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Elastic Kirchhoff-Helmholtz Synthetic Seismograms*

ALEXANDER DRUZHININ,! HELLE PEDERSEN,> MICHEL CAMPILLO? and
WOOHAN Kim?

Abstract—An approximate hybrid formulation of the elastic Kirchhoff-Helmholtz theory for
numerical simulation of seismic wave propagation in multilayered inhomogeneous and transversely
isotropic media is developed. The layer boundaries can be curved or irregular. We insert a general
computational ansatz into the basic elastodynamic divergence theorem to express the unknown variables
in terms of slowly varving amplitude and phase functions. In situations where the geometrical optics
approximation becomes invalid, more accurate methods can be applied to compute these functions. In
particular, the kernel remains regular when rays have caustics on the target integral surface. Branch
points are taken into account to include head waves. Both elementary solutions and WKBJ expansion
are employed to compute the Green’s function. To reduce the resulting integral to a numerical form, the
surface is divided into a set of segments and the above functions are replaced by their local polynomial
series in the vicinity of each segment. It allows us to construct an error-predictive numerical algorithm
in which the truncation error is prescribed via the higher order terms of such series. We show, using
geologically relevant synthetic models, the performance of the proposed technique.

Key words: Synthetic seismograms, elastic waves, Kirchhoff, Green’s function, inhomogeneity,
anisotropy, hybrid.

1. Introduction

The Kirchhoff-Helmholtz (KH) theory provides a powerful tool to create a
combined generalization of existing asymptotic and numerical methods to solve
many wave propagation problems involving heterogencous and anisotropic media
(for an extensive review of the KH theory, cf. FRAZER and SEN, 1985; TYGEL et al.,
1994). In most KH techniques, the kernel of the KH integral is constructed upon
use of the Asymptotic Ray Theory (ART) (CERVENY and RAVINDRA, 1971;
CERVENY et al, 1977). Therefore, well-known validity conditions of the ART
(CERVENY et al., 1977; BEN-MENAHEM and BEYDOUN, 1985; FRADKIN, 1989%;
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KRrAvTsov and OrRLOV, 1993) have to be taken into account in the ray-Kirchhoff
algorithms.

This problem can be solved by using a more accurate approximation of the KH
integrand, based” on the exact ray theory (ZHU, 1988; FOREMAN, 1989;
DRUZHININ, 1994) or the complex continued ART Green’s function (FELSEN,
1984; Wu, 1985). Their extension was proposed in the Method of the Interference
Integral (MII) (KrRAVTSOV and ORLOV, 1993). Another approach is based upon the
additional decomposition of the integrand to derive a multi-folded extension of the
KH theory (BosTROM, 1980; KENNETT, 1984; FRAZER and SEN, 1985; WENZEL et
al., 1990).

Even in these improved forms, KH integrals have been infrequently used in
seismic modelling. The reason is two-fold: (1) it is rather difficult to calculate these
integrals numerically although many advanced quadrature algorithms have been
proposed (PIESSENS et al., 1983; STAMNES ef al., 1983; FRAZER, 1988; HAIGER and
Liu, 1992); (2) all the relevant aspects of the wave field can be accurately treated by
the theory of Huygens’ principle if and only if the corresponding Green’s function
is known (PAa0 and VARATHARAIULU, 1976). Thus, the main problem is to find
such function or suitable approximation, and to develop a fast and robust quadra-
ture formula for the numerical computation of the resulting path integral. Other-
wise, the finite-difference or finite-clement methods for solving partial differential
equations of wave motion should be applied as exclusive tools for calculating the
complete solution to these equations.

ROBERTS. (1994) and DRUZHININ (1994) have attempted to solve this problem
independently by using the general Green’s function computational ansatz to
combine the existing asymptotic and fast numerical techniques for optimizing the
advantages of each without use of diffracted ray tracing. However, DRUZHININ
(1994) considered only the simple scalar KH formula and second-order polynomial
approximations (following STAMNES et al., 1983). Full advantage was therefore not
taken of the Green’s function computations and development of the error-predic-
tive numerical algorithm.

The present paper attempts to remove such shortcomings. By analogy with the
MII, we derive the elastic KH formula without limitations to the wave code and to
the method of computing Green’s function. Next, we modify the above numerical
algorithm to calculate the final oscillatory integral by minimization of the overall
truncation error.

2. Theoretical Background

In this section we briefly summarize the crucial points of our KH technique that
are needed in the practical computations to follow. We furthermore concentrate on
the elastic case. Many features of the formalism presented below are also expected
to be valid in the anelastic case.
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2.1 Basic Integral Theorem

We begin with the explicit elastodynamic divergence theorem for steady-state
waves (PAO and VARATHARAIULU, 1976)

Uy (X) = '[ 7Bt (XN (X, XV 1t} (X)) — u | (X) 018y, (%, X)) s’ )
P

where u,,(x) is the mth component of displacement vector at observation point x
within a domain I with boundary 0V’ =XUZ_ occupied by an elastic medium, B,
are the components of the 4th order elastic tensor inside V, &, is the spatial
derivative with respect to coordinates x; of the current point x’ of the target
interface Z, ds’ is an infinitesimal area element at x’ on X, #; is the jth component
of unit outward normal to T at x’ (the indices i, j, k, [, m take values 1, 2 and 3;
summation rule over repeated indices is understood throughout). Equation (1)
establishes the basic integral relation between the displacement vector uw as a
function of x and its baundary value u* at x’ from the inside of volume V. The
term g, (%, X) is known as the full-space Green’s tensor within ¥ that represents
the displacement in mth direction at x due to a concentrated body force applied at
the point x" in the direction of the coordinate x,. Assuming the radiation conditions
on X, (PA0O and VARATHARAJULU, 1976), zero initial conditions and no body
forces inside ¥V, the above equation can be used to study the scattering effect by Z.
It is worthwhile to remind that the radiation conditions are imposed on the
behavior of the displacement and traction vectors at infinity. They imply that the
energy flux at infinity should be in the outward direction.

The boundary wave field in eq. (1) is decomposed in the form (ROBERTS, 1994;
DRUZHININ, 1994)

P
ut =3y uf @
in terms of the components

0 (X, ©) = U (¥, ) explior, (X, o)] )

where @ is the circular frequency, U} are amplitude functions, and T, are
corresponding phase functions determined formally from the differential equations
of exact ray theory (ZHU, 1988; FOREMAN, 1989; DRUZHININ, 1994). The index
p=12,..., P refers to different arrivals of various elementary waves, such as
primary and multiply reflections, converted waves, etc. (there is no summation over
indices in eq. (3)). By analogy with the ART theory, each elementary wave in the
form (3) deals with a fixed ray code &, at a time (CERVENY and RAVINDRA, 1971;
CERVENY et al., 1977). Besides, the terms (3) can also be regarded as a set of basis
functions to gain advantage of the method of wave superposition (BoSTROM, 1980;
KOOPMAN ef al., 1989).
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Inserting (2) and (3) into (1), the fundamental integral then becomes

P
u= ) u, 4)
p=1
with terms
ump (X) = J. n}Bijkl(xf){gim (X, X')H?‘;’ (X’)[a;c ln Uzr-) (X’) + iwpzp (xf)]
z

- u;; (x’)a;cglm (Xa X,)} ds’ (5)

where pji, = 0,1} (x') is the kth slowness component of the elementary wave (3)
after its propagation across Z, according to the wave code J, (in eq. (5), there is no
summation over indices m and p). The physical meaning of eq. (4) is an interference
of the scattered wave fields at x (cf. eq. (5)) generated by the elementary waves at
% given by solution (3).

Using the appropriate boundary conditions, we write (cf. DRUZHININ, 1994)

LX) =KX, U, (x), pl,=1u(x;6,)p, (6)

where U, (x') and p,, = d;7,(x') are the amplitude and slowness vector components
of incident wave field at x', K(x'; 6,) and I1,,(x’; 6,) are the reflection/transmission
coefficient and the propagator matrix specified by the wave code J,. In the case
where the amplitudes in eq. (3) are determined in the ART approximation, eq. (6)
should be replaced by the ordinary plane-wave reflection formulae and the Snell’s
propagator matrix (FRAZER and SEN, 1985). Such formulae are well-established for
the stress-displacement continuity conditions in the media with arbitrary elastic
layers as well as for the more general boundary conditions of the slip contact
(DrRUZHININ and LUNEVA, 1993). A correction for the anelasticity can be intro-
duced upon the use of the ART (e.g., DRUZHININ, 1993).

2.2 The Green’s Function

Equations (4-6) can only be used in types of media for which the Green’s
tensor is known. In general, we cannot analytically determine the Green’s tensor for
arbitary elastic or anclastic media. However, a familiar Green’s dyadic eigenvector
expansion can be employed (e.g., DRUZHININ and CAMPILLO, 1996)

M M

Em= ), [g“‘“’ef-“)e,‘#)+.l > g("”)ES“)eE,Z)], E (7)
=1 i r=1

g = G expliwot™), p,v=13.... M (8)

by summation over different arrivals of M elementary wave modes of the magni-
tudes (8). Here, the polarizations %) represent solutions of the Christoffel equation
(e.g., CERVENY et al., 1977). In the case of a full-space Green’s tensor, the indices
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#,v=1,2,3 refer to three wave types corresponding to one quasi-P and two
quasi-transverse S1 and qS2 wave motions (BEN-MENAHEM 1990; BEN-MENA-
HEM and SENA, 1990; DONG and SCHMITT, 1994). In th.~ ART approximation
(CERVENY et al., 1977; DRUZHININ, 1993), the amplitude G%* and phase 7%
functions in (8) can be determined from the corresponding equations for the main
and additional components of the wave field. According to the exact ray theory
(ZHU, 1988; FOREMAN, 1989; DRUZHININ, 1994), these functions can be frequency-
dependent and may give rise to a very useful frequency-dependent ray diagram near
the edges, caustics, etc. In the regular domains of the ray field, the diagonal (v = )
components (8) account for the energy transport along the ray tube of the
considered wave mode. Other components are due to the coupling effect caused by
the interaction between the ray tubes of different wave types.

2.3 KH Formula

Inserting (7) and (8) into (5) and changing the orders of summation and
integration, we find

roou o
U, = pgl #El (umpﬂ + Au,,,, + v;} Aumwv), v ¢
with
Uyt (X) = 0 L 1By (X)g H9(x, XYy (X)), (X, X') ds’ (10)
where
Py = e (eP el pl, — elepr,,), (11)

and u; =(u) - e ) is the scalar product of eq. (3) and the unit polarization vector
e, =U; /U} from (3) with components e}, py,, = 0;7%" is the kth component of
the slowness vector orthogonal to the phase surface t“?=¢ (u,v=1,2,3). The
additional terms in eq. (9) are

Aump‘uv(x) = JA n}Bijkf(X,)g(‘uﬂ(x! X’)u?; (x’)A¢ Sr-‘:’n‘;l)(p (x5 x’) dg’! M, V= 19 25 3
b
where
Ap G, = (iw)PePeer (0} In UL + diewpi,)

—ei [0piueiel) + (iw) = Hefel)d, In GU“ + 3, (efPeP))]

5={0 for V=H
1 v#E U
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In the framework of the KH theory, eq. (9) can be interpreted as a continu-
ous superposition of the secondary waves spreading from the points of contour
=. One example of eq. (9) is a scalar (u=v = 1) normal mode representation of
the point source wave field in a waveguide with some mode cutoff P (FOREMAN,
1989). Correction of eq. (10) for the head-wave arrivals is discussed in Appendix
A.

It should be emphasized that no approximations have been made in the
development so far. However, the high-frequency condition

wlw,» 1 (12)

with a cut-off frequency w, is often imposed (BEN-MENAHEM and BEYDGUN,
1985). The parameter e, is assumed to be contained in the range w, < w < w,,
where w, is the Nyquist critical frequency, and o, can be expressed in terms of
the transverse size of the Fresnel volume (KrRAvTsOv and ORrRLOv, 1993) or the
scale of a model irregularity (CERVENY et al., 1977; FRADKIN, 1989).

Condition (12), in turn, implies that (DRUZHININ, 1994)

ol - p,)|>|m -V in UL)| (13)
and, similarly,

ol - p,,)| > |@ - V' In G*)| (14)
for p=1,...,P and I u,v=1,2,3. Hence, ignoring above additional terms in

eq. (9), we arrive at the surface KH integral (10). Without a loss of gehera]ity, a
similar formula can also be obtained for the volume integral (LUMLEY and
BEYDOUN, 1993). Equation (10) can be used when the surface I is discontinuous
and/or when Z and the receiver are located at an envelope (caustic) of the ray
family associated with the source. Actually, the choice of £ does not depend
upon the problem considered because we have not yet specified how to compute
the amplitude and phase functions in eqgs. (3) and (8) as well as the coefficients
in eq. (6). Note that these results contain the existing KH techniques as a special
case (cf. Appendix B), and that it was the MII that provided the motivation for
the results obtained herein. A well-known particular case of eq. (10) is the
ray-Kirchhoff integral (e.g., HADDON and BUCHEN, 1981; ScoTt and HELM-
BERGER, 1983; FrAZER and SEN, 1985; GELIUS, 1993; TYGEL et al., 1994) when
the amplitudes G*” and Uj, are determined in the ART approximation, so that
conditions (13) and (14) take a form of the ordinary far-field validity conditions
(BEN-MENAHEM and BEYDOUN, 1985; KravTsov and ORLOV, 1993), and plane
wave reflection/transmission coefficients are used. However, ‘these integrals are
invalid when rays have caustics on I (cf., ZHU, 1988). The more generic eq. (10)
is intended to solve this problem.
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2.4 Time-domain response

Let f(¢) is a source wavelet with a Fourier spectrum F{w) that is regularly
sampled. Then, the time-domain response can be constructed by taking a standard
inverse FFT of eq. (9) with F(w). However, the final algorithm would be rather
time-consuming due to the frequency loop.

In terms of analytic signal £,(r) = f(t) + if(t) where f¥(¢) denotes the Hilbert
transform of f(r) (CERVENY and RAVINDRA, 1971; CERVENY et al.,, 1977), the
time-domain form of eq. (10) becomes

Uy (1) ~ Re L ®,,, (0, (t—1,,)ds

= J [Re D, (@t —1,,) — Im®,,, ()t —1,,)] ds’ (15)
x

where @’ is the predominant frequency of spectrum F(w). Here, the amplitude and
phase functions are

?,,,.(x,X; 0)= fon} B (X)GU(x, X'; @)UY (X @), (X, X w),  (16)
T (X, X') = T(x, x') 4 7, (x') )]

with amplitude and phase terms from eqgs. (3), (8) and (11). Thus, the synthetic
seismograms can be constructed ‘without invoking the use of Fourier synthesis.
However, the applicability of eq. (13) is restricted by the band-limited spectrum
F(w). Consequently, this operation cannot be exactly accomplished without intro-
ducing instabilities which were studied numerically (DRUZHININ and CAMPILLO,
1996). To avoid the instabilities, we may employ an explicit form of the time-
domain KH integral (HADDON and BUCHEN, 1981; DRUZHININ and Kim,
1995).

2.5 Numerical Formula

This subsection of the paper discusses procedural issues in the numerical
evaluation of the KH integral (10). The additional terms of eq. (10) can be
evaluated similarly, but the algorithm becomes rather lengthy because of the more
complicated integrand. By means of conditions (12), (13) and (14) these compli-
cated terms can be eliminated.

To reduce the KH integral (10) to a numerical form, the surface X is divided
into N segments AZ, and the area of each segment is represented by As,. Dropping
the indices m, p and g, eq. (10) can be rewritten in the form

u(x) = i Au(x, x.) (18)

n=1
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with
Au(x, x,) = Au(x, x},)AIL,, (19)
Au(x, x,) = u(x, X, )As,, (20)
1
Al,=— Au, (x, X') ds’, 21)
Asn J:AE,,

Au, (x, X') = u(x, X)u(x, x,) = 0, (x, X) explio Az, (x, x)],
u(x, x) = O(x, x') expliwt(x, X)),
@, (x, X') = O(x, X)/O(x, X;,), Az, (x, X} = 7(X, X') — 7(X, X},),

where the amplitude @ and phase functions t are defined by egs. (16) and (17),
respectively, x;, is a central point of the segment AX,. Equation (18) is also obtained
by means of the wave superposition method (KOOPMAN et al., 1989), including a
source term corresponding to the elementary solution (3), applied to the region ¥,
bounded by the surface 0V, and combined with the boundary conditions (cf., eq.
(6)). According to this interpretation, the segment AZ, acts as a secondary source
generating wavelets after it has been struck by the incident wave given by eq. (3).
These waves constitute the infinitesimal scattered wave fields expressed in terms of
the KH integrand (20) and also some weighting factor or directivity function (21).
If As, for all n=1,2,..., N is made to be sufficiently small, the integrand in eq.
(20) can be fixed at x;, to get the simplest (rectangular) quadrature formula in which
Al =1. Many fast numerical integration techniques apply this type of formula
(e.g., Wu, 1985, KOOPMAN et al, 1989). Other techniques are the adaptive
rectangular formula by HAIGER and Liu (1992), generalized Filon’s method
(FrRAZER, 1988), second-order quadrature by STAMNES et al. (1983), etc. Our
primary purpose here is to define the weight function (21) so as to provide a more
accurate and stable evaluation of eq. (18) on the number N of segments.

For the sake of simplicity, we restrict ourselves to the 2D problem so that any
point x" in X is specified by an arclength 5. A central point x, on the nth segment
AZ, has an arclength sf=s, + As,/2. We assume that the phase and amplitude
functions in eq. (21) are sufficiently smooth functions of s which have a compact
support in (—co, o0). Hence, we define their local Taylor expansions in the vicinity
of x;, (DRUZHININ and CAMPILLO, 1996)

K

A, = Y t®rk 4 0K+ (22)

k=1

and, similarly,

L
D, =1+ Y ®DH+ 0L+ 23)
iI=1
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with respect to the variable ¢ = (s — s%)/As, . Instead of numerical formulae (STAM-
NES et al., 1983), we can explicitly determine the coefficients
1 9%z, 10D,
E'k)zﬁﬁ . and @ =7 .
if we consider a simpler problem for which closed-form scalar solutions such as (8)
are available (e.g., BEN-MENAHEM, 1990). Consequently, the computations of the
above coefficients are tedious but completely straightforward. Practically, we need
to use the zero-order term of the series (23) only, since the amplitude (16) is
normally a slowly varying function of ¢ (DRUZHININ, 1994). By slowly varying, we
mean that the length of the variations normalized on the wavlength A, of the waves
under consideration at x/, is much greater than the parameter g, = As, /4, (FRAD-
KIN, 1989; KravTsov and OrLOV, 1993). However, the most complete phase
expansion (22) should be considered because of the high-frequency condition (12).
Inserting (22) and (23) into (21), changing integration variables in eq. (21) from
s to t and noting that ®( =1 yields

L
AL~ 150 =Y @O UK (24)
/=0
with
x+ K
JEE = j ¢ exp(iw ¥ r,‘f"t") dt (25)
x= k=1
where
[—0.5, +0.5] 2<n<N-—1
[x7, xT]=+<[-1.0, +0.51 for n=1
[+0.5, +1.0] n=N

Thus, we obtain the polynomial expansion (24) of eq. (21), involving the family
of special functions (25) well-established in the asymptotic diffraction theory
(HANYGA, 1993; KravTsov and OrRLOv, 1993). These functions can be tabulated
by the use of numerical algorithms reviewed by Kravrsov and OrRLOV (1993) or
with the QUADPACK subroutines (PIESSENS ¢t af., 1983). Even though they can
be expressed explicitly in terms of the simple special functions only if K<?2
(STAMNES et al., 1983), such an approximation provides a desirable freedom for the
computation of eq. (18) since we do not specify K and L. Whenever the coefficients
of the series (22) and (23) are known, it is possible to determine accurately the
directivity function (21) uniformly over the grid {x;} when the condition ¢, <« 1 of
a small #th segment is not invoked. After computing the higher-order terms (25),
we can construct an error-predictive numerical algorithm to compute the function
(21) (Fig. 1). However, the suitability of the approximation (24) strongly depends
upon the convergence properties of above series. In practice, we shall be content
with results of the first few orders (K < 3).
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2.6 Truncation Error

The error in eq. (18) resulting from the truncation of series (22) and (23) must
be analyzed in detail. The main problem is to estimate the truncation error
associated with the Kth order phase approximation (22). This error is defined by

e = max (e}, ol = 4K~ J00)| 26)
o<ig L

or, by taking into account the first-order estimate
exp(iwry(-i- l}t(K+ l)) . 1 — I.G'JTS,K+ I)I(KJr 1) + o(a)2t2(1{'+ l)),
for w|t{ V% + ! <1, we obtain approximately
EnKINwl,L.E’K+l)JE+K+l,K)|_ 2N

Note that if the frequency w increases, the value of ¢ must be reduced to provide
a convergence of the series (22).
The error of Lth order amplitude approximation (23) for fixed X has the form

Ef — |ISrL+1'K) _ IEIL,K)[ = |(I)£,L+1)J£!L+ 1.K) E (28)

As a result, for each n {1 <n < N) the total error in the expansion (24) can be
roughly estimated as

g <(L+ ek + ek, (29)

If the condition (29) is violated, then the series (22) or (23) converge slowly and the
suitability of the approximation (24) is doubtful.
It follows that the overall error of eq. (18) satisfies the inequality
e< N max {g,}. (30)
0N
In addition to the error of KH approximation (10), this error estimate can be used
to formulate the validity conditions of the method.

3. Remarks on the Numerical Implementation

A C program was implemented to evaluate synthetic body wave seismograms
for 2-D multilayered media. The medium can be composed of several isotropic or
transversely isotropic (TI), elastic or weakly absorbing layers, separated by curved
regular or irregular interfaces. Figure 1 depicts a principal flow chart of the
numerical algorithm used. By analogy with the scalar case (DRUZHININ, 1994), it
consists of two parts: (a) the computation of KH kernel {(cf. eq. (10}) and (b)
numerical integration according to eq. (18). Thereafter, an approximate inverse
transform (15) is applied to obtain a final time-domain response.
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The first step in our computations is the evaluation of boundary wave field

given by eq. (2) (Fig. 1). Once the unknown boundary wave field is determined, the
KH kernel can be calculated by substituting the boundary values into eq. (16).
Moreover, the branch points in the first part of eq. (6) are memorized to calculate
the head-wave arrivals uniformly over the offset (cf. Appendix A).

1. INPUT
{1) Receivers (2) Source {3) Wave code (4) Model (5) Wavelet [
[ < f
2 Calculate:
{1)Boundary Wave Field
+*
(2) Green's Funclion
(3) KH kemel
l——No Head Wave? Yes
n=¢
' 3
-
3 Calculate: _
- der 4.Carrection
n .thior for Head Wave
weight (24)
n=n+1 Update
Wave
Code
Truncation
—Me Error Small? Yes— I
§.Calculate Total
- Time-domain
6. OUTPUT Response
Synthetics:
(1) Wave1, Wave2, ... o Yes
(2) Total Wave Field=  [© Another wave?
Wave1+Wave2+ ..
Figure 1

Principal flow chart of the KH numerical algorithm proposed.
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Next, the components (8) are evaluated upon use of the well-known elementary
source solutions whenever possible. In more complicated models, these components
are expanded into the WKBJ series (SINGH and CHAPMAN, 1988; WENZEL ef al.,
1990). By putting the source location x’ into a complex space, we may also
construct an analytical extension of the diverging wave propagating away from this
source (FELSEN, 1984; Wu, 1985).

In situations where the ray-Kirchhoff approximation (FRAZER and SEN, 1985)
is valid and the above elementary and numerical solutions cannot be effectively
used to handle the problem, standard ray-tracing procedures are applied to
compute the amplitudes (16) and phase functions (17) of the secondary waves. They
are needed to propagate ART data (without geometrical spreading) from the source
to (usually) the last interface according to the specified ray code. If the boundary
is well-defined at the ray intersection points (assumed for the time being to be off
the critical angle region), we compute travel times and reflection/transmission
coefficients for a corresponding outgoing wave. Equations (6) are then applied layer
by layer to continue a wave field across cach interface. We next compute the
Green’s function terms (11).

Our program deals with the numerical evaluation of the KH integral (10) by
means of eq. (18) and makes use of the estimate of the truncation error (30). We
have to evaluate the coefficients in the series (22) as well as eq. (25) to define the
directivity pattern (21) and also to estimate the truncation error. Certainly, we start
from the simple zero-order quadrature formula, which corresponds to the trape-
zoidal formulae for the oscillatory integrals (FRAZER, 1988; HAIGER and LIu,
1992). As indicated earlier, they have been considered before to compute the KH
integral (Wu, 1985; KOOPMAN et al., 1989). If the overall error (30) is not small
enough then we consider a higher-order special function (25). We continue this
iterative process until the error is less than a specified tolerance level (Fig. 1). It is
worth noting that, due to the fast convergence of the series (22) and (23), we have
often obtained I =1 and K <3 (STAMNES et al., 1983; DRUZHININ, 1994). Note,
however, that, although there are higher-order corrections to the phase function
(17), there are no higher-order corrections to the amplitude function (16) due to the
high-frequency condition (12).

Finally, the total wave field is constructed as a superposition of all elementary
body waves of interest specified by a given wave code such as reflected, refracted,
converted, etc. (Fig. 1). This is similar to the superposition of the reflection
operators by KENNETT (1984) (for more details, ¢f. DRUZHININ and KM, 1995).

4. Comparison with Other Methods

Compared with other methods, the numerical algorithm discussed above offers
the following advantages:
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(1) unlike finite-difference or finite-element methods, it is not time-consuming
and does not require much memory (for example, the total CPU time of the
desk-top computer required to compute the synthetic examples presented in this
paper was about 5 min.).

(2) it removes the disadvantages of the ART algorithms concerning singular
regions of ray field (i.e., critical angles, caustics and diffractions).

(3) it can be effectively combined with other methods due to the fairly general
representations (2), (6) and (8). Such hybrid representation makes it possible to
avoid the difficulties associated with either of these methods by optimizing the
advantages of each.

(4) the well-known limitations of the beam methods (BEN-MENAHEM and
BEYDOUN, 1985) and related techniques (KLEM-MUSATOV and AIZENBERG, 1989;
WANG and WALTHAM, 1995) are eliminated. Neither paraxial approximations
(BEN-MENAHEM and BEYDOUN, 1985) nor additional diffracted ray tracing
(HANYGA, 1993, 1995} or boundary-layer amplitude estimates (KLEM-MUSATOV
and AIZENBERG, 1989) were involved (cf. Appendix B).

(5) the computation of the KH integral (10) is done directly without the case
splitting analysis of ray singularity type in the vicinity of stationary points which is
needed in asymptotic methods (HANYGA, 1993; KrAVTSOV and ORLOV, 1993).

(6) in the ray-Kirchhoff techniques (HADDON and BUCHEN, 1981; ScoTT and
HELMBERGER, 1983; FRAZER and SEN, 1985; GELIUS, 1993; TYGEL et al., 1994),
it is assumed that the KH integrand (16} is regular throughout the integral surface.
In the present algorithm, no assumptions of this sort must be made.

The weak points of the program are the following:

(1) the wave code is assumed to be the same for all rays spreading from the
source. To consider composite regions of a general type, we must transform them
to layered models by introducing artificial boundaries (CERVENY er al., 1977). This
is often inconvenient for the user.

(2) in practice, it is rather difficult to compute multiple scattering effects if only
the simple KH integral (10) is being considered.

(3) in some cases (e.g., grazing rays) the low-frequency background in eq. (9)
cannot be dropped. The reason is that some additional interference waves generated
by the source should be considered.

(4) in some models such as waveguides and at large epicentral distances, the
total wave field may involve hundreds of elementary waves, rendering this program
inefficient.

(5) if the boundary curvature gradient is too high compared with the wave-
length, or the number of incoming waves is too large, eq. (6) in plane-wave
approximation should be replaced by the T-matrix equations (BOSTROM, 1980).

(6) expressions have not yet been developed which unite the automatic compu-
tations of the high-order terms of eq. (24) with the Green’s function computation
in smoothly inhomogeneous layers of arbitrary variable velocity gradient.
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5. Synthetic Examples

The synthetic examples presented in this section have been specially designed to
demonstrate the usefulness of the algorithm discussed above. Features such as the
accuracy and validity range of this algorithm are compared to those corresponding
to the boundary element and other particular solutions of interest. For convenience,
the only absolute value of vector wave field (10} is depicted throughout. Although
the polarization and wave type conversion effects are simulated sufficiently, they are
not subject to the present investigation.

5.1 Test of Accuracy

In order to check the accuracy and computational stability of the algorithm, we
have calculated some well-known special functions of the diffraction theory which
are also known from the singularity theory (HANYGA, 1993; KrAVTSOV and
OrLOV, 1993). Similar numerical integrations of the classical diffraction integrals
have been established by DRUZHININ (1994). Details may be found in DRUZHININ
and Kim (1995).

When an A, singularity (i.e., cusp caustic) occurs, we evaluate the Pearcey’s
integral

Pe(x, y)=P(x,y) + P(x, —y), P(x,y)= r expli(u* + xu® + yu)] du.
0

Each term of this representation is computed in the range of arguments 2 < x < 8§,
0 < y < 8 with grid interval Ax = Ay =2. The parameters of the numerical expres-
sions (eq. (18)) with weights (24) were N=10%, L =0 and K=2. A comparison
with the error-predictive Gaussian quadrature formula (CoNNOR and CURTIS,
1982) demonstrates the accuracy of such formula up to the 5th significant figure for
all values of arguments x and y (cf. Table 1). Similar result has also been achieved
for N=10°, L=0and K=1.

3.2 Anisotropy

Let us consider the TI homogeneous space specified by the density-normalized
elastic constants C;; = 26.56, C;3=1097, C;;=06.66, Cyy,=1.87, and Cg=7.23
(km? s~2) that would correspond to the stratified model ‘Plex-Alum’ from WHITE
(1982). The receivers are located on the circle of radius R =1 km with center at the
source point. They are specified by the above polar angle # measured from the
anisotropy axis z. The integration contour represents a circle of radius R/2. It
consists of 10* grid points distributed within a segtment —40° < #<130°. A 20 Hz
narrow-band Ricker’s signal is used as the input wavelet. A plane-wave formulation
of eq. (10) (WENZEL et al, 1990) leads to the WKBJ technique (SINGH and
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Table 1

Real (I) and imaginary (II) parts of the Pearcy’s integral Pe(x, y) calculated by numerical formula (18) (A)
and their tabular values from CONNOR and CURTIS (1982) (B).

I I 11 II

X v A B A B

2 0 0.924029 0.92403 0.729007 0.72901
4 0 0.646979 0.64698 0.593695 0.59370
6 0 0.520848 0.52085 0.500054 0.50005
8 0 0.447915 0.44792 0.437618 0.43762
2 2 0.993721 0.99372 0.312731 0.31273
4 2 0.740098 0.74010 0.413323 0.41332
6 2 0.587735 0.58773 0.403529 0.40353
8 2 0.495820 0.49582 0.376681 0.37668
2 4 0.596479 0.59648 —0.565160 —0.56516
4 4 0.766598 0.76660 —0.132658 —0.13266
6 4 0.683906 0.68391 0.081293 0.08129
8 4 0.588823 0.58882 0.169333 0.16933
2 6 —0.476832 —0.47683 —0.509207 —0.50921
4 6 0.225514 0.22551 —0.668159 —0.66816
6 6 0.515897 0.51590 —0.405727 —0.40573
8 6 0.565948 0.56595 —0.192537 —0.19254
2 8 —0.308926 —0.30892 0.545153 0.54515
4 8 —0.567033 —0.56703 —0.308136 —0.30814
6 8 —0.096571 —0.09657 —0.614553 —0.61455
8 8 0.229865 0.22986 —0.532415 —0.53241

CHAPMAN, 1988) which was applied to simulate the qP and qSV wave propagation
due to a point source in such model. The results in Figures 2 and 3 do not contain
the source directivity function. Moreover, the synthetic seismograms contain only
the main component of the wave polarization, representing a scalar product of the
displacement vector with the corresponding unit polarization vector. Figure 2a
demonstrates the WKBIJ and the far-field solution by BEN-MENAHEM and SENA
(1990). The discrepancy, which increases slightly in the neighborhood of the x axis,
is due to the well-known limitation of the far-field solution in the domains of high
wave-front curvature (BEN-MENAHEM and BEYDOUN, 1985; FRADKIN, 1989). In
general, both methods are in satisfactory agreement with each other. The quasi-
shear wave loop travel-time curve and the corresponding synthetic seismogram are
shown in Figure 3. We can observe the regular behavior of the wave field near the
cusps as well as the diffracted arrivals in the caustic shadow zone (8 < 20° and
f > 70°) that cannot be predicted by the standard ART. Note that it is possible to
visualize the effect of interference of the two wave forms (e.g., the 60-degree arrival
at 0.45 s in Fig. 3b). This example shows that the WKBJ technique can simulate the
Green’s function in anisotropic media.
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Amplitude of the qP wave with unit source directivity pattern in the ‘Plex-Alum’ model (WHITE, 1982)

evaluated by the WKBJ technique (squares) and compared with the far-field approximation by

BEN-MENAHEM and SENA (1990) (circles) (a). The former was used to compute the product of the gP
wave field and the corresponding polarization vector (b).



Yol. 151, 1998 Elastic Kirchhoff-Helmholtz Synthetic Seismograms 33

0.8 gsv
[} o) <
- 0.7 © o) v}
o o
- 0]
0.6 o
] Q
<05 0]
a) ~ 05 o
: 2 o
© 8
0.4 o
@ Cusp
i
0.3~ Cusp o
v}
6.2 T T T T T T T T \
0 10 20 30 40 50 60 70 80 %0
Receivers angle {degrees)
WKBJ Synthetic Seismogram
a0
AN
o=
b) bo

g —y

: K

T 1 T T T T 1
0.2 0.3 D.4 0.5 0.6 0.7 0.8 0.8

Time (sec)

Polar Angle of Receiver (deg.)

Figure 3
Travel-time plot (a) and synthetic seismogram (b) of the qSV wave with unit source directivity pattern
in the ‘Plex-Alum’ model (WHITE, 1982) as evaluated by the WKBJ technique. The seismogram
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5.3 Reflection Problem

Next, we compute the PP wave field reflected from the curved interface between
two homogeneous isotropic media specified by the following elastic parameters:
v, =4 km/s, v, =2.3 km/s, p; =2.5 gjfem® (top layer) and v,, = 6 km/s, v, = 3.46
km/s, p, = 2.7 g/em?® (bottom half-space). The triplicated travel-time curve and the
corresponding ray diagram with a simple caustic can be viewed in Figure 4. The
source is located at (0,0.2) (km) and the receivers are distributed along the
horizontal line z = 0 within the interval 0 < x <7 (km).

Figure 5a is the 2 Hz amplitude versus offset in the caustic shadow, evaluated
using eq. (18) (solid line) and the Indirect Boundary Element Method (IBEM,
dashed line). The IBEM results were obtained by adapting the formulation of
SANCHEZ-SESMA and CAMPILLO (1991) and PEDERSEN et al. (1996) to an explo-
sion in the model geomelry shown in Figure 4b. In Figure 5b, we compare the
zero-offset 2 Hz wave forms computed by these two methods and by the WKBJ
technique used in the previous example (see also WENZEL ef al, 1990). It is
apparent from Figure 4, that the performance of KH is satisfying near the caustic
where the ART is not valid. The amplitude error of the KH method in the deep
shadow zone (x > 6 km, Fig. 4a) is probably due to neglection of the low-frequency
term in eq. (9). Numerical tests by DRUZHININ and CAMPILLO (1996) demonstrate
that the discrepancy between the KH and IBEM wave forms in Figure 4b is due to
the error of the time-domain eq. (15). Such tests also reveal a significant error of the
WKBJ wave forms in the domains of the large reflector’s curvature in the
wavelength scale.

Reflected PP waves were computed for different models of the top layer in
Figure 4b. Figure 6 shows the KH synthetic seismograms evaluated for a) constant
P velocity of 4 km/s, b) constant vertical velocity gradient v(z) =4 + 0.1z km/s and
d) similar velocity law, but with nonvertical (45°) velocity gradient, ¢) weak
anisotropy with the anisotropy coefficient # = 0.95 in notations by BEN-MENAHEM
and SENA (1990), and f) slightly absorbing medium with the frequency-indepen-
dent* exponential decay factor exp(— yr) where y =0.1[1/km] and r is distance in
km. We have attempted to demonstrate the effect of above elastic properties on the
wave ficld. One can also compare the results in Figure 6b with the diffracted wave
field produced by the broken interface (Fig. 7a) in the same direction (cf. Fig. 6c).
Note that the earlier linear arrivals in Figure 6 correspond to the reflections from
lateral parts of the interface (|x| > 1).

The example in Figure 7 continues the analysis concerning diffracted waves
generated by the irregular interface. In Figure 7a, the interface offset is 0.1 km for
—0.5<x<0.5 km and 0.15 km for another two interface offsets. Note that the
normal diffracted events can be observed in Figure 7d. In the asymptotic theory

* Because of the narrow-band wavelet being used.
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Travel-time plot (a) and ray diagram (b) of the reflected PP wave in two-layered homogeneous isotropic
model with a smooth curved interface. The P velocities are 4 and 6 km/s for the top and bottom layers,
respectively. Note that the horizontal and vertical scales are different.
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reflected rays shown in Figure 4b. The absolute value of the reflected PP wave field was evaluated upon
use of the WKBJ technique (dots), the present algorithm (solid line), and the IBEM (dashed line).
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Figure 6
KH synthetic seismograms of the reflected PP waves for different models of the top layer in Figure 4b:
a) constant P velocity of 4 km/s, b) constant vertical velocity gradient v(z) =4 + 0.1z km/s, d) similar
velocity law, but with tilted (45°) velocity gradient, ) weak anisotropy with the anisotropy coefficient
# =10.95 in notations by BEN-MENAHEM and SENA (1990), and f} slightly absorbing medium with the
exponential decay factor exp(—yr) where y = 0.1/w and r is distance. Synthetic seismogram in Figure 6¢
was constructed for the constant vertical velocity gradient v(z) =4 + 0.1z km/s of the top layer and the
irregular interface shown in Figure 7a. The input wavelet is a 20 Hz narrow-band Ricker’s signal. The
seismogram represents a product of the time-domain qP vector wave field and the corresponding
polarization vector.
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(Kravtsov and OpLov, 1993; HANYGA, 1993), such events correspond to the
so-called edge catastrophes described in terms of the incomplete Airy functions and
their extensions. In this example, eq. (10) was integrated directly without the case
splitting ana]ysi§ of broken caustics near the corresponding shadow boundaries
shown in Figures 7b, ¢ (for a more detailed discussion, cf. Appendix B).

5.4 Transmitted Waves

In Figure 8a, we show a three-layered TI model with irregular (top) and curved
(bottom) interfaces from DRUZHININ and KM (1995). The elastic parameters of the
layer 2 correspond to the model ‘Plex-Alum’ (WHITE, 1982) and those of layer 3 to
the real weakly anisotropic rock sample “Timber Mountain tuff (BEN-MENAHEM
and SENA, 1990), respectively. Five density-normalized elastic parameters of the
layer 1 are the following: C;;, =10.0, C;35=64, C;5=2.3, C, =353, and C,, =3.6
(km? s=2). A primary P3P2P1 transmitted wave is generated by the point source
‘explosion’ located at (2, —6) (km) (layer 3) and observed at the earth’s surface
z = 0. The surface ¥ coincides with the top (irregular) interface depicted in Figure
8a. The KH seismogram can be seen in Figure 8b. It shows the waves which are
transmitted via the plane segments of X including the subvertical segment along the
vertical line x = 2 km; their rays contain few shadows due to the presence of sharp
edges with corresponding edge effects. Also, Stoneley wave propagating along the
step discontinuity of X appears at 1.9 sec. A seismogram of the converted P3S2S1
wave with a triplicated wave front in the vicinity of the z axis due to the anisotropy
of layer 1 was computed by DRUZHININ and KiMm (1995) (p. 159).

These results confirm that the present approach can successfully compute
synthetic seismograms for more or less realistic structures.

6. Discussion and Conclusions

The principal goal of this paper was to set up a general KH equation for the
diffraction/scattering of elastic waves under a variety of boundary conditions, in a
form most suited to efficient numerical computation.

We have restricted ourselves to the high-frequency case to express the KH
kernel in the most convenient form for carrying out the numerical quadratures.
However, eq. (10) does not imply that the kernel is computed in the ART
approximation.

A number of assumptions such as (12)-(14) must apply for eq. (18) to be valid.
Nevertheless, it is clear that a very wide class of problems of the kind illustrated in
our synthetic examples fulfill these conditions in contrast to the validity conditions
of the ART and its modifications (CERVENY et al., 1977: BEN-MENAHEM and
BEYDOUN, 1985; FRADKIN, 1989).
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It may appear as if we have actually complicated the solution of the problem by
introducing the fairly general representations. However, the above procedure seems
to be necessary if we want to extract the KH theory for a general case. Hence, our
results extend the existing ray-Kirchhoff methods.

Their usefulness is restricted only to the classes of media for which the Green’s
tensor is known. We have used a more or less generic representation (7) that
provides the necessary degrees of freedom.

In order to illustrate additional properties of the formalism, we also consider a
head-wave contribution of the branch points (cf. Appendix A) and the problem of
numerical Green’s function computations by means of the WKBJ technique (after
WENZEL et al., 1990).

According to FRAZER and SEN (1985), the main limitation of eq. (10) is that an
outgoing wave is assumed to have interacted only once with the boundary repre-
senting the integral surface. Consequently, one question remaining is to remove this
limitation. In this regard, a combination of our results with the T-matrix approach
(e.g., BOosTROM, 1980) should be useful.

To obtain numerical results we consider the truncated solutions. A closer study
of the convergence properties of these truncated solutions is of primary interest. In
this regard, the choice of the proper segment size is a very important factor in any
KH formulation under condition (12). We found that the results become accurate
when the phase and amplitude polynomial expansions (22) and (23) are used to
engender a family of well-known special functions (25). In some examples even the
zero-order terms of these expansions produced the results in satisfactery computa-
tion precision. Nevertheless, we need the higher order terms to compute the overall
truncation error (30). As a result, the final numerical algorithm has a self-predictive
truncation error.

We employed numerical tests to discuss the accuracy and validity of the method
by comparing it to other methods. Numerical results for different models show the
high performance of our method.
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Appendix A: Corrections for Head Waves

Let us suppose that the reflection coefficient K(s) from eq. (6) as a function of
the arclength s has a branch point x;, specified by some value s = s,. This coefficient
can now be written (BREKHOVSKICH, 1980)

Kis)= Y, Ki(s)h,(s)

a=1

where

1 a=1
ha(S)={ﬂ for a=2 and Ka(S)

are regular functions in the vicinity of x;. Then, eq. (18) takes the following form

2

u(x)= Y, t,(x)

a=1

with two terms

U, (X) = i Au, (x,x,)

n=1
in which

A, (X, ) = Aug? (X, X, )AL,

1
AL, =— J Au,, (x,x)ds".
AS,, AZ,

To define the solutions Ax‘® and Au,, instead of Au@ and Au, given in egs.
(20-21), the coefficient X is simply replaced by K,. In the equations above, the first
term represents the ordinary reflected wave field, whereas the second term is
governing the head-wave arrivals associated with the critical ray at x,.

The phase and amplitude expansions (22) and (23) in the second term yield a
result similar to eq. (24)

n2z s

L
L }
ALy ~IE0 =3 OQJEO
=0

K

JEO — J- t'hy (1) exp(iw Y rff‘)t") dt
1

x— k=
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where Ay ()= ./t — 1y, t,= (5, —52)/As,, ®Y are the coefficients of the amplitude
expansion after the replacement of K by K. Thus, we derive a new family of special
functions. In practice, we usually need only the special function for K =2 that can
be transformed into the well-known parabolic cylinder function D, (BREKHOVSKICH,
1980). This result is similar to the expressions for head waves obtained by ART at
large distances beyond the critical angle point (CERVENY and RAVINDRA, 1971).
Numerical examples can be found in DRuzHININ and KiM (1995) (pp. 161-162).

Appendix B: Scalar Diffraction Modelling

Let a wave field be represented by scalar P or SH velocity potential. Consider
the irregular interface X in Figure 6. According to step 2 in Figure 1, the Green’s
function g(x”, x") was computed in each point x" € X for x” = x, (source} and X" = x
(receiver) by use of the well-known explicit formulae (BEN-MENAHEM, 1990). In this
specific case, the usual ART approximation (FRAZER and SEN, 1985; TYGEL et al.,
1994) was applied to compute the reflected wave field at Z (see eq. (2) for P=1).
It is expressed in terms of the Green’s function g(x,, x') and the plane-wave reflection
coefficient K from eq. (6). We construct the amplitude and phase functions of the
scalar KH integrand

Ux,, X', X) = ioKU(X,, X UX, X)¢(X,, X, X)
and
(X, X', X) = 7(X,, X'} + (X', X),

where ¢(x,, X', x)=n"- [pT(x,, X) — p(x, X)), pF(x,, X') = V'7(x,, X'} is the slowness
vector of the reflected wave (cf. eq. (6)) and p(x, X'} = V'7(x, x"} is the slowness vector
of the phase surface 7(x, x') = const at x’, U(x", x") and 7(x", X'} are the amplitude
and phase functions of the Green’s function g(x”, x'). After the computation of
appropriate quadrature weights (21) with automatic integration in eq. (24) (cf. step
3 in Fig. 1), the resulting time-domain response is (cf. eq. (15))

N
u(X,, X; 1) ~ Re Y, AL U(X,, X, X; @)As,f,[t — z(x,, X', X)].

n=1
Simple examples of such numerical formulae can be found in many papers (e.g.,
ScoTT and HELMBERGER, 1983; WU, 1985, KOOPMAN et al., 1989). The same
considerations apply to transmitted waves (HADDON and BUCHEN, 1981). The
essential point here is that this formula simultaneously produces both reflected/trans-
mitted waves and all diffractions. Instead of asymptotic techniques (KLEM-MUSA-
TOV and AIZENBERG, 1989; WANG and WALTHAM, 1995; HANYGA, 1995), it leads
to a computationally more efficient and less restrictive algorithm which does not
require any information about the diffracted wave such as diffracted travel
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time, diffraction coefficient, etc. Particularly, it removes the validity conditions of
the paraxial or boundary-layer approximations (BEN-MENAHEM and BEYDOUN,
1985; KLEM-MUSATOV and AIZENBERG, 1989).
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