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multiple scattering, unknown piecewise smooth wave speed

disentangling multiple scattering

• instantaneous time mirrors in an extended subsurface

• scattering control, detection of kinetic energy, projections

extensive (composite) data manipulations

inverse problem

• broken boundary normal (‘time’) coordinates

• wave-based coordinate transformation reconstruction from
partial data → wave speed, discontinuities

• interface detection without the wave speed
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background

• Marchenko’s classical integral equation solves the inverse
scattering problem in dimension one

• Rose (2002) developed an iterative procedure in dimension one,
single-sided autofocusing, which focuses (geodesic coordinate)
and related it to Marchenko’s equation

extend Marchenko approach to higher dimensional inverse
problems (related work: Wapenaar, Thorbecke, Van der Neut,
Broggini, Snieder, Curtis and others): key components are unique
continuation (Tataru) and boundary control (Belishev)
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unique continuation property (Tataru)

t

x0 × [0, 2T ] D(x0, T )

2T

0

a solution of the wave equation that is zero on the neighborhood
on the left must be zero on the ‘light diamond’



setting inside-outside

assumptions

• Ω ⊆ Rn (part of Earth’s interior) is a Lipschitz domain

• c is a scalar wave speed:

• unknown and piecewise smooth on Ω

• known and smooth on Ω? = Rn \ Ω



initial value problem (IVP) and data model

let h = (h0, h1)∈ H1(Rn)⊕ L2(Rn); consider the IVP

F : h 7→ u s.t.


∂2
t u − c2∆u = 0 in R× Rn

u(0, ·) = h0 in Rn

∂tu(0, ·) = h1 in Rn

response after time s

Rs : H1(Rn)⊕ L2(Rn)→ H1(Rn)⊕ L2(Rn)

h 7→
(
Fh, ∂tFh

)∣∣∣
t=s

known: R2Th
∣∣
x∈Ω? for Cauchy data h supported in Ω?,

T ∈ (0, 1
2 diam Θ)

data operator: F : H1(Ω?)⊕ L2(Ω?)→ C (R,H1(Ω?))



sets

• let T > 0, choose Lipschitz Θ, Υ s.t.

Ω ⊂ Θ ⊂ Θ ⊂ Υ

(think of Θ ≈ Ω, and Υ a large ambient space)



sets, signed distance

∂Ω

∂ΘT

∂Θh0



Cauchy data, spaces

sublevel sets (d∗Θ: signed distance to the boundary ∂Θ)

Θt = {x ∈ Υ | d∗Θ(x) > t}
Θ?

t = {x ∈ Υ | d∗Θ(x) < t}

(sub)spaces of Cauchy data

C̃ = H1
0 (Υ)⊕ L2(Υ)

Ht = H1
0 (Θt)⊕ L2(Θt), H = H0

H̃?
t = H1

0 (Θ?
t )⊕ L2(Θ?

t )

H̃? ∩ (R2T (H1
0 (Rn \Θ)⊕ L2(Rn \Θ))): space of Cauchy data in C̃

whose wave fields vanish on Θ at t = 0 and t = 2T ; R2T : C→ C
isometrically πC : C̃→ C

C : its orthogonal complement inside C̃
H?

t : its orthogonal complement inside H̃?
t
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norms and inner product

inner product on C〈
(f0, f1), (g0, g1)

〉
=

∫
Υ

(
∇f0(x) · ∇g0(x) + c−2f1(x)g1(x)

)
dx

energy in open set W ⊆ Rn

EW (h) =

∫
W

(
|∇h0|2 + c−2|h1|2

)
dx

kinetic energy

KEW (h) =

∫
W

c−2|h1|2 dx



projections inside and outside Θt

• orthogonal projections

πt : C→ Ht , π = π0

π?t : C→ H?
t , π? = π?0

•
πt = I − π?t , (πth)(x) =

{
h(x), x ∈ Θt

(φ(x), 0), x ∈ Θ?
t

where φ is the harmonic extension of h|∂Θt to Υ
(with zero trace on ∂Υ)

• set R = υ ◦ R2T , where υ : (h0, h1) 7→ (h0,−h1)

π?R: reflection response operator
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scattering control h0 := (h0,0, h0,1)

scattering control series: T ∈ (0, 1
2 diam Θ)

given Cauchy data h0 supported in Θ \ Ω, define Neumann series

h∞ = (I − π?Rπ?R)−1h0 =
∞∑
i=0

(π?Rπ?R)ih0
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scattering control h0 := (h0,0, h0,1)

scattering control series: T ∈ (0, 1
2 diam Θ)
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Θ

reflection
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add to h0



almost direct transmission (ADT)

definition

• the T-sublevel set is ΘT = {x ∈ Θ | d∗Θ(x) > T}
• the almost direct transmission of h0 is RTh0

∣∣
ΘT

• the harmonic almost direct transmission is its harmonic
extension, hDT = πTRTh0

∂Ω

h0
∂Θ

∂ΘT

Support of wave field, t = T

Almost direct transmission

Directly transmitted ray

Scattered rays
TTT



series behavior (I)

let h0 ∈ H and T ∈ (0, 1
2 diam Θ); finding the wave field of the

harmonic almost direct transmission of h0 is equivalent to
summing the scattering control series:

(I − π?Rπ?R)h∞ = h0 ⇐⇒
R−TπR2Th∞ = hDT

and

h∞ − h0 ∈ H?

such an h∞, if it exists, is essentially unique

by unique continuation and finite speed of propagation; works for
any c with these properties
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series behavior (II)

let hk be the Neumann series’ kth partial sum

hk =
k∑

i=0

(π?Rπ?R)ih0

• the wave field that hDT generates can be recovered from {hk}
regardless of convergence of the scattering control series:

lim
k→∞

R−TπR2Thk = RTχh0 = hDT

• {hk} converges in energy space on a dense set

• {hk} always converges in a larger weighted space
(spectral theorem)




ScatteringControl.mp4
Media File (video/mp4)



energy recovery (I)

• energy conservation allows us to find the energy of the almost
direct transmission using only outside-observable data

the energy of the harmonic almost direct transmission
(including harmonic extension) is

E(hDT) = E
(
h∞
)
− E

(
π?Rh∞

)
the kinetic energy (not including harmonic extension) is

KE(hDT) =
1

2
〈h0, h0 − Rπ?Rh∞ − Rh∞〉



energy recovery (II)

• even without convergence, one can recover the same energies as
monotone limits

the energy of the harmonic almost direct transmission
(including harmonic extension) is

E(hDT) = lim
k→∞

[
E(hk)− E(π?Rhk)

]
the kinetic energy (not including harmonic extension) is

KE(hDT) =
1

4
lim
k→∞

[
E(hk) + E(h0)− E(π?Rπ?Rhk)

+ 2〈π?Rhk , hk − Rπ?Rhk〉 − 2〈h0, Rπ
?Rhk + Rhk〉

]



broken boundary normal (‘time’) coordinates

• set of disjoint, closed, connected, smooth hypersurfaces:
Γ =

⋃
Γi

• {Ωj}: the connected components of Rn \ Γ

• we call x ∈ Ω regular if x /∈ Γ and the infimum in
d(x , ∂Ω) = d({x}, ∂Ω) is achieved by a unique purely
transmitted broken path that is nowhere tangent to Γ

Assumption A: almost every x ∈ Ω is regular

suppose Ω is compact and the interfaces Γi are strictly convex,
viewed from their interiors Ωi , then the set of regular points, Ωr ,
is open and dense in Ω
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recovery of transformation of coordinates

for any h0 ∈ C, f , g harmonic

〈πTRTh0, (f , g)〉 = lim
k→∞

[
〈hk , (f−Tg , g)〉−〈π?R2Thk , (f +Tg , g)〉

]
if the scattering control series converges, hk can be replaced above
by h∞ and the limit omitted

• the appeal of this result is that the harmonic almost direct
transmission πTRTh0 may be arbitrarily spatially concentrated
(aside from harmonic extensions in the first component)

• taking inner products with the harmonic data (0, x i ) and (0, 1),
we may now recover weighted averages of x i over this support



direct transmission, limit

∂Ω

∂ΘT

∂Θh0



recovery of transformation of coordinates

let y = (y1, . . . , yn) ∈ Ωr , p = p(y) ∈ ∂Ω, and T = d(y , ∂Ω); let
x i denote the ith Euclidean coordinate function

choose a nested sequence of Lipschitz domains
Θ(1) ⊃ Θ(2) ⊃ · · · ⊃ Ω such that

⋂
j Θ(j) = Ω ∪ {p} and

diam Θ(j) \ Ω→ 0; then

y i = Φi (p,T ) = lim
j→∞

κ(1Θ(j)\Ω, x
i )

κ(1Θ(j)\Ω, 1)

where
κ(g , f ) = 〈π̄TRT (0, πCg), (0, f )〉

moreover

c =

∣∣∣∣∂Φ

∂T

∣∣∣∣



wave speed – uniqueness

then c is uniquely determined on Ω?
T by R2T

∣∣
Ω?

proof

• completely constructive

• makes use of behavior of solutions near the boundary of their
domains of influence

• uses the piecewise smooth structure to get information about
the behavior of a progressive wave solution near the wavefront
(avoiding times when the wavefront is tangent to an interface);
to obtain the Euclidean coordinates of the interfaces, find the
singularities of c after reconstruction



computational experiment – smooth wave speed

• T = 1.0

• Γ = [−3.0, 3.0]× {0}
• R = [−4.5, 4.5]× {0}

c(x1, x2) = 1 + 1
2x2 − 1

2 exp
(
−4
(
x2

1 + (x2 − 0.375)2
))



coordinate reconstruction from the data



wave speed reconstruction (dH, Kepley & Oksanen, ’17)



detection of interfaces – direct broken transmission

transformation to half wave equations

Λ−1 =
1

2

[
I iB−1

I −iB−1

]
, B2 = −c2∆

• principal symbol (amplitude) of the directly transmitted
component DT+ of R+ at (p(y), ν), where ν is the
inward-pointing normal covector at p: dt+(y)

• wave packet of ‘frequency’ λ centered at (x , ξ): ρλ,x ,ξφλ,x ,ξ

strategy: send in a wave packet, vary T , and track ADT energy

• energy lost at each interface (discontinuity) to reflection

• drop sharper as frequency (λ) increases

• recover depths of interfaces in broken boundary normal
coordinates through scattering control



detection of interfaces

let y ∈ Ωr , p = p(y), T = d(y , p), ε > 0 be sufficiently small;
then there exists a domain Θ ⊃ Ω and covector (p∗, ν∗) ∈ S∗Θ
such that∣∣dt+(y)

∣∣2 = lim
λ→∞

KEΘT+ε
RT+εΛ

[
−icB−1ρλ,p∗,ν∗φλ,p∗,ν∗

0

]

because dt+(y) is constant along a geodesic except at a
discontinuity in c , we can recover the discontinuities of c in
boundary normal coordinates:

if γy is the broken geodesic connecting y to the surface,

γ−1
y (Γ) = sing supp(

∣∣dt+ ◦ γy
∣∣)



movies: imaging interfaces without the wave speed



summary

‘many’ experiments (data),
piecewise smooth wave speed – completely unknown interfaces

• instantaneous time mirrors in extended subsurface

• scattering control and detection of kinetic energy by ‘data
manipulations’

• imaging interfaces without the wave speed

• coordinate transformation reconstruction → wave speed,
discontinuities

◦ convex foliation condition implies stability





microlocal analysis – setup

microlocal adaptations

projections π, π? → smooth cutoffs σ, σ?

(supp σ = Θ)

exact propagator R → FIO parametrix R̃

wave speeds

• singsupp c = Γ = ∪iΓi

• Γi closed, connected, disjoint, smooth hypersurfaces in Θ

• R̃ includes cutoffs removing glancing rays

microlocal scattering control equation

(I − σ?R̃σ?R̃)h∞ ≡ h0



microlocal scattering control

microlocal scattering control equation

(I − σ?R̃σ?R̃)h∞ ≡ h0

if it exists, the tail h∞ − h0 still “erases the history” of h0’s wave
field up to singularities at depth T ; unlike exact analysis, depth is
measured in T ∗Θ

the depth d∗T∗Θ of a covector ξ ∈ T ∗Rn \ 0 is the length of the
shortest broken bicharacteristic segment connecting it to ∂T ∗Θ:

∂Θξ



microlocal “distance”

the distance of a covector ξ ∈ T ∗(Rn \ Γ) from the boundary of
M ⊆ Rn is

d(ξ, ∂T ∗M) = min{|a− b| | γ(a) = ξ, γ(b) ∈ ∂T ∗M}

minimum taken over broken bicharacteristics γ (lack of continuity)

depth is the same as distance, but with a sign indicating whether
ξ is inside or outside M

d∗T∗M(ξ) =

{
+d(ξ, ∂T ∗M), ξ ∈ T ∗M
−d(ξ, ∂T ∗M), otherwise



microlocal almost direct transmission – definition

the T-sublevel set is (T ∗Θ)T = {ξ ∈ T ∗Θ \ 0 | d∗T∗Θ(ξ) > T}
the microlocal almost direct transmission hMDT of h0 is a
microlocal restriction of RTh0 to a neighborhood of (T ∗Θ′)T ,
Ω ⊂ Θ′ ⊂ Θ

d∗T∗Θ′(ξ)

T

T

t

h0

hMDT

0

suppose R2Th∞|Θ = RThMDT|Θ then h∞ satisfies microlocal
scattering control equation



microlocal T -sublevel set

one fiber from (T ∗Θ)T

T

∂Θ



microlocal T -sublevel set

schematic illustration of (T ∗Θ)T

∂Θ

∂ΘT

T



constructive parametrix for I − σ?R̃σ?R̃

if c were known, can construct a microlocal inverse A for
I − σ?R̃σ?R̃ valid for WF(h0) in some conic S ⊆ T ∗Θ′ \ 0

A works by constructing appropriate singularities in the tail
h∞ − h0 to prevent outside singularities from entering the
domain of influence of hMDT:

d∗T∗Θ′(ξ)

2T

T

t

h0

T hMDT



constructive parametrix for I − σ?R̃σ?R̃

if c were known, can construct a microlocal inverse A for
I − σ?R̃σ?R̃ valid for WF(h0) in some conic S ⊆ T ∗Θ′ \ 0

A works by constructing appropriate singularities in the tail
h∞ − h0 to prevent outside singularities from entering the
domain of influence of hMDT:

d∗T∗Θ′(ξ)

2T

T

t

h0

T

RThMDT

h∞ − h0

hMDT



constructive parametrix for I − σ?R̃σ?R̃

define (±)-escapability through mutual recursion:

γ : (t−, t+)→ T ∗(Rn \ Γ)

one of the following holds

• all of its connecting bicharacterisrics at t± are (±)-escapable

• one of its connecting bicharacterisrics at t± is (±)-escapable,
the opposing bicharacteristic is (∓)-escapable; if this
(±)-escapable connecting bicharacteristic is a reflection, c must
be discontinuous at γ(t±) (non-vanishing principal symbol)

• (base case) γ is defined at t = T ± T and γ(T ± T ) /∈ T ∗Θ; γ
reaches t = 0 (− case) or t = 2T (+ case) at a point outside Θ

may produce a singularity along a (−)-escapable bicharacteristic

S ⊂ T ∗Θ′: the set of ξ so that every returning bicharacteristic γ
with γ(0) = ξ is (+)-escapable



returning and (±)-escapable bicharacteristics

d˚
T˚Θ1pξq

t

T

2T

0

h0
0 T

hMDT

`

´

´

´

`

`

`

` ´

r

`r

`r

initial pulse
h8 ´ h0

looooooooooooomooooooooooooon

control

D`
MDT

D´
MDT



convergence of Neumann iteration

Neumann iteration
let Nk be the Neumann series partial sum operators (order-0 FIOs)

Nk =
k∑

i=0

(σ?R̃σ?R̃)i

in general limk→∞Nk has no meaning ⇒ consider principal symbol
convergence

principal symbols

• standard microlocal splitting into ±: split initial data
Rn → RRRn = Rn t Rn, etc

• define principal symbols σ0 of each graph component of the
Lagrangian (polar decomposition)

(each sequence of reflections, transmissions, and time-reversal)

• restrict to fiber Gη: all covectors reachable
from η with knowledge of the paths; principal symbols on Gη



convergence of Neumann iteration

Theorem
on S the principal symbols of the Nk converge in `2(Gη) to some

n∞; furthermore σ0(R̃Nk)→ σ0(R̃A) in `2(Gη ∩ S∗Θ′)

• the space `2(Gη) is microlocal analogue of bounded operators in
energy space

• A reveals hMDT in the sense that R̃2TAh0 ≡ R̃ThMDT in Θ′

• convergence of principal symbols implies Nk “reveals hMDT in
the limit” when possible

proof: show composition with σ?R̃ is an `2(Gη)-bounded operator
of norm ≤ 1 (microlocal energy conservation); analyze convergence
with spectral theorem
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boundary rigidity – dim Ω ≥ 3, convex foliation

we can use geometric results on boundary and lens rigidity due to
Stefanov, Uhlmann, and Vasy to recover the smooth parts of c –
this also gives stability

we need an extension of their convex foliation condition to our
piecewise smooth setting

Assumption B: ρ : Ω→ [0,T ] is a (piecewise) convex foliation for
(Ω, c),

• ∂Ω = ρ−1(0) and ρ−1(T ) has measure zero

• each level set ρ−1(t) is strictly convex when viewed from
ρ−1((t,T )), for t ∈ [0,T )

• the interfaces of c are level sets of ρ: Γi = ρ−1(ti ) for some ti

• ρ is smooth and dρ 6= 0 on ρ−1((0,T )) \ Γ



boundary rigidity, proof by contradiction

singular part of the data, F , determine c almost everywhere

on Ω there are two notions of depth: d∗, the Riemannian distance
to the boundary, and ρ that is defined by the foliation

by Snell’s law and uniqueness of geodesics for smooth metrics, for
any (x , ξ) ∈ T ∗Ω \ 0 there is a unique maximal transmitted
bicharacteristic γx ,ξ satisfying γx ,ξ(0) = (x , ξ)

• suppose c 6= c̃ , let a = c − c̃ ; consider S = Ωr ∩ supp a, and
take τ = minS ρ

• let Στ = ρ−1(τ) be the corresponding level set; let
Ωτ = ρ−1((τ,T ]) be the corresponding sublevel set: so c = c̃
above Ωτ , but by compactness there is a point x ∈ ρ−1(τ) ∩ S



boundary rigidity – orientation of a covector

a foliation downward (resp. upward) covector (x , ξ) is one pointing
in the direction of increasing (resp. decreasing) ρ

Definition

T ∗±Ω = {(x , ξ) ∈ T ∗Ωτ | ± 〈ξ, dρ〉 > 0}

upward-traveling geodesics are not trapped



layer stripping – interior lens relation

• let (x , ξ) ∈ T ∗+Ω \ 0, τ = ρ(x); if there exists a purely
transmitted bicharacteristic γ with limt→0+ γ(t) = (x , ξ), we
define the travel time `(x , ξ) as the unique ` > 0 for which
γ(`) ∈ T ∗−Ω ∩ T ∗Στ , the (interior) lens relation: L(x , ξ) = γ(`)

• on the interfaces T ∗Ω
∣∣
Γ
, define L by continuity from below

Lemma

(a) Let (x , ξ) ∈ ∂T ∗Ωτ ∩ T ∗+Ω. Suppose c, c̃ are smooth near x,
and there are smooth bicharacteristics from (x , ξ) to
∂T ∗Ωτ ∩ T ∗−Ω with respect to both wave speeds. If F = F̃
and c = c̃ outside Ωτ , then c and c̃ have identical subsurface
lens relations w.r.t. the leaf Στ at (x , ξ).

(b) Assume the same conditions as (a), except that c, c̃ are
discontinuous on Στ near x, and c − c̃ vanishes on both sides
of Στ near x. Then the same statement holds.



boundary rigidity, proof by contradiction

• x /∈ Γ: we use the fact that c , c̃ are equal above Ωτ to show
that they locally have the same lens relation on Στ ; the
additional wrinkle is that we must ensure that c̃ is also smooth
near x , which is where scattering control enters

• x ∈ Γ: c , c̃ must have the same jump in wave speed at x
because we can measure the transmission coefficient; once the
jump is known (using convexity of Γ), the lens relation on the
other side of the interface can be locally determined

• apply the local boundary rigidity theorem


