner product

inner product on \mathbf{C}

$$
\left\langle\left(f_{0}, f_{1}\right),\left(g_{0}, g_{1}\right)\right\rangle=\int_{\Upsilon}\left(\nabla f_{0}(x) \cdot \nabla \bar{g}_{0}(x)+c^{-2} f_{1}(x) \bar{g}_{1}(x)\right) d x
$$

energy in open set $W \subseteq \mathbb{R}^{n}$

$$
\mathbf{E}_{W}(h)=\int_{W}\left(\left|\nabla h_{0}\right|^{2}+c^{-2}\left|h_{1}\right|^{2}\right) d x
$$

kinetic energy

$$
\mathbf{K E}_{W}(h)=\int_{W} c^{-2}\left|h_{1}\right|^{2} d x
$$

projections inside and outside Θ_{t}

- orthogonal projections

$$
\begin{aligned}
& \pi_{t}: \mathbf{C} \rightarrow \mathbf{H}_{t}, \quad \pi=\pi_{0} \\
& \pi_{t}^{\star}: \mathbf{C} \rightarrow \mathbf{H}_{t}^{\star}, \quad \pi^{\star}=\pi_{0}^{\star} \\
& \bar{\pi}_{t}=I-\pi_{t}^{\star}, \quad\left(\bar{\pi}_{t} h\right)(x)= \begin{cases}h(x), & x \in \Theta_{t} \\
(\phi(x), 0), & x \in \Theta_{t}^{\star}\end{cases}
\end{aligned}
$$

where ϕ is the harmonic extension of $\left.h\right|_{\partial \Theta_{t}}$ to Υ (with zero trace on $\partial \Upsilon$)

projections inside and outside Θ_{t}

- orthogonal projections

$$
\begin{aligned}
& \pi_{t}: \mathbf{C} \rightarrow \mathbf{H}_{t}, \quad \pi=\pi_{0} \\
& \pi_{t}^{\star}: \mathbf{C} \rightarrow \mathbf{H}_{t}^{\star}, \quad \pi^{\star}=\pi_{0}^{\star} \\
& \bar{\pi}_{t}=I-\pi_{t}^{\star}, \quad\left(\bar{\pi}_{t} h\right)(x)= \begin{cases}h(x), & x \in \Theta_{t} \\
(\phi(x), 0), & x \in \Theta_{t}^{\star}\end{cases}
\end{aligned}
$$

where ϕ is the harmonic extension of $\left.h\right|_{\partial \Theta_{t}}$ to Υ (with zero trace on $\partial \Upsilon$)

- set $R=v \circ R_{2 T}$, where $v:\left(h_{0}, h_{1}\right) \mapsto\left(h_{0},-h_{1}\right)$
$\pi^{\star} R$: reflection response operator

scattering control

$$
h_{0}:=\left(h_{0,0}, h_{0,1}\right)
$$

$$
T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)
$$

given Cauchy data h_{0} supported in $\Theta \backslash \bar{\Omega}$, define Neumann series

$$
h_{\infty}=\left(I-\pi^{\star} R \pi^{\star} R\right)^{-1} h_{0}=\sum_{i=0}^{\infty}\left(\pi^{\star} R \pi^{\star} R\right)^{i} h_{0}
$$

scattering control

$$
h_{0}:=\left(h_{0,0}, h_{0,1}\right)
$$

$$
T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)
$$

given Cauchy data h_{0} supported in $\Theta \backslash \bar{\Omega}$, define Neumann series

$$
h_{\infty}=\left(I-\pi^{\star} R \pi^{\star} R\right)^{-1} h_{0}=\sum_{i=0}^{\infty}\left(\pi^{\star} R \pi^{\star} R\right)^{i} h_{0}
$$

scattering control

$$
h_{0}:=\left(h_{0,0}, h_{0,1}\right)
$$

scattering control series:

$$
T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)
$$

given Cauchy data h_{0} supported in $\Theta \backslash \bar{\Omega}$, define Neumann series

$$
h_{\infty}=\left(I-\pi^{\star} R \pi^{\star} R\right)^{-1} h_{0}=\sum_{i=0}^{\infty}\left(\pi^{\star} R \pi^{\star} R\right)^{i} h_{0}
$$

> double reflection response $\pi^{\star} R \pi^{\star} R h_{0}$
reflection response $\pi^{\star} R h_{0}$

scattering control

$$
h_{0}:=\left(h_{0,0}, h_{0,1}\right)
$$

$$
T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)
$$

given Cauchy data h_{0} supported in $\Theta \backslash \bar{\Omega}$, define Neumann series

$$
h_{\infty}=\left(I-\pi^{\star} R \pi^{\star} R\right)^{-1} h_{0}=\sum_{i=0}^{\infty}\left(\pi^{\star} R \pi^{\star} R\right)^{i} h_{0}
$$

double reflection response $\pi^{\star} R \pi^{\star} R h_{0}$
\longrightarrow add to h_{0}
reflection response $\pi^{\star} R h_{0}$

almost direct transmission

definition

- the T-sublevel set is $\Theta_{T}=\left\{x \in \Theta \mid d_{\Theta}^{*}(x)>T\right\}$
- the almost direct transmission of h_{0} is $\left.R_{T} h_{0}\right|_{\Theta_{T}}$
- the harmonic almost direct transmission is its harmonic extension, $h_{\mathrm{DT}}=\bar{\pi}_{T} R_{T} h_{0}$

\square Support of wave field, $t=T$
\square Almost direct transmission
\rightarrow Directly transmitted ray
\rightarrow Scattered rays

series behavior (I)

let $h_{0} \in \mathbf{H}$ and $T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)$; finding the wave field of the harmonic almost direct transmission of h_{0} is equivalent to summing the scattering control series:

$$
\left(I-\pi^{\star} R \pi^{\star} R\right) h_{\infty}=h_{0} \Longleftrightarrow \begin{gathered}
R_{-T} \bar{\pi} R_{2} T h_{\infty}=h_{D T} \\
\text { and } \\
h_{\infty}-h_{0} \in \mathbf{H}^{\star}
\end{gathered}
$$

such an h_{∞}, if it exists, is essentially unique
by unique continuation and finite speed of propagation; works for any c with these properties

series behavior (I)

let $h_{0} \in \mathbf{H}$ and $T \in\left(0, \frac{1}{2} \operatorname{diam} \Theta\right)$; finding the wave field of the harmonic almost direct transmission of h_{0} is equivalent to summing the scattering control series:

$$
\left(I-\pi^{\star} R \pi^{\star} R\right) h_{\infty}=h_{0} \Longleftrightarrow \begin{gather*}
R_{-s} \bar{\pi}_{T-s} R_{T+s} h_{\infty}=h_{D T} \\
\text { and } \\
h_{\infty}-h_{0} \in \mathbf{H}^{\star},
\end{gather*}
$$

such an h_{∞}, if it exists, is essentially unique
by unique continuation and finite speed of propagation; works for any c with these properties

series behavior (II)

let h_{k} be the Neumann series' $k^{\text {th }}$ partial sum

$$
h_{k}=\sum_{i=0}^{k}\left(\pi^{\star} R \pi^{\star} R\right)^{i} h_{0}
$$

- the wave field that $h_{D T}$ generates can be recovered from $\left\{h_{k}\right\}$ regardless of convergence of the scattering control series:

$$
\lim _{k \rightarrow \infty} R_{-T} \bar{\pi} R_{2 T} h_{k}=R_{T} \chi h_{0}=h_{D T}
$$

- $\left\{h_{k}\right\}$ converges in energy space on a dense set
- $\left\{h_{k}\right\}$ always converges in a larger weighted space (spectral theorem)

energy recovery (I)

- energy conservation allows us to find the energy of the almost direct transmission using only outside-observable data
the energy of the harmonic almost direct transmission (including harmonic extension) is

$$
\mathbf{E}\left(h_{\mathrm{DT}}\right)=\mathbf{E}\left(h_{\infty}\right)-\mathbf{E}\left(\pi^{\star} R h_{\infty}\right)
$$

the kinetic energy (not including harmonic extension) is

$$
\operatorname{KE}\left(h_{\mathrm{DT}}\right)=\frac{1}{2}\left\langle h_{0}, h_{0}-R \pi^{\star} R h_{\infty}-R h_{\infty}\right\rangle
$$

energy recovery (II)

- even without convergence, one can recover the same energies as monotone limits
the energy of the harmonic almost direct transmission (including harmonic extension) is

$$
\mathbf{E}\left(h_{\mathrm{DT}}\right)=\lim _{k \rightarrow \infty}\left[\mathbf{E}\left(h_{k}\right)-\mathbf{E}\left(\pi^{\star} R h_{k}\right)\right]
$$

the kinetic energy (not including harmonic extension) is

$$
\begin{aligned}
\operatorname{KE}\left(h_{\mathrm{DT}}\right) & =\frac{1}{4} \lim _{k \rightarrow \infty}\left[\mathbf{E}\left(h_{k}\right)+\mathbf{E}\left(h_{0}\right)-\mathbf{E}\left(\pi^{\star} R \pi^{\star} R h_{k}\right)\right. \\
& \left.+2\left\langle\pi^{\star} R h_{k}, h_{k}-R \pi^{\star} R h_{k}\right\rangle-2\left\langle h_{0}, R \pi^{\star} R h_{k}+R h_{k}\right\rangle\right]
\end{aligned}
$$

broken boundary normal ('time') coordinates

- set of disjoint, closed, connected, smooth hypersurfaces: $\Gamma=\bigcup \Gamma_{i}$
- $\left\{\Omega_{j}\right\}$: the connected components of $\mathbb{R}^{n} \backslash \Gamma$
- we call $x \in \Omega$ regular if $x \notin \Gamma$ and the infimum in $d(x, \partial \Omega)=d(\{x\}, \partial \Omega)$ is achieved by a unique purely transmitted broken path that is nowhere tangent to Γ

Assumption A : almost every $x \in \Omega$ is regular

broken boundary normal ('time') coordinates

- set of disjoint, closed, connected, smooth hypersurfaces:
$\Gamma=\bigcup \Gamma_{i}$
- $\left\{\Omega_{j}\right\}$: the connected components of $\mathbb{R}^{n} \backslash \Gamma$
- we call $x \in \Omega$ regular if $x \notin \Gamma$ and the infimum in $d(x, \partial \Omega)=d(\{x\}, \partial \Omega)$ is achieved by a unique purely transmitted broken path that is nowhere tangent to Γ

Assumption A : almost every $x \in \Omega$ is regular
suppose Ω is compact and the interfaces Γ_{i} are strictly convex, viewed from their interiors Ω_{i}, then the set of regular points, Ω_{r}, is open and dense in Ω

recovery of transformation of coordinates

for any $h_{0} \in \mathbf{C}, f, g$ harmonic

$$
\left\langle\bar{\pi}_{T} R_{T} h_{0},(f, g)\right\rangle=\lim _{k \rightarrow \infty}\left[\left\langle h_{k},(f-T g, g)\right\rangle-\left\langle\pi^{\star} R_{2} h_{k},(f+T g, g)\right\rangle\right]
$$

if the scattering control series converges, h_{k} can be replaced above by h_{∞} and the limit omitted

- the appeal of this result is that the harmonic almost direct transmission $\bar{\pi}_{T} R_{T} h_{0}$ may be arbitrarily spatially concentrated (aside from harmonic extensions in the first component)
- taking inner products with the harmonic data $\left(0, x^{i}\right)$ and $(0,1)$, we may now recover weighted averages of x^{i} over this support

direct transmission, limit

recovery of transformation of coordinates

let $y=\left(y^{1}, \ldots, y^{n}\right) \in \Omega_{r}, p=p(y) \in \partial \Omega$, and $T=d(y, \partial \Omega)$; let x^{i} denote the ith Euclidean coordinate function
choose a nested sequence of Lipschitz domains
$\Theta^{(1)} \supset \Theta^{(2)} \supset \cdots \supset \Omega$ such that $\bigcap_{j} \Theta^{(j)}=\Omega \cup\{p\}$ and $\operatorname{diam} \Theta^{(j)} \backslash \Omega \rightarrow 0$; then

$$
y^{i}=\Phi^{i}(p, T)=\lim _{j \rightarrow \infty} \frac{\kappa\left(\mathbf{1}_{\Theta^{(j)} \backslash \Omega}, x^{i}\right)}{\kappa\left(\mathbf{1}_{\Theta(j) \backslash \Omega}, 1\right)}
$$

where

$$
\kappa(g, f)=\left\langle\bar{\pi}_{T} R_{T}\left(0, \pi_{\mathbf{C}} g\right),(0, f)\right\rangle
$$

moreover

$$
c=\left|\frac{\partial \Phi}{\partial T}\right|
$$

wave speed - uniqueness

then c is uniquely determined on Ω_{T}^{\star} by $\left.R_{2} T\right|_{\Omega^{\star}}$

proof

- completely constructive
- makes use of behavior of solutions near the boundary of their domains of influence
- uses the piecewise smooth structure to get information about the behavior of a progressive wave solution near the wavefront (avoiding times when the wavefront is tangent to an interface); to obtain the Euclidean coordinates of the interfaces, find the singularities of c after reconstruction

computational experiment - smooth wave speed

- $T=1.0$
- $\Gamma=[-3.0,3.0] \times\{0\}$
- $\mathcal{R}=[-4.5,4.5] \times\{0\}$

$$
c\left(x_{1}, x_{2}\right)=1+\frac{1}{2} x_{2}-\frac{1}{2} \exp \left(-4\left(x_{1}^{2}+\left(x_{2}-0.375\right)^{2}\right)\right)
$$

coordinate reconstruction from the data

wave speed reconstruction

detection of interfaces - direct broken transmission

transformation to half wave equations

$$
\Lambda^{-1}=\frac{1}{2}\left[\begin{array}{rr}
I & i B^{-1} \\
I & -i B^{-1}
\end{array}\right], \quad B^{2}=-c^{2} \Delta
$$

- principal symbol (amplitude) of the directly transmitted component $\mathbf{D} \mathbf{T}^{+}$of R^{+}at $(p(y), \nu)$, where ν is the inward-pointing normal covector at $p: \mathbf{d t}^{+}(y)$
- wave packet of 'frequency' λ centered at $(x, \xi): \rho_{\lambda, x, \xi} \phi_{\lambda, x, \xi}$
strategy: send in a wave packet, vary T, and track ADT energy
- energy lost at each interface (discontinuity) to reflection
- drop sharper as frequency (λ) increases
- recover depths of interfaces in broken boundary normal coordinates through scattering control

detection of interfaces

let $y \in \Omega_{r}, p=p(y), T=d(y, p), \varepsilon>0$ be sufficiently small; then there exists a domain $\Theta \supset \Omega$ and covector $\left(p^{*}, \nu^{*}\right) \in S^{*} \Theta$ such that

$$
\left|\mathbf{d t}^{+}(y)\right|^{2}=\lim _{\lambda \rightarrow \infty} \mathbf{K E}_{\Theta_{T+\varepsilon}} R_{T+\varepsilon} \Lambda\left[\begin{array}{c}
-i c B^{-1} \rho_{\lambda, p^{*}, \nu^{*}} \phi_{\lambda, p^{*}, \nu^{*}} \\
0
\end{array}\right]
$$

because $\mathbf{d t}^{+}(y)$ is constant along a geodesic except at a discontinuity in c, we can recover the discontinuities of c in boundary normal coordinates:
if γ_{y} is the broken geodesic connecting y to the surface,

$$
\gamma_{y}^{-1}(\Gamma)=\operatorname{sing} \operatorname{supp}\left(\left|\mathbf{d t}^{+} \circ \gamma_{y}\right|\right)
$$

movies: imaging interfaces without the wave speed

summary

```
'many' experiments (data),
piecewise smooth wave speed - completely unknown interfaces
```

- instantaneous time mirrors in extended subsurface
- scattering control and detection of kinetic energy by 'data manipulations'
- imaging interfaces without the wave speed
- coordinate transformation reconstruction \rightarrow wave speed, discontinuities
- convex foliation condition implies stability

microlocal analysis - setup

microlocal adaptations
projections $\bar{\pi}, \pi^{\star} \quad \rightarrow$ smooth cutoffs σ, σ^{\star} (supp $\sigma=\Theta$)
exact propagator $R \quad \rightarrow \quad$ FIO parametrix \widetilde{R}
wave speeds

- singsupp $c=\Gamma=\cup_{i} \Gamma_{i}$
- Γ_{i} closed, connected, disjoint, smooth hypersurfaces in Θ
- \widetilde{R} includes cutoffs removing glancing rays
microlocal scattering control equation

$$
\left(I-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}\right) h_{\infty} \equiv h_{0}
$$

microlocal scattering control

microlocal scattering control equation

$$
\left(I-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}\right) h_{\infty} \equiv h_{0}
$$

if it exists, the tail $h_{\infty}-h_{0}$ still "erases the history" of h_{0} 's wave field up to singularities at depth T; unlike exact analysis, depth is measured in $T^{*} \Theta$
the depth $d_{T^{*} \Theta}^{*}$ of a covector $\xi \in T^{*} \mathbb{R}^{n} \backslash 0$ is the length of the shortest broken bicharacteristic segment connecting it to $\partial T^{*} \Theta$:

microlocal "distance"

the distance of a covector $\xi \in T^{*}\left(\mathbb{R}^{n} \backslash \Gamma\right)$ from the boundary of $M \subseteq \mathbb{R}^{n}$ is

$$
d\left(\xi, \partial T^{*} M\right)=\min \left\{|a-b| \mid \gamma(a)=\xi, \gamma(b) \in \partial T^{*} M\right\}
$$

minimum taken over broken bicharacteristics γ (lack of continuity)
depth is the same as distance, but with a sign indicating whether ξ is inside or outside M

$$
d_{T^{*} M}^{*}(\xi)= \begin{cases}+d\left(\xi, \partial T^{*} M\right), & \xi \in T^{*} M \\ -d\left(\xi, \partial T^{*} M\right), & \text { otherwise }\end{cases}
$$

microlocal almost direct transmission - definition

the T-sublevel set is $\left(T^{*} \Theta\right)_{T}=\left\{\xi \in T^{*} \Theta \backslash 0 \mid d_{T^{*} \Theta}^{*}(\xi)>T\right\}$ the microlocal almost direct transmission $h_{\text {MDT }}$ of h_{0} is a microlocal restriction of $R_{T} h_{0}$ to a neighborhood of $\left(T^{*} \Theta^{\prime}\right)_{T}$, $\Omega \subset \overline{\Theta^{\prime}} \subset \Theta$

suppose $\left.R_{2 T} h_{\infty}\right|_{\Theta}=\left.R_{T} h_{\mathrm{MDT}}\right|_{\Theta}$ then h_{∞} satisfies microlocal scattering control equation

microlocal T-sublevel set

one fiber from $\left(T^{*} \Theta\right)_{T}$

microlocal T-sublevel set

schematic illustration of $\left(T^{*} \Theta\right)_{T}$

constructive parametrix for $1-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}$

if c were known, can construct a microlocal inverse A for $I-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}$ valid for $\operatorname{WF}\left(h_{0}\right)$ in some conic $\mathcal{S} \subseteq T^{*} \Theta^{\prime} \backslash 0$
A works by constructing appropriate singularities in the tail $h_{\infty}-h_{0}$ to prevent outside singularities from entering the domain of influence of h_{MDT} :

constructive parametrix for $1-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}$

if c were known, can construct a microlocal inverse A for $I-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}$ valid for $\operatorname{WF}\left(h_{0}\right)$ in some conic $\mathcal{S} \subseteq T^{*} \Theta^{\prime} \backslash 0$
A works by constructing appropriate singularities in the tail $h_{\infty}-h_{0}$ to prevent outside singularities from entering the domain of influence of h_{MDT} :

constructive parametrix for $I-\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}$

define (\pm)-escapability through mutual recursion:

$$
\gamma:\left(t_{-}, t_{+}\right) \rightarrow T^{*}\left(\mathbb{R}^{n} \backslash \Gamma\right)
$$

one of the following holds

- all of its connecting bicharacterisrics at $t_{ \pm}$are (\pm)-escapable
- one of its connecting bicharacterisrics at $t_{ \pm}$is (\pm)-escapable, the opposing bicharacteristic is (\mp)-escapable; if this
(\pm)-escapable connecting bicharacteristic is a reflection, c must be discontinuous at $\gamma\left(t_{ \pm}\right)$(non-vanishing principal symbol)
- (base case) γ is defined at $t=T \pm T$ and $\gamma(T \pm T) \notin T^{*} \Theta ; \gamma$ reaches $t=0$ (- case) or $t=2 T$ (+ case) at a point outside Θ may produce a singularity along a (-)-escapable bicharacteristic
$\mathcal{S} \subset T^{*} \Theta^{\prime}$: the set of ξ so that every returning bicharacteristic with $\gamma(0)=\xi$ is $(+)$-escapable

returning and (\pm)-escapable bicharacteristics

convergence of Neumann iteration

Neumann iteration

let N_{k} be the Neumann series partial sum operators (order-0 FIOs)

$$
N_{k}=\sum_{i=0}^{k}\left(\sigma^{\star} \widetilde{R} \sigma^{\star} \widetilde{R}\right)^{i}
$$

in general $\lim _{k \rightarrow \infty} N_{k}$ has no meaning \Rightarrow consider principal symbol convergence
principal symbols

- standard microlocal splitting into \pm : split initial data $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}=\mathbb{R}^{n} \sqcup \mathbb{R}^{n}$, etc
- define principal symbols σ_{0} of each graph component of the Lagrangian (polar decomposition)
(each sequence of reflections, transmissions, and time-reversal)
- restrict to fiber \mathcal{G}_{η} : all covectors reachable from η with knowledge of the paths; principal symbols on \mathcal{G}_{η}

convergence of Neumann iteration

Theorem on \mathcal{S} the principal symbols of the N_{k} converge in $\ell^{2}\left(\mathcal{G}_{\eta}\right)$ to some n_{∞}; furthermore $\sigma_{0}\left(\widetilde{R} N_{k}\right) \rightarrow \sigma_{0}(\widetilde{R} A)$ in $\ell^{2}\left(\mathcal{G}_{\eta} \cap S^{*} \boldsymbol{\Theta}^{\prime}\right)$

- the space $\ell^{2}\left(\mathcal{G}_{\eta}\right)$ is microlocal analogue of bounded operators in energy space
- A reveals $h_{\text {MDT }}$ in the sense that $\widetilde{R}_{2 T} A h_{0} \equiv \widetilde{R}_{T} h_{\text {MDT }}$ in Θ^{\prime}
- convergence of principal symbols implies N_{k} "reveals $h_{\text {MDT }}$ in the limit" when possible

convergence of Neumann iteration

Theorem on \mathcal{S} the principal symbols of the N_{k} converge in $\ell^{2}\left(\mathcal{G}_{\eta}\right)$ to some n_{∞}; furthermore $\sigma_{0}\left(\widetilde{R} N_{k}\right) \rightarrow \sigma_{0}(\widetilde{R} A)$ in $\ell^{2}\left(\mathcal{G}_{\eta} \cap S^{*} \boldsymbol{\Theta}^{\prime}\right)$

- the space $\ell^{2}\left(\mathcal{G}_{\eta}\right)$ is microlocal analogue of bounded operators in energy space
- A reveals h_{MDT} in the sense that $\widetilde{R}_{2 T} A h_{0} \equiv \widetilde{R}_{T} h_{\mathrm{MDT}}$ in Θ^{\prime}
- convergence of principal symbols implies N_{k} "reveals $h_{\text {MDT }}$ in the limit" when possible
proof: show composition with $\sigma^{\star} \widetilde{R}$ is an $\ell^{2}\left(\mathcal{G}_{\eta}\right)$-bounded operator of norm ≤ 1 (microlocal energy conservation); analyze convergence with spectral theorem

boundary rigidity $-\operatorname{dim} \Omega \geq 3$, convex foliation

we can use geometric results on boundary and lens rigidity due to Stefanov, Uhlmann, and Vasy to recover the smooth parts of c this also gives stability
we need an extension of their convex foliation condition to our piecewise smooth setting

Assumption $B: \rho: \bar{\Omega} \rightarrow[0, T]$ is a (piecewise) convex foliation for (Ω, c),

- $\partial \Omega=\rho^{-1}(0)$ and $\rho^{-1}(T)$ has measure zero
- each level set $\rho^{-1}(t)$ is strictly convex when viewed from $\rho^{-1}((t, T))$, for $t \in[0, T)$
- the interfaces of c are level sets of $\rho: \quad \Gamma_{i}=\rho^{-1}\left(t_{i}\right)$ for some t_{i}
- ρ is smooth and $d \rho \neq 0$ on $\rho^{-1}((0, T)) \backslash \Gamma$

boundary rigidity, proof by contradiction

singular part of the data, \mathcal{F}, determine c almost everywhere
on Ω there are two notions of depth: d^{*}, the Riemannian distance to the boundary, and ρ that is defined by the foliation
by Snell's law and uniqueness of geodesics for smooth metrics, for any $(x, \xi) \in T^{*} \Omega \backslash 0$ there is a unique maximal transmitted bicharacteristic $\gamma_{x, \xi}$ satisfying $\gamma_{x, \xi}(0)=(x, \xi)$

- suppose $c \neq \widetilde{c}$, let $a=c-\widetilde{c}$; consider $S=\Omega_{r} \cap$ supp a, and take $\tau=\min _{S} \rho$
- let $\Sigma_{\tau}=\rho^{-1}(\tau)$ be the corresponding level set; let $\Omega_{\tau}=\rho^{-1}((\tau, T])$ be the corresponding sublevel set: so $c=\widetilde{c}$ above Ω_{τ}, but by compactness there is a point $x \in \rho^{-1}(\tau) \cap S$

boundary rigidity - orientation of a covector

a foliation downward (resp. upward) covector (x, ξ) is one pointing in the direction of increasing (resp. decreasing) ρ

Definition

$$
T_{ \pm}^{*} \Omega=\left\{(x, \xi) \in T^{*} \Omega_{\tau} \mid \pm\langle\xi, d \rho\rangle>0\right\}
$$

upward-traveling geodesics are not trapped

layer stripping - interior lens relation

- let $(x, \xi) \in T_{+}^{*} \bar{\Omega} \backslash 0, \tau=\rho(x)$; if there exists a purely transmitted bicharacteristic γ with $\lim _{t \rightarrow 0^{+}} \gamma(t)=(x, \xi)$, we define the travel time $\ell(x, \xi)$ as the unique $\ell>0$ for which $\gamma(\ell) \in T_{-}^{*} \Omega \cap T^{*} \Sigma_{\tau}$, the (interior) lens relation: $L(x, \xi)=\gamma(\ell)$
- on the interfaces $\left.T^{*} \Omega\right|_{\Gamma}$, define L by continuity from below

Lemma

(a) Let $(x, \xi) \in \partial T^{*} \Omega_{\tau} \cap T_{+}^{*} \Omega$. Suppose c, \widetilde{c} are smooth near x, and there are smooth bicharacteristics from (x, ξ) to
$\partial T^{*} \Omega_{\tau} \cap T_{-}^{*} \Omega$ with respect to both wave speeds. If $\mathcal{F}=\widetilde{\mathcal{F}}$ and $c=\widetilde{c}$ outside Ω_{τ}, then c and \widetilde{c} have identical subsurface lens relations w.r.t. the leaf Σ_{τ} at (x, ξ).
(b) Assume the same conditions as (a), except that c, \tilde{c} are discontinuous on Σ_{τ} near x, and $c-\widetilde{c}$ vanishes on both sides of Σ_{τ} near x. Then the same statement holds.

boundary rigidity, proof by contradiction

- $x \notin \Gamma$: we use the fact that c, \widetilde{c} are equal above Ω_{τ} to show that they locally have the same lens relation on Σ_{τ}; the additional wrinkle is that we must ensure that \widetilde{c} is also smooth near x, which is where scattering control enters
- $x \in \Gamma: c, \widetilde{c}$ must have the same jump in wave speed at x because we can measure the transmission coefficient; once the jump is known (using convexity of Γ), the lens relation on the other side of the interface can be locally determined
- apply the local boundary rigidity theorem

