

Correlations & Time Reversal on thin plates

Julien de Rosny

CITS

dépasser les frontières

plate noise correlation & TR

Outline

- 1) A first « live » demonstration
- 2) A quick review
- 3) Relation with time reversal
- 4) Convergence
- 5) Application to passive structural heath monitoring

Collaboration

Aida Hejazi Thèse - IST<u>P & La</u>ngevin

Lynda Chehami Thèse - IEMN & Langevin

ANR : PASNI

FINANCÉ PAR

dépasser les frontières

plate noise correlation & TR

A live demonstration

→ Reconstruction between two points

Green's function recovering

Noise filtered between 1kHz and 40kHz

Previous works

Duroux, Sabra et al, JASA 2010

Larose et al., JASA 2009

Spatial reconstruction ?

Relationship with time-reversal

Forward step of time reversal process in a cavity

A taste of linear signal processing

Backward step of time reversal process in a cavity

Noise correlation

Time reversal vs Correlations

$$\psi_{RT}(B;t) = \sum_{i} G(r_{Bi}, r_{A}; -t) \otimes G(r_{A'}, r_{Bi}; t) \otimes S_{p}(-t)$$

 $C(A, B; t) = \Delta T \sum_{i} G(r_{A}, r_{Bi}; -t) \otimes G(r_{A}', r_{Bi}; t) \otimes S_{n}(t) \otimes S_{n}(-t)$

→ Time Reversal equivalent to correlation

Convergence of the correlation toward Green's function

plate noise correlation & TR

Reciprocity & Correlations

Correlation between transducteurs 1 and 2

Stacking over noise sources

$$C_{12}^{N}(t) = \sum_{\alpha=1}^{N} h_{1\alpha}(t) \otimes h_{2\alpha}(-t)$$

Number of noise sources : 1

Stacking over noise sources

$$C_{12}^{N}(t) = \sum_{\alpha=1}^{N} h_{1\alpha}(t) \otimes h_{2\alpha}(-t)$$

Number of noise sources : 5

plate noise correlation & TR

1.0

0.5

Stacking over noise sources

$$C_{12}^{N}(t) = \sum_{\alpha=1}^{N} h_{1\alpha}(t) \otimes h_{2\alpha}(-t)$$

Number of noise sources : 10

Stacking over noise sources

$$C_{12}^{N}(t) = \sum_{\alpha=1}^{N} h_{1\alpha}(t) \otimes h_{2\alpha}(-t)$$

Number of noise sources : 50

Stacking over noise sources

$$C_{12}^{N}(t) = \sum_{\alpha=1}^{N} h_{1\alpha}(t) \otimes h_{2\alpha}(-t)$$

Number of noise sources : 1000

Stacking over noise sources

$$C_{12}^{N}(t) = \sum_{\alpha=1}^{N} h_{1\alpha}(t) \otimes h_{2\alpha}(-t)$$

Number of noise sources : 2700

Degree of symmetry

Number of noise sources = 50

09/06/17

Similarity coefficient

Why this asymptotic plateau ?

 $h_{12}(t) \propto e_1(t) \otimes G_{12}(t) \otimes e_2(t)$ $C_{12}(t) \propto e_1(-t) \otimes \Im G_{12}(t) \otimes e_2(t)$

 $e_1(t)$ and $e_2(t)$ electro-acoustical responses of the transducers

Time Windowed correlation

- Weakly depends on the starting time of the correlated windows
- → When N very large S → 1 even for small windows : Instananeous Time-Reversal (Loshmidt Echo)

Time windowed correlation

Effect of noise

Recorded signal Transient response Noise $\mathbf{e}(t) = \mathbf{h}(t) + \mathbf{n}(t)$

Assumes that N and dT are large \rightarrow S=1 w/o noise

Effect of the bandwdith AND the starting position

Structural health monitoring

Structural engineering Nuclear plants Transports Image: Comparison of the structural engineering Image: Comparison of the struc

Conventional active methods

Passive detection

- Detection
- Localization
- Identification

- Low power consumption
- No interferences with other electronic
- Low complexity

Differential detection & localization

 $\Delta C_{def} = C_{def} - C_{ref}$ Magnet Ø**=**9mm $x 10^{-20}$ Coupling actif Sources × amplitude (m².s) passif C_{deff} 0.5 0 1.5 2 2.5 3 temps (ms)

Réseau de N transducteurs (récepteurs)

3.5

Beamforming

Defects localization

Passive localization for different kind of defects

Resolution

Number of probes

Detection efficient from 3 receivers

Heterogenous noise

Friction zone

→ Remains efficient provided that the noise is spatially stationnary

Non-linear noise sources : Zebulon

When ambient noise is not sufficient : use non linear LF to HF converter

Rough surface structure d'étude

> Second resonator at elastic wave frequency

Localization vs number of NL

Estimation of the scattering strength

Conclusions

Conclusions

- Plate as reference experiments for studying noise correlation
- Quantitative study of the reconstruction of the Green's function with respect to windowed correlations
 → related to physical quantities
- Robust method for scatterer detection

Thank you

Green's function recovering

Noise filtered between 1kHz and 40kHz