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DEM Corrections Before Unwrapping in a Small
Baseline Strategy for InSAR Time Series Analysis

Gabriel Ducret, Marie-Pierre Doin, Raphaël Grandin, Cécile Lasserre, and Stéphane Guillaso

Abstract—Synthetic aperture radar interferometry (InSAR) is
limited by temporal decorrelation and topographic errors, which
can result in unwrapping errors in partially incoherent and moun-
tainous areas. In this paper, we present an algorithm to estimate
and remove local digital elevation model (DEM) errors from a
series of wrapped interferograms. The method is designed to be
included in a small baseline subset (SBAS) approach for InSAR
time series analysis of ground deformation in natural environ-
ment. It is easy to implement and can be applied to all pixels of
a radar scene. The algorithm is applied to a series of wrapped
interferograms computed from ENVISAT radar images acquired
across the Himalayan mountain range. The DEM error correction
performance is quantified by the reduction of the local phase
dispersion and of the number of residues computed during the
unwrapping procedure. It thus improves the automation of the
spatial unwrapping step.

Index Terms—Digital elevation model (DEM) errors, interfer-
ometric synthetic aperture radar (InSAR), small baseline subset
(SBAS).

I. INTRODUCTION

THE Interferometric Synthetic Aperture Radar (InSAR)
method has broadly fulfilled a long-standing need of the

geophysical hazard research, which is to achieve a precise mea-
surement of small ground displacements both at short and large
spatial wavelengths [1]. However, single-pair InSAR suffers
from atmospheric perturbations, topographic errors, and phase
noise. Multi-temporal InSAR techniques have been developed
to overcome some of these issues, taking profit from large time
series of SAR data [2].

The permanent scatterers (PS) method detects individual
scatterers carrying a reliable phase information over the whole
SAR data stack [3]. However, in natural settings, the density of
PS is generally insufficient. The small baseline subset (SBAS)

Manuscript received July 5, 2012; revised January 4, 2013 and May 3, 2013;
accepted July 3, 2013. This work was supported by the Institut National des
Sciences de l’Univers (PNTS) and Agence Nationale de la Recherche (ANR)
via project EFIDIR (ANR-07-MDC0-004).

G. Ducret is with Laboratoire de Géologie, Ecole Normale Supérieure, 75231
Paris, France (e-mail: ducret@geologie.ens.fr).

M.-P. Doin and C. Lasserre are with the Institut des Sciences de la Terre
(ISTerre), Université de Grenoble 1, CNRS 38041 Grenoble, France (e-mail:
marie-pierre.doin@ujf-grenoble.fr; cecile.lasserre@ujf-grenoble.fr).

R. Grandin is with Institut de Physique du Globe de Paris, Sorbonne Paris
Cité, Univ Paris Diderot, UMR 7154 CNRS, F-75005 Paris, France (e-mail:
grandin@ipgp.fr).

S. Guillaso is with the Computer Vision and Remote Sensing, Technis-
che Universität Berlin, 10587 Berlin, Germany (e-mail: stephane.guillasotu-
berlin.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2013.2276040

strategy [4]–[6] exploits distributed scatterers (DS) by filtering
out the non overlapping parts of the radar spectrum before
interferogram formation with small perpendicular baselines.
Further interferogram filtering and/or multi-looking limits the
impact of temporal decorrelation. The SBAS method has been
successfully applied in various natural settings [7], [8]. The
SqueeSAR [9] and StaMPS-MTI methods [10] combine DS
and PS in order to improve the spatial coverage of selected
points. The latter is further increased by selecting only partially
coherent scatterers [2], [9].

In these methods exploiting a large pile of coregistered
differential interferograms, DEM errors can be systematically
corrected based on the fact that they produce phase changes
increasing linearly with the relative perpendicular baseline
between acquisitions. In standard applications of the SBAS
technique, once interferograms have been unwrapped, DEM
corrections are estimated by inversion of a linear set of equa-
tions [11], [12]. The performance therefore relies on the success
of a prior unwrapping step. However, DEM error contributions
in differential interferograms can result both in phase disconti-
nuities [13] and in apparent coherence loss when the perpendic-
ular baseline is above 100–200 m, especially in mountainous
areas. Therefore, correcting for DEM errors after phase un-
wrapping in SBAS approaches is not an optimal strategy.

In PS techniques, the DEM error, together with the ground
velocity, is estimated directly on the differential wrapped phase
information between neighboring pixels organized in a sparse
network [3]. Similarly, in [14], the local DEM error estimation
is embedded in the minimum cost flow unwrapping algorithm,
extended in the time domain to include the small baseline
interferometric network. Here, as in [10], we propose to extract
local DEM errors from wrapped interferograms with varying
perpendicular baselines. However, we do not select a sparse
network of a priori stable points. We rather show the feasability
of computing complete maps of local DEM errors and temporal
coherence. The phase information contained in moderately or
partially coherent pixels can then easily be exploited by further
spatial filtering (possibly based on temporal coherence), aided
by the phase scatter reduction due to DEM correction [15].
The purpose is to improve the spatial unwrapping step of
interferograms processed with an SBAS strategy.

In Section II, we present the DEM correction algorithm and
point out similarities and differences with respect to previously
published work. It is applied in Section III to a series of
coregistered, wrapped interferograms. We then quantify how
the DEM correction reduces the local phase variability and
improves the later unwrapping step.
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II. DEM CORRECTION ALGORITHM

A. General Setting

Let us consider differential interferograms formed by two
images acquired at dates k and l, with perpendicular baselines
Bkl

⊥ . φ refers to the wrapped differential interferometric phase,
whereas ϕ refers to the unwrapped phase. In the following, the
superscripts kl on φ or B⊥ refer to the kth and lth images form-
ing an interferogram, whereas a single superscript k denotes
ϕ or B⊥ of the kth image. We assume that the flat earth and
topographic contributions have been removed from the interfer-
ometric phase, using precise orbits and a DEM. The differential
interferometric phase φkl still includes various contributions

φkl = φkl
displ + φkl

atm + φkl
res,orb + φkl

res,topo + φkl
noise (1)

where φkl
displ is the ground displacement contribution in the

radar line of sight (LOS), φkl
atm is the atmospheric delay,

φkl
res,orb is the residual flat earth contribution, φkl

res,topo is the
residual topographic contribution, and φkl

noise is the phase noise
due to temporal decorrelation or changes in the radar look
angle. The residual topographic term, φkl

res,topo, depends on the
DEM height error, δherr

φkl
res,topo ≡ 4π

λ

Bkl
⊥

R sin θ
δherr[2π] (2)

where λ is the radar wavelength (5.6 cm for ENVISAT C-band
acquisition), θ is the local incidence angle, and R is the range.
Note that proportionality between φ and B⊥ in the above
equation is known modulo 2π, hence producing a nonlinear
problem.

B. Algorithm

As in [3], [16], we assume that the residual orbital contribu-
tion, the atmospheric delay, and the deformation are spatially
correlated at a local scale. The differential phase series, δφkl,
w.r.t. a nearby reference, is thus approximated by

δφkl ≈
(
δαBkl

⊥ + β
)
[2π] (3)

where β is a phase offset and where the relative DEM error
coefficient, δα, is defined by

δα̃ =
4π

λR sin θ
(δherr − δhref ). (4)

The phase offset, β, should tend to the average deformation
included in employed interferograms relative to the reference
pixel. The phase scatter in (3) that results from neglecting
deformation is reduced if the average temporal baseline, Δt,
of included interferograms is small: differential LOS velocity
should not exceed λ/(8Δt). In case of larger local deformation
gradients, a deformation term should be added to the phase
analysis. Biased estimates of α and partial removal of the
deformation may occur in the unlikely case where the local
deformation signal in included interferograms is correlated with
their perpendicular baselines.

In PS approaches, double difference phase series are defined
between neighboring PS organized in a sparse network (for
example by Delaunay triangulation) [3]. In StamPS, high-pass
filtering of the phase of PS candidates provides the necessary

local referencement for phase time series [10]. Alternatively,
we here divide the interferograms in overlapping subwindows
(typically, 1000 to 2000 m wide in C-band) and select as a ref-
erence the pixel that presents, on each subwindow, the highest
spatial coherence, γs, averaged on the series of computed SBAS
interferograms.

In each subwindow, and for each pixel, we then compute δα
in three steps:

1) A first estimate of δα̃, δα̃raw, is obtained by a discrete
search of δα̃ in an imposed interval [14], [16], where one
maximizes the temporal coherence, γt:

γte
iβ =

(∑
wkleiδφ

kl
(
eiδαB

kl
⊥

)∗)
/
∑

wkl. (5)

The weight, wkl, taken as e−Bkl
t /Ndays , depends on the

temporal baseline Bt expressed in days, where Ndays

corresponds approximately to the decorrelation time.
2) A refined estimate of δα̃, δαls, is computed from the

phase residues: eiδφ
kl
res = ei(δφ

kl−δαrawBkl
⊥ −β), assuming

that the residues, δφkl
res, are included in the [−π, π] inter-

val. The equation δφkl
res = δαresB

kl
⊥ + βres is now linear

and is inverted by least mean square. We then obtain

δαls = δαraw + δαres. (6)

3) Finally, a temporal inversion on the new phase residues,
δφkl

res, again assumed to be in the [−π, π] interval, al-
lows to compute a series of unwrapped differential phase
δϕk

res, one per acquisition k. Because we select inter-
ferograms that cover the whole perpendicular baseline
spread but are possibly limited in temporal baseline, we
add constraints to the inverted system [7]

W

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0

−1 0 0 1
...

...
...

...
...

...
...

...
0 0 −1 1 0 0

1 . . . . . . 1 0 0

1 0 −B1
⊥ −1

. . .
...

...
. . .

...
...

0 1 −Bn
⊥ −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δϕ1
res
...
...

δϕn
res

δα′
res

β′
res

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=W

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δφkl
res
...
...
...
0
...
...
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where the vector, W , weights the first M interferogram
data lines by wkl and the following N constraint lines by
0.01. Additional constraints, however, with a small weight,
allow avoiding rank deficiencies and fixing the unknown
phase shifts between independent groups of images to the
values that provide the best linear relationship between
phase and perpendicular baseline. At this stage, we obtain
a corrected DEM error coefficient, δαf =δαls+δα′

res,
relative to the reference pixel of each subwindow.

The relative DEM error coefficients obtained in sliding sub-
windows, δαf , must then be mosaicked. To avoid integration
that could propagate errors across areas of low coherence, we
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Fig. 1. (a) SRTM relief map of the study area. (b) Temporal coherence.

simply take the median value of the DEM errors within each
subwindow, weighted by the pixel temporal coherence, and
substract it from all DEM errors of this window. This high-
pass median filter applied to DEM errors can be seen as an
equivalent to the spatially uncorrelated DEM error of [10].
The residual low-pass DEM error component will later be
more easily retrieved once interferograms are unwrapped and
analyzed in time series. Damping is then applied across the
overlapping parts of the sliding windows to adjust the DEM
corrections over the whole SAR image. Finally, we apply to
the DEM error map a low-pass filter and a mask adapted to the
temporal coherence to remove DEM error outliers in incoherent
areas. For γt > 0.35, no filtering is applied. Below a threshold
of 0.2, the DEM error is replaced by the result of an averaging
kernel of Gaussian shape weighted by temporal coherence. In
the interval [0.2, 0.35], the applied filter decreases linearly
between the described Gaussian filtering and no filtering.

III. APPLICATION AND VALIDATION

A. Data and Interferogram Processing

The algorithm is tested on a descending ENVISAT track
(track 119), which covers from North (32◦ N) to South (27◦ N)
the Southern part of the Tibetan Plateau, the Himalayan range,
and the northernmost Indo-Gangetic plain [Fig. 1(a)] at a
longitude of 84◦ E. This variably vegetated area has an ex-
tremely rough relief across the Himalaya but is only moderately
mountainous to the North. The ENVISAT archive consists of 29
Envisat SAR images acquired from 2003 to 2010 with a total
perpendicular baseline spread of 1500 m (Fig. 2).

Fig. 2. Interferometric network. Each line linking SAR images represents a
computed interferogram while the dark lines show the interferograms selected
to process DEM corrections.

Differential interferograms are generated using a SBAS
processing chain [17] based on the Repeat Orbit Interferom-
etry PACkage (ROI_PAC) software [18] with the following
characteristics:

1) Based on precise DORIS orbits and the DEM in radar
geometry, we compute a priori range distortion maps
between master and slave images. All Single Look Com-
plex (SLCs) are coregistered to a common master radar
geometry using these a priori range distortion maps and
regularized offset fields in azimuth derived from ampli-
tude image correlation. This precise coregistration of all
SLCs is a crucial prerequisite to allow for correction of
DEM errors on a pixelwise basis.

2) The series of SLCs in a common master geometry is used
to compute a series of SBAS differential interferograms
(Fig. 2). The SLCs range spectrum is restricted to the
overlapping spectrum for the two acquisitions, with a
slope adaptative algorithm [19], [20].

3) Because of the strong decorrelation across the Himalayan
range and to the South [Fig. 1(b)], we multi-look the
small baseline interferograms by a factor 4x20 before
DEM error computation. However, multi-looking before
DEM correction degrades the expected gain of DEM cor-
rection in terms of phase scatter reduction, useful for later
processing steps (filtering and unwrapping). Therefore,
in more favorable environments, multi-looking should be
applied only after DEM correction.

4) One must then select the interferograms presenting the
least temporal decorrelation, the correction being applied
subsequently to all interferograms. Surprisingly, the co-
herence across the Himalayas may be preserved in some
cases for up to 3 years, depending on the seasonal and
interannual monsoon fluctuations. We thus select the 36
most coherent interferograms out of 99 interferograms,
independently of their temporal baseline [Fig. 2].

5) Finally, the stratified atmospheric contribution predicted
from the ERA-Interim European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis [21], [22]
and a phase ramp are removed from the interferograms.

B. DEM Correction

We present in Fig. 3 a zoom of the northern part of the
track, showing the DEM error map, the temporal coherence
map, and one example of an interferogram at 35 days and
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Fig. 3. (a) Map of the DEM error coefficient (in rad/m). (b) Map of the
temporal coherence. (c) Original differential interferogram with a perpendicular
baseline of 300 m and a temporal baseline of 35 days (d). Interferogram
after DEM error correction. (a–d) Zoom location shown on Fig. 1. (e), (f)
Comparison of the unwrapped phase before (e) and after (f) DEM correction
(Zoom location shown on Fig. 1). The cuts are overlaid in white on the
unwrapped interferograms and on the gray areas that have not been reached
by the unwrapping algorithm.

with a large perpendicular baseline (around 300 m). Orographic
structures are easily recognized in the DEM error map. The
correction is set to zero in areas with very low coherence
and is highest in mountainous areas, especially along crests
and gullies slopes. The temporal coherence map highlights the
contours of lakes, marshes, and rivers. Thin linear structures
with either high or low coherence are efficiently extracted.
The comparison between the original and corrected differential
interferogram [Fig. 3(c) and (d)] shows that most of the residual
topographic features are successfully corrected except in areas
of low temporal coherence where the retrieved correction is not
reliable.

C. Local Phase Variability

In order to quantify the efficiency of the DEM error cor-
rection to reduce the local phase variability, we systematically
analyze the phase standard deviation, σφ, in small square sub-
windows of all interferograms before and after correction. The
subwindows must be large enough to include the topographic
structures that have been corrected, but must be smaller than the
scale of unmodeled processes, such as turbulent atmospheric
patterns, deformation, or orbital errors. Here, we compute in
20 × 20 subwindows the ratio of the local phase standard
deviation before and after correction, together with the average
value of the temporal coherence. An average of these ratios
over the whole interferogram is then plotted as a function of
increasing average temporal coherence [blue dots in Fig. 4(a)].
Not surprisingly, the reduction of the local phase variabil-
ity increases with the temporal coherence. Improvement of

Fig. 4. Effect of DEM correction on phase scatter and on the number of
residues. (a) The reduction of local phase scatter (blue) and of the number of
residues (red) before and after DEM error correction is displayed as a function
of the temporal coherence averaged in subwindows, for the interferogram
shown on Fig. 3. The histogram of temporal coherence averaged in 20 × 20
windows is shown in black. (b) Average phase scatter reduction (in blue) and
average ratio of the number of residues (in red) as a function of perpendicular
baseline. Each circle represents an interferogram, and its size is inversely
proportional to the temporal baseline. The filled circles correspond to the
example shown in panel (a).

the interferometric phase scatter is thus limited by temporal
decorrelation that destroys the phase informative content. The
average phase scatter reduction, selecting subwindows with a
coherence larger than 0.3, is also shown for each interferogram
as a function of the perpendicular baseline in Fig. 4(b). No
improvement occurs for perpendicular baselines below 50 m,
whereas for B⊥ between 50 and 500 m, the phase scatter
reduction increases with the perpendicular baseline, reaching
10–25% for the largest perpendicular baselines. Note that inter-
ferograms with B⊥ larger than 400 m are strongly affected by
geometrical decorrelation in this area of large relief.

D. Unwrapping

In order to quantify how the correction improves phase
unwrapping, we apply the same unwrapping cut-tree algorithm
[23] to all interferograms with and without the DEM error
correction. The number of residues can be used as a statistical
proxy for the unwrapped surface and probability of occurrence
of an unwrapping error. The ratio of the number of residues
after/before DEM correction is computed in small square sub-
windows and plotted as a function of the subwindow tempo-
ral coherence [red dots in Fig. 4(a)]. The residues reduction
strongly increases with coherence. This effect is explained by
the phase scatter reduction at small wavelength. We also plot in
Fig. 4(b) the average ratio of the number of residues before and
after DEM correction as a function of perpendicular baseline,
excluding areas with very low coherence (γt < 0.3). The ratio
decreases from 0.9 to 0.4 for perpendicular baseline from 0 to
150 m, and is below 0.5 for B⊥ > 300 m. The number of cuts
is thus significantly reduced in the corrected interferograms,
yielding a larger unwrapped surface and a lower probability for
unwrapping errors [see Fig. 3(e) and (f)].
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IV. CONCLUSION

In this paper, we present an algorithm to correct DEM errors
in a series of wrapped interferograms and to estimate a temporal
coherence map. It differs from previously published methods
mainly because it is designed for being easily applied to all
pixels of a radar scene without a priori pixel selection, thus
preserving the complete spatial content of corrected interfer-
ograms. It is thus meant to be included in standard “SBAS”
InSAR processing chains, where phase reliability before un-
wrapping is increased by spatial filtering and/or multi-looking
(by contrast to a pixel selection strategy).

The algorithm is tested in this paper on Envisat interfero-
grams crossing the Himalayan range. We show that the DEM
correction allows to significantly reduce the local phase vari-
ability and the number of phase residues for large baseline
interferograms. It facilitates spatial unwrapping, leading to
larger unwrapped surfaces and less unwrapping errors. As this
step still requires visual checking and manual intervention, any
improvement in the unwrapping automation should speed up
the overall processing of multi-temporal InSAR data.
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