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Abstract

Using seismic noise based monitoring techniques we find that seismic velocity

variations (dv/v) observed with the borehole array of the Taiwan Chelungpu-

fault Drilling Project (TCDP) are controlled by strong precipitation events

associated with the Madden-Julian Oscillation (MJO), a dynamic intrasea-

sonal atmospheric pattern in the tropical atmosphere. High-frequency noise

(>1 Hz) excited by steady anthropogenic activity in the vicinity of the TCDP

allows daily resolution of dv/v time series. Relatively large fluid discharge

properties control the equilibration of the ground water table and hence

seismic velocities on time scales smaller than the average precipitation recur-

rence interval. This leads to the observed synchronous 50–80 day periodicity

in dv/v and rainfall records in addition to the dominant annual component.

Further evidence for the governing role of hydraulic properties is inferred

from the similarity of observed dv/v timing, amplitude, and recovery prop-

erties with dv/v synthetics generated by a combined model of ground water

table changes and diffusive propagation of seismic energy. The lapse time

(τ) dependent increase of dv/v amplitudes is controlled by the sensitivity
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of the diffuse wave field sampled at 1100 m depth to shallower water level

fluctuations. The significant vertical offset between stations and water level

explains the direct τ dependence which is opposite to the trend previously

inferred from measurements at the surface.

Keywords: Ambient noise, Monitoring, Madden-Julian Oscillation,

Borehole Seismology, Ground Water Table

1. Introduction1

Interactions of atmospheric dynamics with solid Earth processes are many-2

fold (Tanimoto and Artru-Lambin, 2007). It includes triggering of slow earth-3

quakes through low pressure systems (Liu et al., 2009), velocity changes in4

the upper crust by pressure fluctuations (Niu et al., 2008), and the exci-5

tation of seismic waves by nonlinear coupling of atmospheric disturbances6

with solid Earth through the ocean water column (Longuet-Higgins, 1950;7

Hasselmann, 1963). Reversely, ground motion excited by volcanic eruptions8

(Fee and Matoza, 2013) or earthquakes (Mutschlecner and Whitaker, 2005;9

Le Pichon et al., 2005) can propagate as pressure disturbances in the atmo-10

sphere. Through thermoelastic effects (Berger, 1975), temperature changes11

can cause seasonal variations in subsurface deformation (Prawirodirdjo et al.,12

2006) and in high-frequency noise excitation (Hillers and Ben-Zion, 2011).13

Precipitation triggers shallow seismicity and slope instabilities (Husen et al.,14

2007; Helmstetter and Garambois, 2010), and modulates regional seismic ac-15

tivity (Bettinelli et al., 2008) and seismic wave speeds (Meier et al., 2010)16

through variable water content in sedimentary basins.17

In general these variations are characterized by an annual periodicity gov-18
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erned by the orbit of Earth and associated hemispheric weather pattern.19

Other repeat intervals of crustal processes in response to external forcing—20

i.e., neglecting phenomena governed by plate tectonics—are associated with21

tidal deformation, which are known to modulate volcanic and tectonic tremor22

activity (Custodio et al., 2003; Rubinstein et al., 2008), seismicity (Stroup23

et al., 2007), and subsurface wave speeds (Reasenberg and Aki, 1974).24

In contrast to wave speed measurements based on intermittent explosive25

sources, methods based on the ubiquitous ambient seismic wave field consti-26

tute a powerful tool for continuous monitoring of seismic velocities (Campillo27

et al., 2011, and references therein). Noise based techniques are now routinely28

used to quantify fluctuations of crustal properties associated with volcanic29

activity (Brenguier et al., 2008b; Obermann et al., 2013a), earthquake de-30

formation (Brenguier et al., 2008a; Rivet et al., 2011), water content and31

hydraulics (Sens-Schönfelder and Wegler, 2006; Meier et al., 2010; Froment32

et al., 2013), and tidal deformation (Hillers et al., 2013b). The temporal33

resolution of these methods is governed by the convergence rate of the noise34

correlation function, and is therefore frequency dependent (e.g., Larose et al.,35

2007); in the microseism frequency range resolution is usually on the order36

of days, but it can be improved using advanced data processing techniques37

(Baig et al., 2009; Hadziioannou et al., 2011).38

Here we study seismic velocity changes (dv/v) using short period (>1 Hz)39

data recorded by the borehole array of the Taiwan Chelungpu-fault Drilling40

Project (TCDP, Fig. 1), which pierces the east dipping rupture plane of the41

1999 M7.6 Chi-Chi thrust earthquake. The construction of daily high-SNR42

(signal-to-noise ratio) noise correlation functions benefits from steady noise43
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excitation through anthropogenic activity in the densely populated lowlands44

in western Taiwan (Hillers et al., 2012).45

Knowledge of the system response to various loading mechanisms is essential46

for the assessment of potential earthquake triggering mechanisms in this ac-47

tive tectonic collision zone. Beyond the well documented seasonal periodicity48

we find that velocity variations are characterized by a significant intrasea-49

sonal 50–80 day spectral component. Analysis of meteorological data reveals50

that this pattern is controlled by strong precipitation events associated with51

the Madden-Julian Oscillation (MJO), a large-scale atmospheric circulation52

pattern in the tropic parts of the Indian and Pacific oceans (Zhang, 2005).53

We use the resulting dv/v time series to invert for hydraulic properties of54

the crust using a model of ground water level changes based on Darcy’s law55

coupled to a diffusion model of scattered wave propagation (Sens-Schönfelder56

and Wegler, 2006, hereafter referred to as SSW06). Inversion results indicate57

that a relatively high drainage rate in the low-Q medium (Wang et al., 2010)58

hosting the Chi-Chi earthquake governs fast equilibration of the ground wa-59

ter table after strong precipitation events, which leads to the observed syn-60

chronous periodicity of dv/v and rainfall time series. We discuss that the61

experimental configuration, i.e., the vertical offset of the deep array from62

shallow water level variations, allows conclusions on the lapse time (τ) de-63

pendent sensitivity of the scattered wave field. The agreement between the64

observed τ dependence of dv/v amplitudes and the predicted τ dependence65

of depth-integrated sensitivity kernels verifies the accuracy of the diffusion66

model; the compatibility further indicates the possibility to constrain esti-67

mates of the scattering mean free path.68
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2. Velocity Variations69

2.1. Data Processing70

We process 3-component data from 6 TCDP short period (4.5 Hz) sensors71

installed between 946 m and 1274 m depth. For a detailed description of the72

recording environment and ambient wave field properties we refer the reader73

to Hillers et al. (2012). We compute daily correlation functions for all 974

components of the correlation tensor in two frequency (f) bands above 1 Hz75

for 2008 and 2009 using processing by Poli et al. (2012) to reduce the effects76

of transients. Different dv/v time series are created by constructing ‘daily’77

correlations consisting of sub-stacks of d days (±(d − 1)/2 days), where the78

choice of d affects SNR and temporal resolution. The best SNR is found for79

1–4 Hz correlations (Hillers et al., 2012), which indicates sufficient sensitivity80

of the short period sensors below 4 Hz.81

Noise based monitoring targets the lapse time (τ) dependent accumulation82

of arrival time changes (dτ) of correlation coda phases associated with ho-83

mogeneous relative velocity variations (dv/v) in a scattering medium, i.e.,84

dv/v = −dτ/τ . Hillers et al. (2012) discussed that the obtained correlations85

are poor estimates of the inter-sensor Green’s functions (GF). This is a re-86

sult of the proximity of the TCDP to the noise excitation region, and the87

associated directionality of the incident wave field. Evidence for coda phase88

sensitivity to medium properties was demonstrated by re-correlation of the89

coda wave field, which leads to improved GF estimates.90

Noise source dependent fluctuations in wave field properties can lead to spu-91

rious dv/v signals that are not associated with targeted changes in the prop-92

agation medium (Zhan et al., 2013). We therefore analyzed variations of93
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the spectral content, SNR, incidence angle, and rectilinearity (Hillers et al.,94

2012) for the two-year observation period. The stability of these auxiliary95

time series, and the sub-stack coherency with the reference stack (cc; Fig.96

2a) discussed below, do not indicate a bias associated with excitation varia-97

tions. We conclude that the correlation functions, though not fully converged98

GF, are sufficiently stable to facilitate wave speed monitoring (Hadziioannou99

et al., 2009).100

For each of the 9 components, all correlations are stacked to create reference101

functions. We apply a time- and a frequency-domain technique (‘stretching’102

and ‘doublet’ method) for daily estimates of dv/v. This allows a further103

assessment of the robustness of the results, because the methods perform104

different in the presence of pseudo-noise or wave field fluctuations (Hadzi-105

ioannou et al., 2009, 2011). At each datum, the dv/v estimates obtained with106

the stretching method (Lobkis and Weaver, 2003) are averaged over the 15107

inter-station times 9 inter-component results. Errors are estimated using the108

approach by Weaver et al. (2011) and scaled by the number of measurements109

(Hadziioannou et al., 2011). Weights associated with the two phase- and110

time-domain regressions constituting the doublet method (Poupinet et al.,111

1984; Clarke et al., 2011) allow a simultaneous inversion of all data, leading112

to results characterized by reduced daily fluctuations (estimated, e.g., during113

01/2009) and error estimates. We perform the analysis for three sub-stack114

choices (d = 1, 3, 7 days) and three coda windows of 4 s duration defined by115

their average lapse time τ = 4, 8, 12 s. We focus on the 1–4 Hz range because116

the noise intensity is proportional to 1/f (Hillers et al., 2012); at 2–8 Hz,117

dv/v amplitudes and the similarity of daily correlations to the reference stack118
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are significantly reduced.119

2.2. Properties of Velocity Change Time Series120

Overall, dv/v time series obtained with the two techniques are remark-121

ably similar, yielding high confidence in the significance of the variations.122

The records are characterized by sudden velocity reductions during summer123

months in both years with peak amplitudes between 0.1–0.3%, which are124

followed by a recovery over days to tens of days to the background level. The125

lapse time τ controls peak dv/v estimates during velocity reduction episodes126

(Fig. 2b) and the overall coherency level. The τ dependence of the dv/v am-127

plitude is robust considering the cc dependent (stretching) error estimates128

between 1.3× 10−4 and 1.2× 10−4 for τ = 4, 12 s.129

We analyze the spectral content of the dv/v time series in Figure 2 using two130

approaches. First, we apply a Lomb-Scargle (LS) algorithm to the incomplete131

time series (5% gaps; mostly associated with acquisition problems coincident132

with taifuns). Second, we interpolate the gaps and perform a standard DFT133

analysis. The results mutually support each other. Amplitude spectra are134

dominated by an annual signal (Fig. 3a); peaks with decreasing amplitude135

towards shorter periods are associated with overtones. However, peaks be-136

tween 50–80 days (Fig. 3b) are not compatible with the decaying overtone137

pattern. The significance of this ridge is verified by estimating the spectra138

of a ‘high-pass’ time series, which is the residual between the original and a139

tens-of-day smoothed ‘low-pass’ time series.140

A weak 7-day spectral component is the footprint of anthropogenic excitation141

(Hillers et al., 2012). Its τ dependent decrease indicates that randomization142

through scattering causes a progressive decay of characteristics inherited from143
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the source process (Paul et al., 2005).144

2.3. Meteorological Data145

Spectra of meteorological records (pressure P, temperature T, rainfall R;146

neglect of wind data) recorded 10 km west of the TCDP site (Fig. 1) are147

dominated by an annual periodicity (Fig. 3c). The rainfall spectrogram is148

characterized by a second significant peak of scaled amplitude 0.8 around149

50–80 days (Fig. 3d), which resembles the dv/v pattern in Figure 3b. In150

comparison, corresponding P and T spectral amplitudes of ∼1/10 of the an-151

nual signal are significantly smaller.152

The analysis shows that atmospheric dynamics in Taiwan are controlled153

by the Madden-Julian Oscillation (MJO), “the dominant component of the154

intraseasonal (30–90 days) variability in the tropical atmosphere” (Zhang,155

2005). which is associated with a pattern of eastward propagating low pres-156

sure systems originating in the warm Indian and Pacific oceans. The MJO157

thus mostly affects precipitation rates, and the small intraseasonal P and T158

components correspond to pressure and temperature drops associated with159

rainfall events. Cross-correlation of hourly sampled high-pass P-R and T-R160

time series shows that pressure decreases ∼20–30 hours before rainfall, and161

temperature falls almost simultaneously with the onset of precipitation.162

The coincidence of seismic velocity reductions with strong MJO driven pre-163

cipitation events (Fig. 4), and the similarity of dv/v and R spectrograms164

imply that seismic wave speed changes are controlled by fluctuations of the165

water content in the upper crust. Similarly important for the emergence of166

the MJO spectral footprint in the dv/v data is the observed recovery on time167

scales smaller than the average large-precipitation periodicity.168
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3. Inversion for Hydraulic Parameters169

3.1. The Model170

We use the model of SSW06 (Sens-Schönfelder and Wegler, 2006) to val-171

idate the hypothesis of precipitation driven velocity changes and to estimate172

average hydraulic properties from the dv/v measurements. We briefly repro-173

duce the four model building blocks which couple seismic velocity variations174

to precipitation rates and drainage properties; see Sens-Schönfelder and We-175

gler (2011) for a more detailed description.176

(1) Darcy’s law controls the exponential drainage of the water table through177

an aquifer after a rain event. Convolution of the precipitation rate p with this178

exponential decrease yields the ground water level GWL at time ti measured179

in days,180

GWL(ti) = GWL0 −

i∑
n=0

φ−1p(tn) exp [−(ti − tn)a] , (1)

which depends on some unknown asymptotic level GWL0, the porosity φ181

controlling the amplitude of the GWL variation in response to p(t), and the182

decay parameter a; Helmstetter and Garambois (2010) use a similar formu-183

lation for the modeling of precipitation induced landslide triggering.184

(2) The relative velocity perturbation V (ti, z) at depth z depends on the185

predicted GWL(ti), a reference water level GWLref , and δv, the relative ve-186

locity difference between drained and undrained states, i.e., V (ti, z) = δv for187

GWL(ti) < z < GWLref , V (ti, z) = −δv for GWLref < z < GWL(ti), and188

V (ti, z) = 0 elsewhere. The reference level is chosen to be the mean level189

over the period for the reference correlation stack for the dv/v analysis, i.e.,190

the average over the two year analysis period.191
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(3) Energy propagation of the scattered coda wave field is modeled as a diffu-192

sion process (Pacheco and Snieder, 2005). Considering network dimensions193

and wavelength, we use a 3-D sensitivity kernel under the assumption of194

coincident source and receiver, K3D(x, τ) = (2πDr)−1 exp[−r2/(Dτ)]. The195

distance between source/receiver and a point in space x is r, and D is the196

diffusion constant of seismic energy. Centered on the observation depth z0197

K3D(x, τ) is integrated across the horizontal domain yielding K(z, τ). K is198

normalized by τ to ensure
∫
Kdz = 1.199

(4) The three components are combined to compute the delay time dτ at200

lapse time τ by integrating the velocity perturbation V weighted by the201

nonlinear kernel K:202

dτi(τ) = dτ(ti, τ) =
∫

∞

z=0

K(z, τ)

V (ti, z)
dz. (2)

The model allows an assessment of timing, amplitude, and recovery proper-203

ties of the observed relative velocity variations by estimating GWL0, φ, a,204

and δv. This is done by minimizing the residual P between the synthetic205

(dvi/v)s = −dτi/τ (Eq. 2) and the observed (dvi/v)o time series, P =
∑

i ρi,206

with ρi = [(dvi/v)s − (dvi/v)o]
2. Note the trade-off between φ and δv, i.e.207

δs/φ with δs = δv−1. Small slowness perturbations associated with large208

GWL amplitudes (small φ) can not be resolved from large δs changes meet-209

ing small GWL fluctuations (large φ). Following SSW06 we use a genetic210

algorithm (GA) for the minimization of P . We analyze distributions of 150211

independent estimates, because the rough fitness landscape is characterized212

by many local minima.213

We consider two types of inversions. Separate lapse time dependent inver-214

sions are motivated by the observation that some drainage episodes show a215
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τ dependence of the decay behavior (e.g., 08/2008, 08/2009, Fig. 2b). In216

contrast, a joint inversion minimizes the residuals simultaneously for joint217

constraints of GWL0, a, and δs/φ.218

3.2. Inversion Results219

3.2.1. Timing220

The similarity between (dvi/v)o and (dvi/v)s with respect to the timing221

of the dv/v drops (Fig. 4) supports the hypothesis of precipitation driven222

velocity variations. Performing separate inversions, we observe a τ dependent223

increase of the residual P , which is associated with the lapse time dependent224

increase in remnant coda fluctuations. This also causes larger P associated225

with d = 1 day dv/v time series for all τ compared to d = 3 and 7 days.226

Visual inspection of ρi time series reveals a d dependence of the misfit at227

large amplitude velocity drops. It implies that the disadvantage of small-d228

time series associated with small SNR is compensated by the better temporal229

resolution in response to rainfall, and indicates that the system response delay230

does not exceed one day. Yet better resolution can be obtained if fluctuations231

associated with diurnal excitation changes (Hillers et al., 2012) are mitigated232

(Baig et al., 2009; Hadziioannou et al., 2011). In the remainder of this work233

we use d = 3 days to balance the trade-off between temporal resolution and234

SNR.235

3.2.2. Amplitude and Decay236

The consistency between precipitation driven synthetic and observed dv/v237

levels indicates the applicability of the model for estimates of average hy-238

draulic properties controlling GWL amplitude and decay. Amplitude refers239
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to the reduced dv/v value in response to rainfall (Fig. 4), and decay rates240

to the recovery speed controlled by drainage properties of the model aquifer.241

Amplitude estimates are sensitive to properties of K(z, τ) and therefore de-242

pend critically on the diffusion constant D = lv/3, which is proportional to243

wave velocity v and the scattering or elastic mean free path l. The mean free244

path describes the average distance between two scattering events and is con-245

sequently controlled by the medium heterogeneity (Aki and Richards, 1980).246

A direct estimate of l from spectral properties of v(z) (Hillers et al., 2013a)247

is inhibited by the limited extension of the velocity log (Fig. 5a). However,248

the lower limit of D is constrained considering that l must be larger than the249

wavelength λ = v/f . We assume the 9-component average to be controlled250

by S-wave sensitivities (v = vS), and that frequencies at the high-f edge of251

the 1–4 Hz range dominate the dv/v estimates (Hillers et al., 2012). With252

f = 4 Hz, l/λ > 1 for D > 2−3×105 m2s−1 (Fig. 5b), where we assume that253

l/λ tends to increase towards shallower depths. With an average vS value254

this translates into l > λ ≈ 450 m.255

Using D = 3 × 105 m2s−1 in the separate inversions (Fig. 6), the a distri-256

butions confirm the visually inferred intermittent τ dependence in the dv/v257

time series. Lapse time independent GWL0 distributions cluster around the258

peak-K level at z0, so that the observed amplitudes are reproduced by the259

τ dependence of δs/φ. This, however, implies different water levels fluctua-260

tions, which is not compatible with a single-aquifer model.261

The depth range of the observed direct τ dependence is limited by the depth262

z× at which the K(z, τ)-functions intersect (Figs. 5c–e). This behavior is263

utilized in a joint inversion (Fig. 7), where the three τ dependent measure-264
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ments constrain the asymptotic water level to 0 < z < z× and resolve the265

GWL0-δs/φ trade-off. Consequently, the average depth of a resulting GWL0266

distribution is compatible with the associated D dependent z× estimate.267

Larger diffusion constants flatten the kernels and cause a reduction of (peak)268

K values. The GWL0 sensitivity of δs/φ thus follows from the constraint269

of a constant dτ amplitude (Eq. 2). The role of φ as a tuning parameter270

becomes evident if we assume that δs is independent of depth. It explains271

why associated φ estimates are smaller compared to porosity measurements272

from TCDP rock samples (Wang et al., 2009).273

It should be noted that the TCDP dv/v variations are an order of magnitude274

smaller compared to the ∼2% reported by SSW06. We attribute this to the275

shorter distance between stations at the surface and the inferred GWL level276

above 40 m at Mt. Merapi. Water table changes occur near the K-peak, and277

this effect is amplified by the smaller diffusion constant D = 5 × 104 m2s−1
278

(note that K values in Fig. 7 in Sens-Schönfelder and Wegler (2011) are279

erroneous).280

Properties governing the drainage rate (0.02–0.03 d−1) are independent of281

these amplitude controlling factors. The 2–3 times larger estimate compared282

to the experiment at Mt. Merapi (0.008 d−1) indicates that the crust hosting283

the Chi-Chi earthquake is characterized by a more efficient fluid percolation284

network.285

4. Discussion and Conclusions286

Our high-frequency noise based monitoring analysis shows that seismic287

velocity variations (dv/v) measured with a borehole array of the Taiwan288
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Chelungpu-fault Drilling Project (TCDP) are characterized by a significant289

intraseasonal periodicity in addition to the annual spectral component fre-290

quently observed in dv/v studies (Meier et al., 2010; Froment et al., 2013).291

We find that the 50–80 day period matches properties of the precipitation292

pattern in Taiwan which is driven by the dynamics of the Madden-Julian293

Oscillation (MJO). Further evidence for the governing role of hydraulic prop-294

erties is inferred from the similarity of averaged dv/v timing, amplitude, and295

recovery properties with dv/v synthetics. The adopted model synthesizes296

dv/v changes based on ground water level (GWL) fluctuations controlled by297

precipitation data and Darcy’s law coupled to the sensitivity K of the scat-298

tered seismic wave field (Sens-Schönfelder and Wegler, 2006, abr. “SSW06”).299

The plausibility of this model is demonstrated by the remarkable consis-300

tency between multiple model components and observations in response to301

K-controlling variations of the diffusion constant D. Estimates of hydraulic302

parameters that govern the velocity response function to precipitation indi-303

cate a relatively large fluid mobility compared to estimates from a usually304

highly fractured volcanic environment (SSW06). High drainage properties305

facilitate the GWL equilibration on time scales shorter than the average306

precipitation interval, and thus constitute a necessary condition for the dv/v307

pattern to follow the MJO rhythm. Efficient drainage properties are com-308

patible with observations of low Q values (Wang et al., 2010), which are309

likely associated with widespread damage induced by the 1999 M7.6 Chi-Chi310

earthquake.311

Residual time series ρi indicate the difficulty to match amplitude and recov-312

ery properties associated with individual precipitation events using average313
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estimates of the model parameters (Fig. 4a). The intermittently observed314

lapse time dependence of a implies spatially variable hydraulic conditions315

and is thus incompatible with the assumption of a laterally homogeneous 1-D316

aquifer. Resolution of such second-order inconsistencies requires deciphering317

the complex hydraulic situation associated with subsurface fluid percolation318

properties and the spatio-temporal variation of precipitation. While the uti-319

lized rainfall time series p(t) is characterized by high temporal resolution,320

it constitutes only a proxy of the actual rainfall pattern over the area that321

controls dv/v estimates (Bell, 1987). Figure 1 illustrates estimates of precip-322

itation distributions observed from space. The large variability is indicated323

by the 60% contours of cumulative rainfall during days defined by the 10324

largest daily amounts of precipitation recorded at the meteorologic station.325

The contours indicate that maximum precipitation occurs mostly in areas326

that do not include the rain gauge. The crustal structure in the tectonic327

collision zone is characterized by a dipping geology. Together with strong Q328

discontinuities across the Chelungpu fault (Wang et al., 2012), the implied329

variable drainage properties further contribute to the difficulties in repro-330

ducing the observed dv/v time series using average model parameters. It331

also challenges the assumption of isotropic propagation of the scattered wave332

field, which underpins the construction of K.333

The range of 0.1–0.3% velocity reduction in response to significant precip-334

itation is comparable to or somewhat larger than peak values reported for335

dv/v in response to rainfall (0.1%, Meier et al., 2010) and deformation due to336

earthquakes (0.5%,<0.1%, 0.2%, Wegler and Sens-Schönfelder, 2007; Bren-337

guier et al., 2008a; Froment et al., 2013), volcanic activity (<0.1%, Brenguier338
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et al., 2008b), and slow slip events (0.2%, Rivet et al., 2011). However, our339

estimates are an order of magnitude smaller than the 2% variations at Mt.340

Merapi (SSW06). We attribute this to different K sensitivities associated341

with variable diffusion constants and different distances between the obser-342

vation depth z0 and the level of GWL changes. In addition to the direct343

poroelastic effect where the presence of water slows seismic wave propaga-344

tion (Grêt et al., 2006), a loading effect can alter wave speeds. Similar to345

atmospheric pressure changes (Silver et al., 2007; Niu et al., 2008), water346

table fluctuations induce variable loads on the rock matrix below GWL—or347

at least below some impermeable layer such as the ∼300 m thick dipping348

formation that hosts the Chelungpu fault. However, this direct effect causes349

a dv/v fluctuation of opposite sign in the far field of an observation borehole.350

It may therefore contribute to the observed dv/v values by counterbalancing351

the poroelastic effect, but it does not dominate the wave speed variations.352

We do not find evidence that atmospheric pressure or temperature changes353

bias the discussed first order properties of the dv/v time series associated354

with timing, amplitude, and decay properties, either through surface loading355

effects or through perturbations of the conditions in the borehole.356

The precipitation driven dv/v inverse amplitude dependence (smaller nega-357

tive values) on lapse time reported by SSW06 is opposite to our observation358

showing a direct τ dependence (larger negative values; Fig. 2b). The effect359

is controlled by the relative position of z0 and the water table change with360

respect to the intersection level z× of the kernels K(z, τ) (Figs. 5c–e). In361

addition to constraining the equilibrium level GWL0, this behavior allows362

estimates of the scattering mean free path l = 3D/vS. The lower limit is363
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imposed by the wavelength, l > λ ≈ 450 m, and the direct τ dependence of364

the dv/v amplitudes constrains together with the inverse τ dependence for365

all z < z0 for D > 5 × 105 m2s−1 (Fig. 5e) the upper limit to l < 850 m.366

Estimates of l are likely to decrease towards shallower depth considering the367

velocity gradient above 600 m and the mountain topography. However, depth368

variable scattering properties are not considered in the 3-D isotropic wave369

propagation model underlying the analytic expression of K(x, τ).370

SSW06 conclude that the coda wave field at Mt. Merapi consists of body371

waves instead of surface waves. For primary sources located at the surface,372

the dominance of body waves implies a short mean free time (Obermann373

et al., 2013b), which is compatible with the small diffusion constant. TCDP374

noise at 1100 m depth is similarly dominated by body waves (Hillers et al.,375

2012), indicating that our analysis is not biased by the neglected conversions376

between surface and body waves.377

Application of the 1-D joint inversion to situations in which the data quality378

is inferior, or where the signal is weaker, can benefit from a range of potential379

improvements. These include but are not limited to the denoising of noise380

correlation coda (Stehly et al., 2008; Baig et al., 2009); the construction of381

spatially averaged rainfall time series; the construction of kernels consider-382

ing wave conversions; the application of kernels based on radiative transfer383

theory (Planes et al., 2014, and references therein), which have different sen-384

sitivities at early lapse times and short distances compared to the diffusion385

approximation (Obermann et al., 2013b); and the application of weighted386

misfit functions ρi. With these optimizations, the approach has the potential387

to constrain water level changes associated with anthropogenic activity such388
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as impoundment, ground water depletion, or the injection and extraction of389

fluids in the context of reservoir engineering.390

Precipitation can trigger seismicity (Husen et al., 2007; Bettinelli et al., 2008;391

Helmstetter and Garambois, 2010; Hainzl et al., 2013). From an earthquake392

source physics point of view it is interesting to isolate the mechanism that393

controls variations in the nucleation rate, e.g., fault lubrication or pressuriza-394

tion, or changes in the loading rate caused by underground accumulation of395

water. We analyzed a regional earthquake catalog for correlations between396

daily rainfall and seismic event rates (Helmstetter and Garambois, 2010) us-397

ing a systematic grid search over variable spatial and magnitude bins. The398

method detects a few coincidences, but the lack of systematic triggering in399

the associated space and magnitude intervals does not indicate a relevant400

physical mechanism.401

We conclude by iterating the beneficial role steady anthropogenic activity402

plays in the construction of daily high-frequency correlation functions. Con-403

sidering the additional information contained in decorrelation time series404

(Larose et al., 2010; Obermann et al., 2013a) we emphasize the relative sta-405

bility of coherency measurements compared to dv/v fluctuations (Fig. 2a).406

It implies that the scattering properties do not change. This can be differ-407

ent for extended network geometries that contain areas impacted by strong408

rainfall events. In such a situation, analyses of dv/v and decorrelation data409

can target the interaction of the ambient wave field with evolving hydraulic410

situations.411
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Figure 1: The map of the study area indicates locations of the TCDP site (black triangle)

and the meteorologic station (red triangle). Anthropogenic seismic noise is excited in

the green indicated lowland southwest of the TCDP (Hillers et al., 2012). The black

line beneath the TCDP is the surface trace of the east dipping Chelungpu fault. Blue

lines indicate precipitation distributions observed from space. Each line represents the

60% contour of cumulative rainfall during the 10 days in 2008 and 2009 defined by peak

precipitation events.
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Figure 2: (a) Coherency estimates associated with (b) relative velocity changes (dv/v)

measured with the stretching technique using three different coda lapse time windows.

The frequency range is 1–4 Hz, and d = 3.
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Figure 3: (a) Spectral amplitudes of lapse time (τ) dependent dv/v observations. Col-

ors as in Figure 2. Amplitudes are scaled to the annual component. (b) Zoom on the

MJO pattern. (c) Spectral amplitudes of rainfall, temperature, and atmospheric pressure

records. Amplitudes are scaled to the annual component. (d) Zoom on the MJO pattern.
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Figure 4: (a) Blue: Observed dv/v time series (τ = 8 s). Black: Synthetic dv/v estimates

based on the model described in Section 3. The consistency indicates that the model can

explain first order characteristics of the measurements associated with timing, amplitude,

and drainage. Resolution of the dv/v synthetics (vertical discretization of the black curve)

is controlled by the vertical resolution dz of the kernel K. (b) The model ground water

level (Eq. 1) is driven by daily precipitation records collected 8 km southwest of the TCDP

site (Fig. 1).
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Figure 5: (a) Section of the shear wave velocity log (gray; data are available between 500 m

and 1850 m; Wu et al., 2007) and its 50 m average (black). (b) The ratio of scattering mean

free path (l = 3D/vS) and wavelength (λ = vS/f) using an average vS profile, f = 4 Hz,

and a range of diffusion constants D. It should be noted that D cannot be defined on

scales indicated by the vertical l/λ resolution. However, the distributions illustrate the

range of plausible D values for which l > λ. (c)–(e): D dependent distributions of the

kernel K(z, τ) associated with the observation depth z0 = 1100 m. The τ dependence

of velocity change amplitudes is controlled by the water level relative to the intersection

depth z×.
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Figure 6: Distributions of the hydraulic parameters (Eq. 1) obtained from 150 separate

inversions using D = 3 × 105 m2s−1. Colors indicate lapse time. (a) Equilibrium ground

water table GWL0 (bin width 50 m). The search range is limited to z < z0. (b) Slowness

sensitivity δs/φ (bin width 5). (c) Decay rate a (bin width 0.002 1/day). The residual R

is uniformly distributed across the parameter space.
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Figure 7: Distributions of the hydraulic parameters (Eq. 1) associated with 150 joint

inversions. We show the best 50% because the residual R is sensitive to GLW0. Colors

indicate the diffusion constant which controls the depth sensitivity of the kernel K. We

used a range ofD values to illustrate the sensitivity of the solutions to the crossing depth z×

(Figs. 5c–e), although D < 2× 105 m2s−1 might be unphysical (Fig. 5b). (a) Equilibrium

ground water table GWL0 (bin width 50 m). (b) Dependence of δs/φ on GWL0. (c)

Slowness sensitivity δs/φ (bin width 5). (d) Decay rate a (bin width 0.002 1/day). There

is no dependence of a on GWL0.
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