222 Don V. HELMBERGER, LiaN-SHE ZHa0 and Ebp GARNERO

Kip, }; a7nd G. Mareer (1975): Computations of SV waves in realistic Earth models, ]. Geophys., 41,
149-172.

Lay, T. and D.V. HeimBeRGER (1983): The shear wave velocity gradient at the base of the mantle, J.
Geophys. Res., 88, 8160-8170.

Masters, T.G., H. Borron and P.M. SHEarer (1992): Large-scale 3 dimensional structure of the mantle
(abstract), EOS, Trans. AGU., 73, 201.

MitcheLL, B.J. and D.V. HeLmsercer (1973): Shear velocities at the base of the mantle from observa-
tions of S and ScS, |. Geophys. Res., 78, 6009-6020.

Ricnarps, P.G., D.C. Wirre and G. Exstrom (1991): Generalized ray theory for seismic waves in struc-
tures with planar nonparalleled interfaces, Bull. Seism. Soc. Am., 81, 1309-1331.

Suver, P. and C.R Biva (1993): An anomaly in the amplitude ratio of SKKS/SKS in the range
100-108° from portable teleseismic data, Geophys. Res. Lett. (in press).

Sk, S.A. and T.H. Jorpan (1980): Multiple ScS travel times in the Western Pacific: Implications for
mantle heterogeneity, |. Geophys. Res., 85, 853-861.

Steap, RJ. and D.V. HeLmBERGER (1988): Numerical-analytical interfacing in two-dimensions with ap-
plications to modeling NTS seismograms, PAGEOPH, 128, 157-193.

Su, W.J. and A.M. Dziewonsk1 (1994): Degree 12 model of shear velocity heterogeneity in the mantle,
J. Geopbys. Res., 99, 6945-6980.
Tanimoto, T. (1990): Long-wavelength S-wave velocity structure throughout the mantle, Geophys. J.
Int., 100, 327-336. ’
Vipalk, J., D.V. HetmBERGER and R.W. Cravron (1985): Finite-difference seismograms for SH-waves.
Bull. Seism. Soc. Am., 75, 1765-1782.

Weser, M. and J.P. Davis (1990): Evidence of a laterally variable lower mantle structure from P- and
S-waves, Geophys. |. Int., 102, 231-255.

WicGins, R.A. (1976): Body wave amplitude calculations, 11, Geophys. . R. Astron. Soc., 46, 1-10.

WIG(};;NSA;.IZ.gnd J.A. Maprip (1974): Body wave amplitude calculations, Geophys. J. R. Astron. Soc.,

Young, CJ. and T. Lay (1987): Evidence for a shear velocity discontinuity in the lower mantle be-
neath India and the Indian Ocean, Phys. Earth Planet. Inter., 49, 37-53.

ZHaNG, J. and T. Lay (1984): Investigation of a lower mantle shear wave triplication using broadband
array, Geophys. Res. Lett., 11, 620-623.

<

SEISMIC MODELLING OF EARTH STRUCTURE
Eds. Enzo Boschi, Géran Ekstrém and Andrea Morelli

6

Seismic ray tracing

Jean ViriEux

Institut Universitaire de France, Université de Nice - Sophia Antipolss,
06560 Valbonne, France

6.1 Introduction

Our object of investigation is the Earth at different scales: global, regional and
local scales. We are interested in the propagation of seismic signals in the complex
media which is the Earth. Records have been obtained for the Moon, while pro-
jects are under investigation for Mars and Venus. In the future, we might increase
our interest for “planetary quakes” and see differences and common aspects of
these different celestial bodies. Although these notes will essentially concentrate
on methodological and technical aspects of the propagation, applications of the
ray tracing theory at different scales will be mentioned in conclusion. Other lec-
tures of this school have also illustrated many applications of high frequency the-
ory in our understanding of earthquakes and structures.

The Earth is a mechanical body whose behaviour is complex and depends, in
first approximation, on the time scale that one looks at the Earth and on the char-
acteristic length related to this time scale by an appropriate velocity. For a charac-
teristic time of a billion of years, the Earth behaves nearly as a drop of water. We
progressively go through a visco-elastic behaviour for a time of millions of years
for the crust and for a time of ten thousands of years for the mantle. For shorter
petiods between a few days and fractions of seconds, which correspond to the
seismic window, the Earth behaves as an elastic body with a noticeable attenua-
tion which must be taken into account. Except from the source area, where com-
plex rheologies might take place in a few seconds, the response of the Earth is lin-
ear, which reduces the complexity of the different approaches we might consider.
Let us emphasize that the seismic window is a very large window with more than
7 orders of magnitude in time. There are few domains in physics where such a
widespread spectrum is valid for investigating a single-object.

Our knowledge of the Earth interior since the beginning of the century has
increased greatly. From a rather imprecise and poetic picture (Figure 6.1), the ver-
tical structure has been refined from a global understanding (Figure 6.2) mainly
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Figure 6.1 An early view {about 1800) of the Earth’s interior considered as a ball of solid ma-
terial ’flssured by tubes of magma, connecting pockets of eruptive gases to volcanic vents on the
Earth’s surface after Inside the Earth by Bolt (1982).

coming from astronomical studies to a more quantified picture (Figure 6.3) using
essentially travel-time seismic data during the first half of this century. Only recent
accumulation of data (see Dziewonski, 1996, for a review) as well as deeper analy-
sis of these data has allowed an investigation of lateral variations (Figure 6.4).
Seismological data were crucial for this quantification: seismology is a very
powerful tool for our knowledge of the Earth interior, because seismic waves go
from one side to the other bringing to the surface the information they felt during
their propagation. Other quantities as magnetic, electric or gravimetric fields allow
different reconstruction of the Earth but none has the resolution of seismic waves,
which is the reason of the importance of the seismic tool in the oil search in spite
of a significant increase in cost. Electromagnetic waves are mainly diffused and
not transported, while the gravimetric field suffers from the duality between the
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distance and the importance of the anomalous density structure. This resolution
power has a counter-part with the difficulty for the seismologist to interpret rather
complex and deformed signals. This is why seismology, from my point of view, is
so interesting.

In seismograms (as one calls time records for the global and regional scale) or
traces (as one calls records for the local scale), two characteristic times appear: the
time associated with the source signal which has a content of few seconds down to
milliseconds and the time associated with the propagation which goes from hun-
dred of seconds down to few seconds (Figures 6.5 and 6.6). For an opposite view,
let us mention that recordings of the sea level do not exhibit this decoupling and
are far more complex to analyze than seismograms. One must exploit deeply this
advantage seen on seismograms: this is the reason why we should look carefully to the
ray theory which is based explicitly on this decoupling between two time scales.

Neither the relative simplicity of the ray theory nor its computer efficiency
make ray theory an often used technic in seismology, but its capacity for seismic
interpretation. Let us underline that global models of Gutenberg and Jeffreys
elaborated around 1940 (Bolt, 1982) are based on travel-time computed by ray
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Figure 6.2 Sketch of the Earth’s interior published in Berlin in 1902 by H. Kraemer. The
Eacth has three shells; a solid crust supported by an elastic intermediate layer wrapped around a
solid central core. The change from the 18th century figure reflects an improved physical under-
standing essentially from astronomical data. The model is still limited by lack of seismological
data after Inside the Earth by Bolt (1982).



226 Jean ViRiEUX

Outer Core
Lithosphere

Asthenosphere

i

Transition zones £

Inner Core

..
DiffractedP

Figure 6.3 A cross section of the Earth based on the most recent seismological evidence. The
outer shell consists of a rocky mantle that has structural discontinuities in its upper part and at
its lower boundary that are capable of reflecting or modifying earthquake’s waves. Below the
mantle an outer fluid core surrounds a solid kernel at the Earth’s center detected by reflected
waves from the inner solid core labeled PKiKP; and the waves that creep around the liquid core
are diffracted P. After Inside the Earth by Bolt (1982).

Figure 6.4 A cross section of the Earth showing a composite image synthesized from seismic
tomographic mapping down to the core. Lateral variations are displayed with a gray scale and
show the complexity of the § wave velocity inside the Earth after Su ez al. {1994).

]
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Figure 6.5 Common-shot gather with vibroseis source. Geometric spreading correction and
trace balancing have been applied. Please note the two time scales in these different traces: one
is the length of energetic reflecting pulses and the other one is the time between reflectors.

tracing. The presence of a core has also been demonstrated by Oldham in 1906
using rays, just after the beginning of modern seismology, and the inner core was
discovered by Lehmann in 1936 (Bolt, 1982) from ray tracing interpretation of
travel-time arrivals. At the global and regional scales, ray tracing is used in daily
earthquake locations, in polarizations studies and in tomographic pictures of the
Earth interior. Seismic profiles for oil research — diagram x”~#*, normal move-out,
deep move-out, reflection hyperbole (Sheriff and Geldart, 1983a,b; Yilmaz, 1987) —
exploit in an every day practical approach ray tracing results. Reflection tomogra-
phy and migration techniques are techniques often based on ray theory.
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Figure 6.6 A broadband record of a major earthquake occurring the 4 October 1994 and
recorded on new seismological instruments (TGRS network in the South of France) with a
broad flat response between 50 Hz and 100 s. One can notice that this seismogram can be inter-
preted in different phases as P taves, § waves, Love waves, Rayleigh waves.

This rather lengthy introduction shows, hopefully, that understanding the ray
theoty is worth the required intellectual effort. Arguments in this lecture will show
that seismology is an area where sophisticated tools based on ray theory have been
designed for specific applications with no direct equivalence in other fields of
physics. Acoustic wave propagation in oceans (Wunsch, 1987) have different
ranges of approximation, electromagnetic propagation in the ionosphere (Wait,
1981) assumes with good accuracy layer approximation while optical ray tracing
(Born and Wolf, 1986) is often made in homogeneous media. For ray tracing in-
side the Earth, we are on our own.

6.2 Wave propagation

In order to insert ray theory into the global frame of wave propagation, we
shall introduce shortly wave propagation equations. Let us consider an heteroge-
neous elastic linear medium and a displacement u at a point M of cartesian coordi-
nates {(x, 9, z). One can define two tensors of order 2 which can be written as a
matrix at M: the stress tensor ¢ and the strain tensor €. These infinitesimal tensors
are local. The strain tensor is expressed with the help of the displacement vector
of the point M. In a cartesian coordinate system, the expression

€=

N =

(uj j+u; ) (6.1)
defines this relation. The comma in the subscripts indicates a partial derivative
with respect to the associated following coordinate. The stress tensor which repre-

sents internal forces used in the elastodynamic equation

O-I'j,/'+fi = Pty gy, (6.2)
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with body forces £ acting on point M. The stress tensor is Felated to thg accelera-
tion on the point M. The quantity p is the volumetric density. An addxt%onal r§Ia~
tion is needed in order to connect the stress and the deformanor}. Th1s‘relanon
defines the rheological behaviour of the material and is often the simple linear re-
lation known as the Hooke law:

Oy = Ciht Epl (6.3)

where ¢y are elastic coefficients. Because of symmetrical relations, these 81 co;fﬁ-
cients reduce to 21 independent ones. We find the linear elastodynamic equations
under a general form for an anisotropic medium:

{eyertie, /]sﬂ’ff =pu; g (6.4)

where we shall admit that functions ¢ are differentiable and contin\{ous., as well

as its first derivative for our ray tracing presentation. The second derivative must

exist and be continuous by step. We shall assume the same thin.g for the vglumet-

ric density. We shall see that these hypothesis are not too restrictive for high fre-
ency approximation.

o Fgr z?npisotropic, linearly elastic body, the elastic coefficients can be expressed

with only two independent ones as the Lamé parameters 4 and p for example:

Ciet = MGy O + 11 (8 6 + 6183 (6.5)

Other choices are possible as the Young’s modulus E or the Poisson coefficient v
or any linear expression well-adapted to the problem at hand. In an isotropic
medium, we obtain the following elastodynamic linear equation (Aki and
Richards, 1980):

A+ Wyuy g+ p g+ A+ Lo+ 45 ] +f=pu; g (6.6)

A further simplification is possible for matgrial, such as water, whgre only
compression takes place an shearing is not possible. Ther‘e is only one mdep_en-
dent parameter and the incompressibility modulus K at_M is often the most suited
one. The pressure variation P verifies the scalar equation:

kﬁ P ,(x, 1)~ (pix) P,) ‘(x, N=85(x 1 (6.7)

where § is an explosive source with a pressure variation in space and in time. For
a homogeneous volumetric density, we simply obtain the wave equation:

1
cz(x

AP(x, t) - ) P (x,)=~S (x; 1) (6.8)

where A denotes the laplacian at the point M and ¢ is the wave speed.
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Terminology is rather confusing between the wave equation, the scalar wave
equation, the vectorial wave equation, the acoustic wave equation, the elastody-
namic equation. For my point of view, the wave equation involves only the dis-
placement while the elastodynamic equation takes into account the stress as well.
To be aware of this slight ambiguity about the vocabulary is the best way to solve
the difficulty often met with these equations.

Before closing the section, presenting the solution of the wave equation in a
homogeneous medium is interesting for the ray theory later on. One can say that
such a simple example does not require a complete discussion. As far as I know,
obtaining this solution is difficult, requiring a careful analysis of opposite singular-
ities at the source position: it is far from obvious (Morse and Feshbach, 1953,
p. 834; Bleistein, 1984).

Let us first consider a laplacian of a scalar quantity g which is singular inside a
small volume of radius € around the source. The singularity is such that the point
source is impulsive, Ze. '

[[]semrdo—-[[ [s@do=-1, 69)

as the volume of integration shrinks to zero. We apply the Gauss theorem for re-
ducing the volume integral down to a surface integral and then we take into ac-
count the symmetry of the geometry to evaluate the surface integral. We find the
following equations

[ [ [aerdo= [ [eradco-as, (6.10)

j j J.Ag (") dv = 472 (%)

By comparison with eq. (6.9), we find that the term dg/dr behaves as ~1/7% and,
consequently, that the scalar quantity g behaves as 1/r when # goes to zero.

For the acoustic wave equation in a three-dimensional homogeneous medium
with an impulsive point source,

(6.11)

r=e

AP (x, = 1/c?P ,(x, 1) = =8(x) §(2) (6.12)

an heuristic argument is to consider the laplacian as the dominant term compared
to the time derivative since the laplacian involves the second derivatives of a three-
dimensional function §(x). The function &(x) includes the product of three singu-
lar functions. A more rigorous approach can be found in Morse and Fechbach
(1953, p. 838), although the final conclusion will leave us with only the laplacian
term as the singular term in the eq. (6.12). Taking also into account the result of
the eq. (6.11), the behaviour of P would be when r goes to zero

P(r, )= 6(t)/4rmr. (6.13)
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We look for a solution of the eq. (6.12) without the left hand side which verifies
this condition (6.13). Because the medium is homogeneous and the source has a
spherical symmetry, the pressure field P will only depend on the radius ». The ex-
pression of the laplacian in spherical coordinates gives:

2

122 (ﬂ%) ~122P _o (6.14)
r v ar?

which reduces to the equation

IXPr) e 9%(Pr) _

0, (6.15)
or? o¢?

the fundamental solution P of which is composed of two arbitrary functions » and
£ in the following expression:

Pr,ty=[h(t—ric)+k(t+r/0))/r. (6.16)

From the condition (6.13), only the functions §(#—/c)/r or 8(¢+r/c)/r are allowed
as well as any combination of these two quantities. The second sclution can be
eliminated because the impulse given at time zero must be felt at the position r
only later on. The elementary solution in a three-dimensional homogeneous
medium

P(r. B = == 8(t—r/o)r 6.17)
4

is the impulsive function weighted with a geometrical decrease 1/r. This perturba-
tion propagates at speed ¢ as damped concentric shells. For a general source
S (ro,2), we consider the convolution product of an impulsive function with the
source function and we find the well-known function G called delayed potential in
physics

G, )= - J' deM, (6.18)
4w Jv, R
where R is the distance between the point r and the integration point ry over the
source zone V.
For the two-dimensional case where the distribution of sources is along the y
axis, an integration of the solution (6.17) along this axis gives the following ele-
mentary solution with respect to the cylindrical distance r* from the source

1 H@-r/o

- L , (6.19)
2n \/(tz— r?/c?)

PG’ »
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with a typical tail after the wavefront, well pictured by Bleistein (1984, p. 64) for
flatland residents. H{(#) is the heaviside function which is zero for negative ¢ and
one for positive ¢. By another integration of the eq. (6.19) along the z axis, one can
deduce the elementary solution for an one-dimensional medium along the x
axis:

P(x, 1) = %H(t-— x/c). (6.20)

A given point stays at rest until it is reached by a constant pressure at time ¢~x/c.
The time derivative of the pressure may be a better quantity with an impulsive
shape. By anticipating on the definition of the Fourier transformation, we must
underline that the solution (6.17) has the following Fourier transformation with
respect to time

-L eimr/c‘ (6.21)
4mr

while the Fourier transformation of the two-dimensional solution (6.19) is the

WAVE
1D _| Heaviside step
Impulsive source ) )
Hilbert function
2D
Dirac function
3D

Green function

Station

Figure 6.7 Typical shape of the Green function in a homogeneous medium. Only the dimen-
sion of the space is changing, as well as the source excitation. For a 1D medium, the excitation
is from a plane wave. For a 2D medium, the excitation is from a line source. For 2 3D medium,
the excitation is from a point source. Please, note the slowly decaying part for the 2D Green
function.
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Bessel function singular at the origin, ze the Hankel function of order zero:
ng (wr'/c). (6.22)

Finally, the Fourier transformation of the derivative of the pressure for an one-di-
mensional medium is

1 iwx/c 2
—¢ . (6.2
4 2

These solutions (Figure 6.7) are very important for the normalization of the
asymptotic solutions of the ray theory. Their construction is far from obvious, but
these solutions which have a wide importance in physics will be quite natural and
intuitive to the reader after a while.

6.3 How to solve wave equations

Construction of solutions for the wave equation or the elastodynamic equa-
tion is a difficult task. In these notes, a schematic description will be performed in
order to situate the ray theory among them in a global frame.

One can consider three main groups of methods with possible bridges be-
tween particular approaches.

6.3.1 Space methods

The first approach deals with the space (x, f) where numerical methods solve
directly the partial differential equations of wave theory. Finite difference
(Alterman and Karal, 1968; Kelly et al., 1976; Virieux, 1984,1986 among others) or
finite element (Lysmer and Drake, 1972; Badal and Serdn, 1986) methods are
brute force methods and are very well suited to computers with specific hardware
architecture as vectorized pipelines or SIMD (single instruction and multiple data)
machines. Variations in order to estimate partial derivatives are based on interpo-
lating functions: Fourier methods, also called pseudo-spectral methods, go to the
Fourier domain in order to evaluate partial derivatives (Kosloff and Baysal, 1982;
Kosloff et al, 1984), while differential equations are still verified in the space do-
main (x, ). Let us underline that spectral methods we are going to see in para-
graph 6.3.2 verify equations and boundary conditions in the Fourier domain. Inte-
gral equations in real space (Brebbia, 1984; Bonnet, 1986; Hirose and Achenbach,
1989) are also an alternative to the resolution of differential equations. These inte-
gral equations have the advantage of reducing by one dimension the problem to
be solved at the expense of a linear system with full matrices while the finite ele-
ment method deals often with sparse matrices.
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6.3.2 Spectral methods

The second group manages a transformation towards a new space (k, w),
where the resolution of the transformed equations are expected to be simpler.
These methods, called spectral methods, have many variations as the reflectivity
method (Fuchs and Muller, 1971), discrete wave number method (Bouchon and
Aki, 1977; Bouchon et al., 1989), slowness methods (Chapman, 1978) or integral
equations (Brebbia, 1978) and a mixture of these different approaches (Campillo,
1987; Gaffet and Bouchon, 1989). Depending on the spatial variations of the
medium properties, the separation of partial derivatives will be partial or com-
plete. For partial separation, one can select the space (x, #) in the unsolved direc-
tion and use previous methods in order to obtain the solution (Alekseev and
Mikhailenko, 1980). Transformarion back to the real space are always required at
the final stage. .

The major disadvantage of the two already mentioned groups is a great diffi-
culty for the interpretation of synthetic seismograms. For the first kind of methods
in the space domain, only time snapshots of the medium allow to identify phases.
This interpretation can be a very cumbersome task, while the situation is even
worse for spectral method where one can check the validity of the solution only
when the solution comes back to real space.

6.3.3 Asymptotic methods

A third class of methods assumes an asymptotic behaviour at high frequency
as the ray theory (Cerveny et al., 1977), the WKBJ method (Chapman, 1978) for
stratified media or the Maslov method (Chapman and Drummond, 1982; Chap-
man, 1983; Thomson and Chapman, 1985) available for laterally varying media.
Techniques of beam summations such as the gaussian beam summation GBS
{(Popov, 1982; Cerveny et al., 1982; Weber, 1988) have increased the interest of
the seismological community in these asymptotic methods. The main advantage of
these methods is not only their computer efficiency but their capacity of physical
interpretation of computed results. Asymptotic approach constructs only a part of
the solution as direct P wave or reflected PS wave, making the identification and
the interpretation of this phase very simple.

6.4 Scalar high frequency approximation

We want to construct a high frequency approximation of the solution of the
wave equation and, in order to do so, we start from an assumed expression of its
Fourier transformation. At high frequency, this expression is related to the wave-
front notion which is not destroyed by the heterogeneity of the medium. The use
of the Fourier transformation is not strictly necessary as long as the wavefront
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meaning is kept (see, for example, Keilis-Borok et al., 1989, for a space-time pre-
sentation). We shall not discuss this space-time ray theory in these notes.

6.4.1 Ansatz of the ray theory

For the introduction of the high frequency approximation, we need a defini-
tion of the Fourier transformation of the function f and we assume the following
expression:

Fl@) = J‘Mf(t) el dy, (6.24)
with the inverse transformation
1 *e —iw?
f) = —~J' F(@) e do. (6.25)
27 Yo

We shall keep the same notation for the function and its transformation: the argu-
ment of the function will tell us in which space we are. Let us recall the acoustic
wave equation:

P P(x,
V2P(x, §) — 71 -——£§—Q =-S(x, 1), (6.26)
c*(x) dt°

where P is the pressure in x at time # and § is the source function. The propaga-
tion velocity c{x) may vary continuously in space. Initial conditions are requested
and a zero pressure is the simplest condition as well as a zero temporal derivative
in every point of the space at time zero. In the frequency domain, the wave equa-
tion becomes the Helmholtz equation:

a)z

c?(x)

V2P(x, @) + P(x, w) =0, (6.27)

outside the source area. The wave number is denoted by & = @/c. The solution of
this equation may be rather complex, but physical considerations allow us to as-
sume a particular form of the solution. An intuitive argument comes from the so-
lution in a three-dimensional homogeneous space

L gt (6.28)
4y

with two distinct terms: the first one defines the amplitude while the second lo-
cates the wavefront. The travel-time T is r/c in a homogeneous medium. The co-
herence of the wave front might be preserved in heterogeneous media with a
travel-time and an amplitude defined locally. Wave fronts are deformed but still
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exists. Figure 6.8 shows an example on the left where wavefronts are still visible in
spite of the heterogeneity of the medium and an example on the right where the
heterogeneity variation destroy entirely the wavefront coherence. Formally, the
ansatz of the solution will be:

Px, @) =S(0)A(x, ®)eoT™ (6.29)

where the function S(w) is defined by initial conditions (source description or
boundary excitation, for example...). The asymptotic approximation assumes that
the function A{x, @) has the following form:

ke 4
Al )= Z (_’fl_g)i (6.30)
k=0

which splits the spatial dependence and the frequential or temporal dependence.
From the practical point of view, we are interested only in the zero-order approxi-
mation, ze. A(x, ®) = Ay(x). The zero-order solution becomes

P(x, w) = S (@) Ay(x) T, (631)

In the time domain, the solution has an elegant analytical time dependence

Plx,n) = Ayx)S:-T), (6.32)

Figure 6.8 On the right panel, initial wavetronts are still present, while on the left panel the
initial wavefronts are completely disorganized.
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source

receiver

Figure 6.9 Schematic diagram with travel-time scale T and source time scale defined by </>.

which demonstrates that the source signal § propagates without distortion at high
frequency with a travel-time T. We shall assume that the source function spectra is
zero for frequencies lower than ®,,. Moreover, we consider only positive frequen-
cies. We shall see later on how to take into account negative frequencies (Chap-
man, 1978).

‘We have now the explicit demonstration of two time scales in the seismic sig-
nal: the travel-time T and the characteristic time of the source <¢> as shown in
Figure 6.9. This time of the source defines the spectral bandwidth of the emitted
energy by the relation <¢> = 2/® and the high-frequency approximation will be
valid if T >> 1. If this is not the case, we have interferences betweeen the propa-
gated source signal and the medium. Diffraction and distortion effects happen and
additional terms of the series (6.30) might partially model these effects at the ex-
pense of additional difficulties (Cerveny and Ravindra, 1971; Chapman and
Coates, 1994).

One must underline that exact solutions for a point source in three-dimen-
sional and one-dimensional homogeneous media have the correct expression for
the ray theory where the signal propagates without deformation. For the two-di-
mensional case, the exact solution is not a delayed potential: we must look for its
high frequency approximation. Going through the Fourier transform, which is the
Hankel function of zero order H}, one might write the asymptotic form of H,
which is a plane wave

P@r, w)= iHé (wr/c) = —l—\/—z—c—— pOTe gl (6.33)
4 4 X nwr
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This plane wave has a compatible form with the ray theory:
P(r, w)= {_1__ \/%e’"”} [\j2£] e, (6.34)
4r r

The final approximation in time domain can be written as

H(t—r/c)

N (6.35)
t—r/c

P(r, )= 2 NoT2r
2r

which is a good approximation of the exact solution near the wave front where
the time can be estimated to r/c in the following expression

j\/tz—

Let us go back to the asymptotic series. Inserting the ansatz (6.29) as well as
the series (6.30) in the Helmholtz eq. {(6.27) and ordering terms in power of the
frequency @, we find with the help of the two following equalities:

~~2+/c t—%. (6.36)

o 1\
N (%]

VP = (VAT + iV TAeT) (6.37)
V2P = (V2 AT + iw[2VA-VT + AV?T1e“T — 0* (VTP Ae“T)  (6.38)
the cascade of equations
| in @: (VI =1/c)Ay=0
in —iw: (2VAVT + V3TAy) =0
in (i) *:V2A,+2VA,, VT +(VI¥A,,,)=0 for k>0.

The equations for the two first powers of ® attract our attention. The first
equation, called eikonal (from picture in greek),

VTR =21, (6:39)
o2
takes into account only the travel-time, while the second equation
2VA,-VT+V2TA, =0, (6.40)
allows computation or transport of the amplitude at time T. We call it the trans-

port equation. The other equations allow formal estimation of higher terms in the
series,
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The convergence of the series is not analyzed. We only need a formal identity
with the wave equation: higher terms can be far from negligable quantities, as for
critical reflections, creeping waves and some conversions of compressive waves
into shearing waves (Weber, 1988; Thomson, 1989; Yedlin ef al., 1990).

6.4.2 Eikonal equation
The eikonal equation

2 1
VT (x))-——=0, 6.41
T - (6.41)

is the basic equation which controls the evolution of wavefronts. We shall see that
it is also true in elastic media for each kind of wave. Solving this equation is re-
lated to the kinematic propagation of wavefronts defined by equal phase surface
T(x) = T,. Looking for the evolution of the function T{x) can be performed in
complex media where the high frequency approximation looses its meaning: wave-
fronts exist even when a medium has rapid variations. One can construct wave-
fronts at time ¢+d¢ knowing the wave front at time # it is enough to use the
Huyghens principle for the geometrical construction. A constant length is taken
away for the initial wave front such that the modulus of the gradient VT is equal
to 1/c(x) at the current point as shown graphically (Figure 6.10). This technique
has been extensively exploited in a graphical approach of the wave propagation
(Riznichenko, 1946) and for graphical interpretation of refracted profiles (Figure
6.11). Because computer memory has become rather inexpensive this method,
which requires important memory capacities, is now an attractive alternative to ray
tracing for specific applications. Its computer implementation solves the eikonal
equation by finite differences on a regular grid for the first travel-time (Vidale,

=f - At

Figure 6.10 Construction of a new wavefront at time #+A¢ from the wavefront at time #). The
length perpendicular to the wavefront is proportional to the speed V times the time incre-
ment.
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Figure 6.11 Reconstruction of wavefronts from refracted profils after Applied Geophysics by
Telford et al. (1976). From travel times observed, one can project back into the medium wave-
front for time equal to 1.6 s corresponding to point A. It is possible to start again for another
wavefront at 1.4 s for example.

1988; Moser, 1991; Podvin and Lecomte, 1991; Klime§ and Kvasnicka, 1994,
among others). Applications of these methods for locating earthquakes have been
published (Moser ez af., 1992; Wittlinger e al., 1993) while we are still waiting for
tomographic applications of this wavefront propagation. An obvious feature of
these approaches is the necessity of sampling the whole medium while ray tracing
will only sample 2 line inside the medium. Consequently, ray theory is and will be
an efficient tool in seismology even if sampling the entire medium is sometimes re-
quired for some applications.

Instead of looking for wavefronts, we might focus our attention on orthogonal
trajectories to wavefronts at each point (Figure 6.12). These trajectories are rays
which have not the obvious physical support that they have in optics. The mor-
phologic structure of our eye is responsible of this fact. Tracing rays, instead of
wavefronts, is the standard way to solve ordinary differential equations, an ap-
proach we are going to set up. This approach is called the characteristic method.
Let us consider the implicit equation of a ray x(5) where s is the curvilinear ab-
scisse. The tangent is defined by

t=22 (6.42)
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with a modulus equal to one by definition of the curvilinear abscissa. From the ray
definition as an orthogonal trajectory, the tangent is parallel to VT. From the
eikonal equation, one can deduce the following equation

i .
o= cVT. (6.43)

We often say that | dx | /c is the optical distance. After this tangent evolution of
rays, we must study the normal evolution which comes with the evaluation of

dvlT d (1 dx)
SRy A (6.44)

ds ds\c ds
Knowing that the derivative with respect to the curvilinear abscissa s is the projec-
tion of the vectorial gradient on the tangent t, we obtain the following operator
applied to each component of a vectorial quantity:

4 V=YY, (6.45)
ds

where we use the operator notation for vectorial gradient. We have successively

ray

source

wave front

Figure 6.12 Rays are orthogonal trajectories to wavefronts.
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and formally the following equalities

dVT _ yT.v v

ds

dVT__£ 5

o _ZV(VT)

dVT _co (1Y

ds —:Z“V(-c—)

VT _y (l) (6.46)
ds c

from which we can deduce, ~with the help of eq. (6.44), the equation describing
the evolution of the normal part of ray trajectories

d{1dx\ o1
4 (? E) v (?) (6.47)

This equation is also called the curvature equation because differentiation im-
plies

v (1) . (1) Lld (6.48)

c ds\c¢ c ds

and, using the definition of curvature K in the Frénet system as mentioned in Fig-
ure 6.13

dt

7 =XKn, (6.49)
we find
v(l) =ti(l)+£n. (650)
c ds \ ¢ c

This relation is better written explicitly with the slowness » = 1/c,

Vu=t@+5<un. (6.51)
ds

The scalar product of this equation with the normal n controls the evolution of
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7

ray

Figure 6.13 Frénet system (t, n, b) with curvature K. The torsion T will define the rotation
of this frame as we move along the ray (see Figure 6.15).
the curvature, which gives explicitly
XK =1un-Vu
= 1/u0u/dn
=-1/cdc/dn. (6.52)

The curvature increases in the opposite direction of the velocity gradient perpen-
dicular to the ray. Figure 6.14 indicates the vectorial construction deduced from
eq. (6.51) and allows the introduction of the angle 7 between the gradient of the
slowness and the tangent to the ray with the simple relation

X = _1—|Vu{ sinZ. " (6.53)
u Do

The torsion 7 is defined as the scalar product between dn/ds and the binormal b.
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ray

Figure 6.14 Geometrical interpretation of ray tracing equation: rays are bent towards the gra-
dient of the slowness u.

From the expression of the normal
=1 __d” +V 54
n= Ku [ ds ! u] ’ (654)

one can deduce that the only contribution to the derivative of n with respect to
the curvilinear abscissa s along the binormal comes from the following term

1 dVu

R {6.55)
The torsion T interpreted in Figure 6.15 given by
=L dVu y
Ku ds
T =L 4V, (6.56)

K ds

is essential for the elastic case to estimate the evolution of the polarization. For the
moment, it completes the geometrical analysis of ray tracing. After these consider-
ations, we may trace rays with the help of the curvature eq. (6.47) which is a non-
linear second-order vector ordinary differential equation (non-linear O.D.E).

It is natural to reduce the order of the differential system by introducing an
additional variable which comes from the equation along the tangent. This vari-
able, called slowness vector p, is defined by :

p=vT=ldx (6.57)
c ds
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An important system of first-order differential equations is deduced
ds P
dj
P V(l) (6.58)
ds ¢
with the following constraint coming from the eikonal equation
lpl= % : (6.59)

The phase or travel-time is obtained by integration of the eikonal equation along
the ray, ‘e

dT 1

ds ¢
We shall study the coupled non-linear system (6.58) where the velocity ¢ depends on
position x instead of the non-linear eq. (6.47) because the variable p not only plays the
role of an auxiliary variable but has a physical interpretation as important as the posi-
tion meaning. We might expect behaviours of O.D.Es with the influence of initial con-
ditions, with the geometrical structure of the solution coming from the catastrophe
theory, with stiffness, strange attractors and so on (Gilmore, 1981). This problem in it-
self is a difficult problem to solve and we shall spend part of our effort in order to an-
alyze it. Before doing so, we shall examine the transport equation.

=u. {6.60)

F
W

Figure 6.15 Two schematic diagrams for geometrical interpretation of torsion 7.
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6.4.3 Transport equation
The transport equation, which is written
2VA VT + V2T A,=0, (6.61)

might be converted into a simpler form by multiplying the eq. (6.61) with the non-
zero quantity Ay in order to get a divergence

div (AiVT)=0. (6.62)

Around a ray, let us consider an elementary cylindrical tube of volume V with a
generatrix parallel to a segment of ray. The intersected surface by the cylindrical
tube is described by two parameters y; and ¥, (Figure 6.16) such that the elemen-
tary surface is: ,

dS = dSn = (95 x a_") dy dy,. (6.63)
Y1 97,

The cross product is denoted by x. The two elementary surfaces at curvilinear ab-
scissa 5o and 5, are denoted by dS; and dS,. The use of the divergence theorem
permits us to write

[ [ ] diveazvrydo = [ [A3n-vTds=o, (6.64)

which means that the flux of the field A2VT is preserved during the propagation.
Only the flux across the two surfaces dS, and 45, exists. Knowing that VT is par-
allel to p, we can introduce two new surfaces dS', and dS’;, projections of surfaces
dS, and 45| on the normal to the ray (Figure 6.16). We obtain the following
equality

L a2 pdsy =LAz spds, (6.65)
[2} Cy
where we have introduced the slowness 4, and #; at positions s, and s,. This eq. {6.65)
allows the amplitude computation at position 5; from the amplitude at position s,
This represents the energy flux averaged over a propagation time proportional to 1/¢

through the surface dS’. The zero-order approximation implies that the energy is pre-
served in the ray tube without any loss through lateral sides. We find

CldSI
A = A, (s —_ 6.66
0 (s1)=4Ag () \I ds (6.66)

dS' = dSn -t = | dy, dy, (6.67)

The surface
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Figure 6.16 Parametrization of the surface § at the point M of the ray. The ray tube is sup-
ported by this surface S at each time #. The surface ' is required for amplitude estimation but it
is not necessary for ray tracing.

is interpreted with the help of the jacobian

ds Iy, 9%
0
I= » (6.68)
ds 97y 9%,
a2 %
ds 9y, 97,
noted also
a(x, . L
J= RARIE =(t 7, 1), (6.69)
s, ¥ ¥2)
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where vectors ¥, and ¥, are unitary vectors perpendicular to the tangente t. We
obtain the generic formula for the acoustic case

Ay (51) =4 (50)\/61—]0 (6.70)
ey
which can also be written
Ay (s1) = A (So)\/ 050 . (6.71)
Uy

Often, one takes as elementary surfaces the surfaces S only while we have more
freedom to consider also surfaces 5. We might be interested by surfaces S and not
only 8" during ray tracing. . This subtle advantage has its importance in designing
ray tracing programs. In any case, at the station point, we should go back to the
surface §’ in order to compute the amplitude. The use of arbitrary surfaces S is a
freedom which makes easier the ray tracing with initial excitations on vibrating
surfaces which are not wavefronts, interface projections... Of course, we have to
go back to surfaces §’ in order to determine the amplification modulation.

We are now able to describe the pressure observed at a given point coming
from a source with temporal variation S(w) and with a radiation pattern ¢ (7, 73).
One can distinguish the excitation, the geometrical spreading and the propagation:

Px, @) = S(@) (71> 1) \j§ T 6.72)

How to estimate the intensity of the source ¢ ? A possible solution is to select a
particular example as a homogeneous medium of speed ¢,. We look at a canonical
problem in order to calibrate the high frequency solution with an already known
solution (Cerveny, 1985). At the source itself, a singularity must move away at a
distance of at least a wavelength. The complete high frequency Green function is
given by

P(r, w)= S(co) — e" ol (6.73)
The jacobian is defined by dS = | 4Q, which gives by integration on the sphere
4nR? =]jd£z = d4n]. (6.74)

We write the solution in the asymptotic form

P(r, w) = S(@) —— \/ 0 gl (6.75)
a)\/co
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that permits us to identify the radiation term of the isotropic and point source:

P )= — . (6.76)
47c,
We deduce the asymptotic solution for a variable velocity ¢(x):
P(x, @) = §(@) —— €09 gorco (6.77)
’ T[\/CO Jx)

where ¢, is now the velocity at the source.
When the jacobian is strictly positive, the solution in the time domain can be
constructed straigtforwardly by

1 —1(
Pix, )= - j P(x, ) e dw (6.78)
which gives
P(x, p) = \/ () s(t—T(x)). (6.79)
o (%)

Unfortunately, this simple expression is only valid at infinite frequency. For a fi-
nite frequency, any abrupt variation leads to different results. Moreover, a slight
complication appears when the jacobian changes its sign or even when it vanishes.
Situations giving this phenomenon are frequently met as shown for caustics in Fig-
ure 6.17. When the jacobian goes to zero, the ray tube section degenerates into a
zero secrion: we are on a caustic and the ray theory is no longer valid because the
amplitude of the signal will be infinite. Knowing the position of the caustic, it is
possible to construct another asymptotic theory which takes into account the un-
dulatory aspect of the signal and allows a description of interferences near the
caustic or, equivalently a description of the propagation depending on the fre-
quency. In fact, on the illuminated side of the caustic, many rays go through the
same point giving the oscillating aspect of the amplitude (Figure 6.18), while on
the other side of the caustic, we find an exponentlal decay depending on the fre-
quency. What we must learn is the inversion of sign of | when we go through the
caustic and that the Airy theory {Ludwig, 1966) permits us to connect the situa-
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GULF of ALASKA EARTHQUAKE NOVEMBER 1987
GEOSCOPE STATION INU : R4 train
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Figure 6.17 Caustics for surface-wave ray tracing on a heterogeneous sphere: focal points are
blurred out. Heterogeneous model velocity is presented on gray scale on a rotated map of the
Earth where the equator is the great circle between the source and the receiver.

tion on each side of the caustic. We find the initial form

\[% = \j% —1
- \/% 7 (6.80)

which introduces a phase shift when one goes through the caustic. The sign — is
not given by the ray theory but by the Airy theory. This is the only contribution of
the Airy theory considered here.

Formally we can write the phase shift in a suitable form

e—irt/2 - e-ima% (681)
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by exhibiting a frequency dependence of the travel-time: the wave arrives before
expected. This phase shift induces the Hilbert transformation of the propagated
signal which is written

1 c(x)
Px, )= —A|———850¢-T (6.82)
(x, 0 Py ey ( (x))

where S is the Hilbert transformation of S.

Let us recall that the Hilbert transformation F( ¢) of a function F(¢), defined
as the principal value of the following integral,

lJ‘—Fﬁ-rl‘a’f, (6.83)
Y (—-1)

has a Fourier transformation —7sgn (@) F(w). We find that a function and its

201

y

Exact solution .
Uniform WKB approximation

il

2.0 -1.0 0 | 1.0 2.0

0 -

Hluminated Zone —w

| <—— Shadow Zone
20

Figure 6.18 Amplitude oscillation and decrease from the two sides of the caustic. Please note
the accuracy of the WKB or Ray theory very near the caustic.
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Hilbert transform have the same spectrum, that the Hilbert transform acts in op-
posite phase to differentiation of the signal (Figure 6.19). The convolution formula

can be deduced:

dHO HQE

Two Hilbert transformations must be noticed

o) — L
7t
H( H(-p)
AN LA (6.85)
Vt N=¢

with a geometrical description given by Figure 6.20.

Of course, the sign inversion of the jacobian ] might be repeated when the ray
hits a new caustic. This phenomenon is often met in surface-wave ray tracing
where, for geometrical reasons, waves are focused on the antipode of the source,
then on the source again when the sphere is homogeneous. In order to keep track
of these intersections with caustics, we introduce the KMAH index (for Keller,
Maslov, Arnold and Hormander) initially taken as zero and which increases by 1
for each caustic. Moreover, when the ray tube section reduces to a single point in
a three-dimensional medium, we count two crossings for the focal point (Chap-
man, 1985). We have the complete expression

( ) le(x) g_iZE sgn (w) KMAH

Px, @) =S(0) ¢(71, 72) 7ol (6.86)
We can write the pressure in the time domain in the general form:
P(x, )= R{Px) S(t-Tx)} (6.87)
where
PG = (1, 7| 2L 5 A (6.88)
el )I

and S is the analytic function associated with the function §. Practically, we only
consider positive frequencies which introduce a modification of Fourier transfor-
mation of real functions which are such that the value at the frequency —w is
equal to the complex conjugate of the value at the frequency @. We can therefore
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F(t)

Ft) -

hilbert K
> F(t)

dt

derivation J\ dF
> V

Figure 6.19 Comparison between Hilbert transform and differentiation.

ot

Hilbert

L
L/

Figure 6.20 Geometrical description of two Hilbert transforms.
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reduce the domain of integration and find
L = —iwt
fr==R [ fla)e do. (6.89)
T 0

The following complex function
P, 1 . —1t
for == [ e do (6.90)
7 Jo

has a Fourier transformation 2H (@) f (). Its real part is f(¢). Its imaginary part F
is written

Fo =L R{[ - i@ do) (6.91)
i3 0
and reduces to
1 - h —iw!
F)= o | —isgn (@) flw)e™ do (6.92)
2K Ve

which shows that F is the Hilbert transformation of the function f. Therefore, the
analytic function f is the sum of the function and its Hilbert transformation. This
is the justification of the use of the analytic function in the expression of the pres-
sure when we consider only positive frequencies (Chapman, 1978).

For the zero-order approximation, we need now to estimate the ray trajectory,
the travel-time T and the jacobian | at the point where we wish to evaluate the
asymptotic solution. This task is technically difficult and we shall concentrate on it
in two following sections. Before doing it, let us mention one additional point.

If we consider the next term of the series A,, we have the following equa-
tion:

VT VA, + V’TA, = V24, (6.93)
or
div (A3V
"(Al D _ g, (6.94)
1

which shows that rapid variations of Ay lead to significant amplitudes of the term
Ay This is the case near the critical angle for refracted waves, for converted
phases § near the free surface and the construction of new solutions valid for these
particular cases is a game enjoyed by many researchers.

v
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6.5 Analytical examples of ray tracing

Let us first consider simple examples where tracing rays is rather straigthfor-
ward. We are looking for rays, travel-time and geometrical expansion coefficients
from the differential system

dx

& cwe

dp 1

< (C(x)) (6.95)

6.5.1 Homogeneous media

For a homogeneous medium ¢(x) = ¢, the ray solution is simply straight seg-
ments. We find the following equations,

p(s) = pg

x(5) = Xp+ ¢, (5—50) Po (6.96)

where the position at s, is x. The jacobian increases as 7” in a three-dimensional
medium and, consequently, the amplitude decreases as 1/r. In a two-dimensional
medium, the amplitude exhibits a typical tail from a variation in 1/Nr, while the
one-dimensional propagation prevents any spreading and the amplitude is kept
constant during the propagation.

6.5.2 Constant gradient of the velocity

Seismologists are often interested in a velocity structure which increases with
depth (Ben-Mehahem and Singh, 1981). The simplest model one can think about
is a linear increase with depth of the velocity: this does not mean that this leads to
the simplest ray tracing. The following velocity structure

c(x) = q+Iz (6.97)

implies simple differential equations from eq. (6.95) for the components p,
and p, of the slowness vector: they are constant along the ray. The ray is in a verti-
cal plane without torsion and one can assume that p, is set to zero by an appropri-
ate selection of the coordinate system: the ray lies.inside the plane (x 0 z). The hor-
izontal component p, is called the ray parameter and denoted sometimes p. Let us
introduce the angle 6 between the vertical and the ray (Figure 6.21). This angle is a
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ligne of centers of circles

ray is a circle

Figure 6.21 Geometry of rays in a medium with a constant gradient of velocity.

good parameter for tracking the ray itself. By definition of the tangent, we have

_ sin@(s)
po(s) = )
cos@(s)
p(5) = . (6.98)
c(z)
The curvature K becomes constant through the equation
1 dc .
K=—e—
& sinfTp,, (6.99)

which means thag the ray is a portion of a circle of radius 1/Tp,. From the geomet-
rical definition of the curvature (Figure 6.13), one can deduce the evolution of the
angle 0 by

a9 .-

With this parameter, one can integrate the ray tracing equations

¥ 9 dx ds 1 (9.
- = d ! = —_ d ’ = — ’ ’
X — X J-xo x J.e(, pRTY 6 . J-g“sm() 4o

Z“ZO

1l

e [%de ds I
d7’'=| —=—d6'=— 'de’
L‘ b4 ja, FTY T eucos@ 46 (6.101)
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and obtain analytical trajectories starting from 8
1
X —xg = ~— (cosb, — cosb)
Ip,
=79 = —— (sinf-sin ). (6.102)
I'p,

With the help of the trigonometric expression sin”6 + cos?0 = 1, we find the equa-
tion of a circle

(x—xg—(1/Tp) cosb)? + (z—zp+(1/Tp,) sin6y)” = (1/Tp)>. (6.103)

Tf we assume x, 2, (related to 6;) as the system origin, one can find the simplified
equation

(x—(1/Tpy) cosfy)? + (z+c/T)? = (1/Tp,) (6.104)

which shows that the circle centers of rays for different shooting angles belongs to

a straigth line z + ¢y/T" = 0 (Figure 6.21). The travel-time T is deduced by direct
integration

4 81 ds 1% 1
T-T, = ds'= | ~——d0 == de’ 6.10
° L,” "Tlecar T jen sin0’ (6.109)
which gives the final analytical expression
tan (6/2
T=Ty+ LLog| 2292 | (6.106)
r tan (6,/2)

For the geometrical spreading evaluation, one must express the coordinate x with
respect to the initial angle at constant depth z through

——
cosez\/l———c—’sinz% (6.107)
)
which gives
1 C2 .2
X=Xy = cosfy —4f1 - 5 sin” Gy ] . (6.108)
pr cy

The estimation of the jacobian

cosf (6.109)
0|z <

allows the analytical computation of the amplitude for this simple velocity distri-
bution.
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6.5.3 Constant gradient of the square of the slowness

Another example which gives the simplest solution for ray tracing is a con-
stant gradient of the square of slowness #. The square of the slowness, related to
the square of the refraction index widely used in scattering theory, has been disre-
garded by seismologists because this parametrization leads to a decrease of the ve-
locity rather an increase with the depth. Therefore, an increase with depth can be
obtained through a decomposition in finite layers where the gradient of the square
of slowness is constant in each layer. The simplicity of the solution in each cell
might overcome the penalty of a denser discretization with this choice of the ve-
locity representation (Cerveny, 1987; Virieux et al., 1988) (Figure 6.22).

The velocity structure is defined by the square of the slowness

=l +y-x (6.110)

with a vectorial representation. The use of vectorial notation shows the separabil-
ity property of the square of slowness between what happens along the x axis and
along the z axis. This advantage avoids any rotation in order to align the gradient
towards only one direction, rotation being required for the previous example of
the constant gradient of the velocity. Associated with this distribution, a new
parametrization T of the ray defined as ds = udt allows the simplification of the

OFFSET IN KM

0.00 - L i 1 i ' i : i L
2.404 | ] ’ ]

4.80

DEPTH IN KM
!

T

N

F s
w1 T T
[

9.60

1200 | [ |

Figure 6.22 Rays for a linear increase of velocity assuming a local discretization of the velocity
such that the square of slowness has a constant gradient: rays as circles agree perfectly. This is
an illustration of the finite element approach where the number of points along one ray is rather
small.
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differential system (6.95) to
dr
P 1y (L ):lvx W2 (%)= y/2. (6.111)
dt  c(x) c(x) 2
The analytical ray is a parabola given by
X = x+po (T fo)+%y(r2—r§) (6.112)
P= po+%7(r~ro), (6.113)

while the travel-time T is obtained by direct integration
T
T =T+ fr wdt’ =T+ j (g +7-x)dt’
T %
T = Ty+ (g +7 (o= PoTo— 1/4Y®)) (7= %)

+’;’Y'Po(72‘” T§)+%)’2(rs—r€). (6.114)

The jacobian is estimated at constant 7 by

J=n. 2% (6.115)
36,
which becomes an expression increasing with ©
]: (T—To)po = (T“To) Ugy. (6116)

Many other velocity distributions lead to analytical expressions and our pur-
pose is not to investigate all of them. Let us just underline that the dxstrlbunon. of
the velocity in cosh (z) relates ray tracing on a homogeneous sphere to ray tracing
in a two-dimensional medium for this particular distribution. Even more, using a
transformation based on the hyperbolic cosine, the body-wave ray tracing pro-
grams can be adapted for surface-wave ray tracing. This distribution has alsq been
studied intensively in fiber optics as an approximation to quadratic evolution of
the refraction index away from the center of the optical fiber, the hyperbolic co-
sine giving analytical solutions (Mikaelian, 1980).
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6.6 Arbitrary variation along one direction
6.6.1 Ray tracing as quadrature equations

Arbitrary variation along one direction is a natural extension from previous
simple examples and has concentrated the attention of seismologists (see, for ex-
ample, the textbook of Bullen, 1959) because the variation of the velocity struc-
ture inside the Earth is mainly along the depth direction (Figures 6.3 and 6.23).
The slowness component p,; perpendicular to this direction taken as z is constant
because the velocity does not vary along this perpendicular direction:

d
Py, (l)zo, (6.117)
ds ¢

The ray lies inside a vertical plane that one can define as the plane (xoz). This ar-
gument follows the same line as the one presented for a constant gradient of the
velocity and shows its generality. The differential system (6.95) reduces to the fol-
lowing system

dx

:[S— - C(Z)px

dr _

i c(@p, (6.118)
dp,

ds ~ 0

dp. 4 1

= —K_EEG (6.119)

Instead of using the curvilinear abscissa s as the parameter along the ray, one
can use the coordinate z which controls the velocity variation. Because p, is con-
stant, the eikonal equation allows deduction of p, from p,. The evolution of x and
px determines perfectly the ray and one has to solve a one-dimensional problem:
this is the Landau reduction widely applied in physics. Because p, is constant, we
go down to a single equation

b_p__n

dz = p. i\/ztz(z)~pf
with the implicit equation dp,/dz = 0 as associated equation (Madariaga, 1984).
The unknown sign is deduced from initial conditions. We obtain for a ray point-
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Figure 6.23 A depth dependent velocity structure inside the Earth for § waves.
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ing initially downwards (z > 0) the following expression of the position X:

Xz p)=Xy+ jT—dZ. (6.121)
o N (2) P2

At the depth z, where the slowness parameter taken as the horizontal component
of the slowness vector verifies p = #” (z,), the ray has a turning point and the in-
tegral (6.121) has an integrable singularity as long as du%/dz does not vanish at this
particular point. We end up with the final expression

X(Zq P,\)—X0+ J dZ+ J.Z/’—p"—‘\_.__..._“—'dz. (6122)
\/u @-p2 AN @-p
From the travel-time expression dT = uds, one deduces
2

‘_fif_: R (6.123)

T @ +\ul(z)-p?

and the known expression

T p)=To+ [ —— D j T BEECES (6.124)

u?

Z“\/u (2)-p2 (2) - p?

This expression is the basic formula for recovering the vertical velocity structure
from travel-time data and has been used in many inverse problem formulations
(Aki and Richards, 1980).

Combining expressions of the offset X and the travel-time allows cancelation
of the singularity under the integral expression. The linear expression

T:T—pXX=TO——prO+J.: Nu (2) - p2 dz (6.125)

is often called the intersection time from the graphical interpretation given by Fig-
ure 6.24. This quantity taken as a function of p, is a monotonic decreased function
which was not the case for the offset X because

dT _dT _,  dX

X=X (6.126)

X
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X=-dT /dp

(1) R

-
-

X

Figure 6.24 Unfolding the triplication by using the function 7 instead of travel-time T. The in-
tersection time 7 is a monotonic function of p, = p. The function p of the variable x allows the
estimation of the amplitude.

This intersection time appears naturally in analytical inverse formulations of the
travel-time (Stoffa, 1989) and the new function

33X p) =T (0, + Xops (6.127)

has a derivative equal to zero for the point X, Geometrical rays arriving at point
X, are the extrema of the function 3 (X, p,) (Figure 6.25). Once the different pa-
rameters p are known, the geometrical spreading of each ray comes from the
derivative of the function x(p,} (Figure 6.25). We shall see that synthetic seismograms
require either contributions of these geometrical rays for.the ray theory or contribu-
tions of adjacent rays for the WKBJ theory which cannot reach the station. More
complex theories as the Cagmard and De Hoop approach (Helmberger, 1996, this
issue) are based on an extension in a complex p plane of this function G.
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Figure 6.25 Interpretation of travel-time T, station position A and intersection time 7 for a
shadow zone.

When the source and the station are at the free surface of the Earth, we find
basic formula from egs. (6.121) and (6.124) for radial distance R(p) and travel-
time T (p)

p
= R — | (6.128)
R(p)=2 , \/”z(z.)_pz b4
3w ()
= - 6.129
T(p) =2 _[0 =— &z (6.129)

A
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which have a great importance for the Earth structure (Aki and Richards, 1980).
The extension in spherical coordinates does not change basic results (Chapman
and Orcutt, 1985).

6.6.2 Triplication and shadow zones

The triplication zone associated with a sharp increase of the velocity as, for
example, the first-order discontinuity of 670 km, will give an inflexion of the T~
curve as shown on previous Figure 6.24. Multiple arriving signals are observed at
a given station. On the other hand, a shadow zone associated with a low-velocity
zone will result in a jump of the 7 parameter and no signal would be observed if
we follow the ray theory (Figure 6.25).

Let us resume the procedure to construct quantities required to estimate seis-
mograms. From an observed travel-time curve R, T (Figure 6.26a), one can find
the slope which is nothing more than the parameter p (Figure 6.26b) or the
derivative of the slope (Figure 6.26¢). The integration of the eq. (6.126) will con-
struct the function T as a function of p (Figure 6.26d).

Ta A

Ao

(a) (b)

dAa
ap

) (d)

Figure 6.26a-d Analysis of a triplication with the function G (xo, po). The p variables associ-
ated with a ray arriving at station Ay are extrema of this function.
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6.7 Variational approach

Another way to define the ray is based on variational arguments. The ray be-
tween a source and a receiver is the trajectory with the minimum travel-time. In
fact, one can state more precisely the Fermat principle for which the ray is the tra-
jectory of travel-time extrema. This approach is very interesting because it seems
more adapted to the seismological problem where the ray must connect the source
and the receiver while the problem solved previously is a problem with initial con-
ditions: the ray leaves the source with a preselected direction.

6.7.1 Euler equations

Variational calculus demonstrates that, if the function fis such that the follow-
ing integral ‘

_[Zf(v, x, X)dv (6.130)
1

is extremum, the function verifies the local differential equation, called Euler
equation,

V. /-2y =0 (6.131)
dv

Let us apply this variational principle to the travel-time T which is an extremal
function as stated by Fermat principle and which is defined as an integral between
points x; and x;

2 2 .
T(x;, x;) = L u(x)ds = L ulx (O] % Il & (6.132)

where £ is an independent parameter defined by || x {| € = ds. The curvilinear ab-
scissa s is not an independent parameter because it is related to the total length L
of the ray by

fzds -L. (6.133)
1

The local differential equation comes from expression (6.131)

iV, = 2| () ’f@ (6.134)
dg Il (&1
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and might be converted into the curvature equation
d{ dx
Vou=—|u— (6.135)
ods U ds

by eliminating the variable £ The equivalence between ray tracing equations (local
equations) and Fermat principle (global approach) is demonstrated.

6.7.2 Lagrangian formulation

One can exploit the lagrangian formalism in more detail. The function £ is of-
ten called Lagrangian £ and is given by

L=ulx(El x| (6.136)

for the specified sampling parameter £ Other definitions are possible and might
be more adapted to ray theory than the previous straigtforward definition. The la-
grangian, whatever it is, is often split in two terms which separate the dependence
in x and x with the formula

L=E,(v,¥)-E,(v,%) (6.137)
and the local equation becomes

~%V,{EC =V,E,. (6.138)

In order to apply this separation to eq. {6.134), we need to avoid the term || x || on
the left hand side and the term depending in x on the right end side. The simplest
way is to absorb x(x) in our choice of the sampling parameter which becomes
ds = udt and gives the simple equation

_AX V) (6.139)
dr

where x stands now for dx/dt. The expressions for E, and E, are the following

E = 21 %17

[gs]
]

’ —.‘;.uz(x).’ (6.140)
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Of course, the choice of these functions is not unique and we are guided by the
mechanical analogy of kinetic energy for E, and potential energy E,.
The travel-time can be written with the Lagrangian £ as

2
Ty, xp) = Jl£(x(1§))d§. (6.141)

6.7.3 Hamiltonian formulation

We introduce the quantity p =% as an independent variable and we switch
from the lagrangian formalism towards the hamiltonian formalism with this new
variable. The Hamiltonian #{ is deduced from the Lagrangian £ (Landau and Lif-
chitz, 1969) by ‘

H=px-L(x, p)= -;— [p* - * (%)]. (6.142)

To this Hamiltonian are associated differential equations on which we concentrate
our attention in the next section. Let us just write down the expression of the
travel-time with the help of the hamiltonian

2

1

T(x,, %) = j [p- x—H(x, p)l dT. (6.143)

Of course, selecting classical ray tracing, Lagrangian ray tracing or Hamilto-
nian ray tracing is a matter of personal convenience either because one approach
is much easier than other ones or because numerical stability comes with one spe-
cific approach. Whatever is our choice, we should end up as in mechanics with
the same solution for the ray. We shall see that this feature is quite different for
perturbation techniques which provide coordinate-dependent results. Recent dis-
cussions in the geophysical literature have raised the problem of equivalence of

these approaches (Snieder and Sambridge, 1992, 1993; Moore, 1994a,b; Farra
et al., 1994).

6.8 Validity of the ray theory

Before going into more detail in the ray tracing equations for arbitrary hetero-
geneous medium, let us go back to the high frequency approximation and discuss
the domain of validity of this theory and when one expects it to break-down (Cer-
veny, 1985).
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6.8.1 Vulidity of the asymptotic approach

The definition of the ray as the mathematical solution of the eikonal equation
gives an object without any thickness while rays observed in physics have certainly
a given thickness associated with the frequency content of the propagated wave-
field (Kravtsov and Orlov, 1990, p. 87). The high frequency approximation means
that the wavelength A of the propagating signal is lower than any spatial scales L
associated with heterogeneities. One can think about velocity variations or inter-
face curvatures. Often the wavelength is comparable with the spatial scale. When
irregularities exist, the high frequency solution must feel variation over a wave-
length in order to avoid any interferences. That is the first heuristic criterion one
must verify saying that gradients of phase and amplitude must not vary signifi-
cantly around the ray. This volume, where these variations are insignificant, will
be called the Fresnel volume. Moreover, the total distance D travelled by wave-
fronts should be significantly lower than L?/A, because over that distance D rays
will interfere. This condition prevents the ray theory to be applicable beyond a
given distance which is not often found in seismology: for example, ray theory
could not be applied to the interpretation of the surface-wave train R4 because
the distance is too large. If we consider the ray as a physical object, the Fresnel
volume should be considered as the region where the ray is localized.

When these conditions are fulfilled, the source wavelet propagates without
distortion and only the amplitude is modulated. Unfortunately, irregularities are
found and the ray theory fails. These failures can be classified in order to detect
them and, when possible, to overcome them (Chapman, 1985; Hanyga, 1989).

6.8.2 Classification

It is useful to describe standard situations we possibly meet during ray trac-
ing: they are canonical ray problems already described in many papers.

1) Normal and turning rays — This is the simplest case where the medium
contains no discontinuities and the ray paths as well as smoothly varying ampli-
tudes (Figure 6.27). Ray theory in this case works fine.

2) Reversed rays — If rays cross, then the amplitude becomes infinite and ray
theory breaks down (Figure 6.28). Special methods are needed in the vicinity of
this singularity, called caustic. Nethertheless, ray theory can be used before and af-
ter the caustic provided we take care of the amplitude correctly as already de-
scribed.

3) Reflected and transmitted rays — When an interface has a smooth variation
and the reflection/transmission coefficient varies gently, ray theory works for re-
flected/transmitted rays. Amplitudes are modified by reflection/transmission coef-
ficients and by the interface curvature (Figure 6.29). Total reflections are possible
with complex coefficients.
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Figure 6.27 Normal turning rays with wavefronts shown in dashed line after Chapman

(1985).

source

Figure 6.28 Reversed rays after touching a caustic after Chapman (1985).

These previously mentioned rays can be described by ray theory while the fol-
lowing rays are not handled by the ray theory in its simple form.

4) Critical rays and head waves — At the critical angle, the reflection coeffi-
cient has a square root singularity and the grazing transmitted ray has a zero geo-
metrical amplitude. The discontinuity in the reflected wavefront and the transmit-
ted wavefront are connected by another wavefront, the head wave (Figure 6.30).
Simple ray theory does not describe the critical region and the head wave. More
elaborate high [requency theories are required.

Seismic ray tracing 271

5) Interference head waves — A simple head wave rarely exists. Invariably, a
velocity gradient or the curvature of the interface cause a turning ray with similar
travel-time and create interferences (Figure 6.31). Taking care of this interference
will require careful counting of rays by the theory. More appropriate approxima-
tions are required for the lower medium or for the interface interaction.

6) Airy caustics — In the vicinity of the caustic, there is interference between
normal rays and reversed rays (Figure 6.28). Taking care of this interference re-

source

interface

Figure 6.29 Rays reflected from a curved interface after Chapman (1985).

source receiver

\ >~
™~ \heo front

— interface

/

Figure 6.30 A critical reflection and transmission, total reflection and head wave after Chap-
man (1985).
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source receiver

Figure 6.31 Rays contributing to an interference head wave. Only one multiple refraction is
shown and no attempt is made to include wavefronts after Chapman (1985).

Figure 6.32 Reflection and diffraction from a corner after Chapman (1985).
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source

Figure 6.33 Rays grazing an interface and diffracting along it after Chapman (1985).

strong gradient

Figure 6.34 A ray is propagation through a region of high gradient and being reflected con-
tinuously after Chapman (1985).

quires a more elaborate ansatz than the Airy function in the frequency domain.

7) Edge and point diffractions - If an interface is discontinuous, diffracted sig-
nals are generated at the corner (Figure 6.32). Geometrical diffraction theory can
be used to model diffraction by the corner with frequency-dependent diffraction
coefficient obtained by a local canonical problem.

8) Interface diffractions — 1f a ray grazes an interface (Figure 6.33), a disconti-
nuity in the wavefront is generated and an interface wave described the decay in the
created shadow. It is necessary to solve boundary conditions for a grazing ray and an
interface. The amplitude and the travel-time of the signal are frequency-dependent.
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9) Gradient coupling — When a strong gradient of velocity is present, reflected
and transmitted waves are observed when the wavelength of the source signal is
noticeable compared with the thickness of the area with strong gradient (Figure
6.34). lterative methods handle this problem as proposed by Chapman and co-
workers (Chapman and Coates, 1994).

6.9 Ray tracing in heterogeneous media

Tracing rays requires solving a non-linear ordinary differential equation or a
system of non-linear ordinary differential equations depending on the number of
variables we consider. This problem is a rather simple one if we assume initial
conditions, 7e. initial position and initial slowness vector. The problem with
boundary conditions where the ray must connect two points is more difficult. Un-
fortunately, the second is the one we face in geophysics because we need rays ar-
riving at stations.

6.9.1 Setting up ray tracing equations

Many formulations exist for the initial value problem: I select an approach
based on the hamiltonian formulation (Farra and Madariaga, 1987; Virieux et 4/,
1988; Farra et al., 1989). The hamiltonian approach is not strictly necessary in this
lecture but its relative simplicity and its elegance justify in itself this introduction.
The power of this formulation is still a research investigation (Abdullaev,
1993).

The general hamiltonian we consider is related to the eikonal equation and is
an extension to the one found in eq. (6.142). We consider the hamiltonian

H{& %, p) = f(x) [p? - % (x)] (6.144)

which is equal to zero from the eikonal eq. (6.41). The choice of the variable &
which is a sampling parameter, is related to the choice of the hamiltonian and, for
example, the particular hamiltonian

H(r, x. p) = %[p2 -2 (x)] (6.145)

is related to the parameter 7 defined by ds = u(x) dt (Burridge, 1976). Whatever is
the selected hamiltonian, characteristic equations are associated and have the uni-
versal form:

. do.
de= 2 Ok (6.146)
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We call these equations canonical equations for their generality. The ray is defined

by its canonical vector,
V(& = (x(@ ) (6.147)
P&

which satisfies the following equations for the particular hamiltonian we have
selected

dx

X _VH=-

dr i P

b _ -V.H= V u2(x). (6.148)
dt

The first equation is the definition of the slowness vector if one remembers the re-
lation between 7 and 5. The second is the curvature equation. The sampling pa-
rameter T defines the structure of the hamiltonian which turns out to be a very
simple one. Other choices of sampling parameters and associated hamiltonians are
possible and lead to other differential equations but to the same trajectories,
which are rays: we have the freedom to select the most suitable hamiltonian for
the problem at hand.

We have extented the space of variables to what is called phase space with 6
variables in a three-dimensional medium. Because the slowness vector is a very im-
portant quantity for rays, this extension is of practical interest for us. For the La-
grangian formulation, this extension is not performed, giving an apparent benefit
to this approach cancelled by the more complex structure of the ray equations.

The travel-time is connected to the hamiltonian by a subtle relation which is
not describe here. Let us mention only the relation needed to compute it in the
general case

dé= (6.149)

which becomes for our particular hamiltonian

dr=9L_dT (6.150)

D u

an already mentioned equation.
The number of free parameters in the three- dunensxonal space is not the
number of variables of the phase space, 7e. 6 variables. The eikonal equation re-
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duces to five this number while the implicit parameter & reduces to four the num-
ber of degrees of freedom. One can think about inverting both eqs. of (6.147) and
equating the variable & of these inverted equations which gives this extra condi-
tion for going down to four independent variables.

This reduction of variables could be exploited in the phase space itself in or-
der to solve differential equations for the minimum of variables. Following this
idea, one can deduce a reduced hamiltonian from the previous one which was
constant with the help of the eikonal equation. A simple way is to select one carte-
sian variable as the sampling parameter and to write the new hamiltonian from the
eikonal equation

H(z x, 9, poo py) = —\/u (x, ¥, 2)—p? - pV (6.151)
with equations
& _oH_
S N O
4y 9H by

R
dp. _ 9H _ 1 1 u?

&~ ox 2 gt 0%
dp, _ JdH 1 auz

— = = (6.152)
T R

If the medium is only dependent on z, we find again the results of one of the pre-
vious sections. Unfortunately, one cartesian coordinate is emphasized compared to
the two others and in a general heterogeneity, one would like to avoid the a-priori
of selection of one coordinate. In order to do so, a new coordinate system must be
introduced which is related to the sampling paramerer s. This is the so-called cen-
tered ray coordinates system which is a curvilinear system used by Popov (1982)
or by Cerveny et al. (1977). This system is interesting except in the complexity of
the hamiltonian. Because it follows the ray, no difficulty is expected compared to
the reduced hamiltonian in z. The hamiltonian is no longer constant along the ray.
It must be underlined that the opposite procedure is performed in physics: when
the hamiltonian for non-isolated system varies, the associated phase space is em-
bedded inside another one where the system is isolated and the hamiltonian con-
stant. The reason for this transformation is the expected simplicity of the ex-
tended hamiltonian. We believe that the same argument provides a strong support
to the use of the complete hamiltonian (6.144) for rays.
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6.9.2 How to solve these ordinary differential equations

Once we have defined the non-linear system to solve, we have to look for very
efficient solvers because the number of rays we often need is the order of thou-
sands and the knowledge of the medium we have is not so accurate that we need
very precise and stable solvers. Moreover, the variation of velocity we find in the
Earth is such that difficulties in the integration of the differential equations as
stiffness problems are unexpected.

Usual solvers as Runge-Kutta or predictor-corrector schemes are suitable for
tracing rays. Adaptative steps might increase the efficiency of the solver especially
where the medium is homogeneous. We refer the reader to any numerical book
where the details of these numerical schemes are explained. We find that a sec-
ond-order Runge-Kutta is easy to program and give accurate results for most pur-
poses in ray tracing. The description of the velocity or any equivalent field must
be done through interpolating function such that at any point inside the medium
we can estimate the value of the velocity as well as its first-order spatial derivatives
requires for solving the O.D.E. associated with ray tracing. Often, the velocity is
described by values on nodes of a grid under an explicit form ¢ = f(x, z) and a
quadratic interpolation is enough to guarantee the continuity of the first-deriva-
tive. At each step of the ray tracing, we must evaluate where the ray is and what
are the velocity and its derivatives at the current point of the ray. This is the main
CPU time-consuming part for any computer code performing ray tracing because
one must do it thousands of time. Writing a ray tracing program with initial condi-
tions for a smooth medium is rather simple and is based on the interpolating sub-
routine of the velocity and its derivatives. The B-spline interpolation turns out to
be an efficient way to compute smooth variation of the velocity. The first deriva-
tive is required and the B-spline of order 3, i.e. of degree 2, is enough. In the next
section, we shall require B-splines of order 4 for estimating the amplitude. Conse-
quently, we propose this order 4 for writing the computer code.

Another alternative is a finite element method where the medium is described
by elementary cells with a simple velocity structure inside each block in order to
solve analytically the equations. The task is to compute intersection points be-
tween blocks which are an order of magnitude less than for numerical solvers. Of
course, the difficulty is not solved and goes to the description in blocks of the
medium. Often, the description in blocks of the medium is so crude that instabili-
ties in amplitude estimation for a given ray are found.

Finally, perturbation methods use the solution of the medium divided by
blocks and construct an approximate solution which is expected to be near the
one obtained by numerical methods. This intermediate solution removes instabili-
ties in amplitude at the expense of an increase of computer time. When tracing
rays becomes more complex as for anisotropic media, these perturbations tech-
niques mlght be very appealing and more efficient than a dumb numerical solver
although it is still an open question. For the isotropic case in a 2D medium, the
ratio between a Runge-Kutta scheme and a perturbation scheme is of a factor 2.
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6.10 Paraxial theory or linearization of ray tracing

Tracing rays is not enough: we need to estimate the amplitude in order to
compute seismogram and also for many other aims as two-point ray tracings, caus-
tic detections... The equation we need to solve is the transport equation. In fact,
this equation is related to the ray tube which is defined by rays. Solving the trans-
port equation leads to trace rays in the vicinity of a given selected ray. Solving di-
rectly the transport equation is not needed.

Until recently, the ray tube was estimated by tracing a nearby ray independent
of the considered ray. It was a strong weakness of the ray theory because any small
perturbation seen by the nearby ray and not by the true ray induced unstable be-
haviour of the amplitude estimation (Figure 6.35).

inaccurate nearby ray

true ray

Figure 6.35 Estimation of the ray tube by nearby rays.

6.10.1 Paraxial rays

By a relatively distorted approach linked to gaussian beams (Cerveny et al,
1982), seismologists go back to the elementary approach of perturbation theory
(Goldstein, 1980) which computes an infinitesimal nearby ray knowing an already
traced ray. This is the usual linearization approach, called paraxial theory or
Gauss optics, where the reference axis is the studied ray. The linearization stabi-
lizes the amplitude estimation because the nearby ray is only deviated by perturba-
tions seen by the reference ray. Moreover, the linearization makes the computa-
tion very fast.

Let us assume that the nearby ray is defined by a position and a slowness
vector

x(&) = x,()+6x (&)
p (&) = po(E+6p (D). (6.153)
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The reference ray is located by xq and py at parameter & such that

dx

—Jg =V, H(&, xq, po)

d

d%f = -V, HE % po) (6.154)

The following equations which must be verified by the nearby ray

dx
dé
dp
dE

=V, H( x. p)

= -V, H(, x, p) (6.155)

are perturbed to first-order giving for the first equation following equalities

dx dé

-;Zg- + —dg_x =V, . 5,H(, xo+ 6%, py+ 0p)

dxy 48

‘d‘é‘)‘ + “L“Z,Ex‘ = VPOH(éﬁ X5, pO) + VPOVPQH(és X, pO) 6p
+V, V. H(&, %, po) 6% - (6.156)

Further elimination of the evolution of the reference ray provides us the linear
system

déx

Z = VnVuHEx Y, Y, Hop (6.157)
%‘l = -V, V, H&x~V,V,Hbp (6.158)

where we have dropped the subscript zero for the reference ray because confusion
is no longer possible. Let us introduce the paraxial canonical ray 8y’ = (5x, dp)’
which verifies the linear system

Y _asy (6.159)
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where A is the following matrix deduced from eq. (6.157) and eq. (6.158)

VV,H VVH
-( ’ PP ) (6.160)

\-W.2V,H -V,V,H

computed on the reference ray, sometimes called central ray. The nearby ray com-
puted by this paraxial equation is only sensitive to heterogeneities felt by the refer-
ence ray, providing us a stable estimation of the ray tube. The linear system
(6.159) can be solved by the propagator technique (Aki and Richards, 1980) either
analytically when possible or numerically. The solution at parameter £ is deduced
from the solution at parameter & by

6y(&) = P( &) dy(&) (6.161)

where P(§, &) is the propagator allowing to go from & to & From propagator
theory, we have following properties

arP
g

In order to distinguish what concerns the position and the slowness vector, we
write the propagator in the standard form (Popov, 1982):

=AP and P&, &) =1. (6.162)

(6.163)

P &) = (Q‘ QZ)

where Q;, Q,, Py, P, are sub-matrices whose dimensions depend on the differen-
tial system we have selected. From the Liouville theorem which states that a vol-
ume in phase space is incompressible, we have the important property of the
propagator:

Trace (A) =0 > det P&, &) =1. (6.164)

Other relations, often called Luneberg relations (Luneberg, 1944}, coming from
differential rules, are

Q-0 =0

Q1P2[—Q2P1’ =1
P,P{-P,P! =0

PQI-P Q=1 (6.165)

Seismic ray tracing 281

which implies immediately (6.164) as well as the inverse propagator

P{ Q!
p-iz ( 1;1 52) . (6.166)
LR 1

Each submatrix is obtained by solving the propagator for particular initial
conditions. By assuming 6y (&) = [I 01, we obtain submatrices Q; and P,, while
Sy (&Y = [0 I] gives the two other submatrices Q; and P,. The linear combination
of these solutions is also a solution.

In a two-dimensional medium with cartesian coordinate system, we may de-
fine four elementary solutions with initial paraxial canonical vector equal to zero
except for one component dx or 8z or 8p,q or 6p, shown in Figure 6.36. General
solutions are obtained by linear combination but they are not paraxial rays: to be a
paraxial ray, they must verify the additional equation

§H =V,Héx+V,H8p=0 (6.167)

which means that V, H §x = 0 when 8p = 0 and V,H 8p = 0 when x = 0. Gener-
ally, elementary solutions are not paraxial rays. The Jacobian [,p can be estimated
with two elementary solutions. These solutions are associated with 8p, = 1, de-
noted by subscript 3 and 8p, = 1, denoted by subscript 4, initial conditions. The
Jacobian is obtained through the determinant

Py Ox;  Oxy
Jo=1{p. 6z Oz (6.168)
0 P Du
6x=1 62=l 8px=l

Figure 6.36 Geometrical illustration of elementary trajectories for a 2D medium: they are not
rays.
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Figure 6.37 shows the elementary solution for an initial slowness perturbation
along x as well as the elemetary solution for an initial slowness perturbation along
7. The paraxial ray is also estimated in this figure and is used for the Jacobian
computation.

It is very important to stress that the paraxial solution is always coordinate-
dependent and that coordinate transformations provide other paraxial approxima-
tions. Only when coordinate transformations are linear, can an equivalence be-
tween paraxial solutions be obtained. In particular, this is true between ray-cen-
tered and local cartesian coordinate systems (Cerveny, 1985) but it is not true for
non-linear transformation as proposed by Virieux and Ekstrom (1991).

Let us consider a vertical dependence of the velocity: the reduced hamilto-
nian

H (z x. py) = Nu? (@) - p? (6.169)

is selected for a ray pointing downward. We find the following linear differential
system

4s 0 2/ 2_ 55/2
y_( u(u*—py) ) (6.170)

“dz \o 0

Paraxdal W).(m Trgjectories Parcodal Z
J Parendal ray |

Offset Km

ix _T-mag

Figure 6.37 Paraxial trajectories as well as paraxial ray is drawn with an a-priori finite ampli-
tude. Only the space component of the paraxial vector is presented. The left panel is for an ini-
tial condition along x; the right panel is for an initial condition along z and the middle panel is
the paraxial ray.
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which leads to a quadrature for the paraxial canonical vector

5px (Z) = 5p\ (ZO)
: 2
5x(2) = 6x(2)+6p, (z0) | —2r—dz (6.171)
X( ) x( ()) p 0) . (112—pf)’/2
and a simple expression for the propagator
1
P= (0 %) (6.172)

The term Q, identified by relation (6.171) is related to the position X (eq. 6.122)
by
X_47 (6.173)

by
== | d
Q- dp\ dpx k4 \/uz-pi

which is linked to the Jacobian estimation (6.109).
For a constant gradient of the square of slowness, it is a trivial matter to ob-
tain the propagator as

1 -
( (t T") (6.174)
0 1

which gives the term Q, equivalent to the eq. (6.174).

For the general case, we must use previously mentioned methods for ray trac-
ing as numerical solvers, but the linearity allows one to integrate with a rather im-
portant sampling parameter. The effort for computing many elementary solutions
is the same as the one for one elementary solution because we need partial deriva-
tives of the hamiltonian along the central ray which is the most time-consuming
effort and which is performed only once. Because eq. (6.159) requires second-or-
der derivatives, we estimate velocity and its phase-space derivatives with B-splines
of order 4. Only few FORTRAN extra lines are required to solve the paraxial ray
tracing problem simultaneously as the ray tracing problem when the current posi-
tion of the ray is known. This is only true for smooth media. We shall see that in-
terface makes ray tracing more complex as well as paraxial ray tracing.

6.10.2 Beams of rays

Tracing paraxial rays with random initial conditions will sample the whole
space: we must select initial conditions in order to observe a plane wave or waves
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emitted by a point source. By a proper choice of initial conditions, we define a
beam of paraxial rays. In order to preserve the linearity of solutions, we define ini-
tial conditions as a hyperplane in phase space,

adp (&)+b6x (&) =0 (6.175)

which often is written in the following form
O0x (&) =€ 6p (&) (6.176)

with a possible infinite value for €. When ¢ = 0, we have the point source condi-
tion and when € = oo, we have the plane wave conditions. From eq. (6.161) and eq.
(6.176), a linear relation berween paraxial position and paraxial slowness vector

i

Op (&) = M (&) 8x (&) (6.177)

introduces the matrix

M (é) = €Q1+Q2~1€P1+P2 (6178)

which is related to the curvature of the local wavefront (Popov, 1982). In a two-
dimensional medium, we have the radius of curvature R equal to

on _ubn 1
R = — = = B 61
5 &, MG 617
as shown by Figure 6.13. The curvature,
K=c@ M, (6.180)

is therefore directly proportional to matrix M which justifies the notation. Finally,
the continuity of the wavefront deduced from the paraxial theory is related to the
spatial derivatives of the travel-time, information which is important in different
applications as earthquake locations or travel-time interpolations.

One might quote the different applications of the paraxial theory. The first
application is the estimation of the jacobian and, consequently, the amplitude
evaluation. The elementary surface dS’ is given by

ds’ (&) = det(eQ, + Q;)

sind o (&) (6.181)
sinf,

where 8 is the angle between the slowness vector and the paraxial position as
shown in Figure (6.38). We have the following simple interpretation of the
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paraxial position

slowness
vector

ray

Figure 6.38 Geometry of paraxial ray: the paraxial position as well as the paraxial slowness
vector define the paraxial vector. Jacobian and amplitude can be deduced from the paraxial
ray.

geometrical spreading of a plane wave with O, and the geometrical spreading of a
point source with Q,. Another application is the estimation of travel-time under a
parabolic approximation through the formula

T(x+5x)=T(x)+p-5x+%5x’ Méx. (6.182)

Finally, the estimation of geometrical spreading allows by iteration to shoot at a
given station by a Newton method. The two-point ray tracing problem can be
solved locally.

In partial conclusion, one can say that this paraxial theory is a rather classical
section of mechanical (Goldstein, 1980) or optical textbooks (Born and Wolf,
1986) and has been recently rediscovered by seismologists with the complexity of
the heterogeneity we have in the Earth. The use of centered ray coordinates sys-
tem is not required by this theory and is only a known way to reduce the number
of variables and equations.

6.11 Vector high frequency approximation

Until now, we have focused our attention on the scalar acoustic equation,
stating that the elastic case is not very different. We shall discuss here the high fre-
quency solution for the elastic case (Cerveny ez al., 1977). We start from a similar
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ansatz of the solution
u(x, ®=S(w)Ax, w)e®’™ (6.183)

where the amplitude term is a vector. A series in inverse powers of @ is assumed
for this vector

A*x)
A(xw) = 6.1
(x 21;‘ a— (6.184)

and is inserted in the elastodynamic equation

(Clj/e/u/e,l)’ j+fi = P”i,n (6185)
for an anisotropic medium. We consider an anistropic medium simply because the
elastgdynamlc equation has a compact form. Arranging eq. (6.185) in powers of @
we find a cascade of equations. The term in @? gives the following equation

CouT ;T | AR~pA2=0 (6.186)

which can be written as a relatively simple equation

CpAl-Al=0 (6.187)
with
CuT T
= —]‘——p—}——l (6.188)

The matrix [ is called the elastodynamic matrix of the ray theory and has very in-
teresting properties which we do not discuss here as they have no direct applica-
tions in the following.

Let us look for a non-zero solution of (6.187) and, consequently, for the
eigenvalues G, and eigenvectors g, of eq. (6.187). The eigenvalues G,, are defined
by setting the following determinant

D= det (l“,-,e — G,’S,‘é) (6189)

equal to zero. After a tedious manipulation, one can factor the determinant into
two terms

2
D = (% T i T, I Gm) (/l ‘:)2# T iT. i Gm) (6190)
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for an isotropic medium. We find two eigenvalues one of which has a double de-
generacy. The associated eigenvectors verify the following equations

(rl'/e - Gm &k)gzl =0. (6.191)

The eigenvector g’ is associated with the single eigenvalue and is orthogonal to
the two others g' and g? which can not be determined uniquely. The degeneracy
of the second eigenvalue determines only the plane where they are lying. Let us
denote two quantities with a notation which will be understood in a moment

o = A+2U
P
p=£ (6.192)
P

Equation (6.187) requires eigenvalues equal to the unity which implies one of the
two following equations

B!
~
I

L
o
1

(6.193)

M
.~
1

B
which show that o and 3 are local phase velocities and that egs. {6.193) are identi-
cal to the eikonal for the acoustic case. In other words, solving eikonal equations
for the elastic case is the same as solving eikonal equations for the acoustic
case.

For polarizations, the situation is slightly more complex and requires explic-
itly the isotropic case for eq. (6.186). We have

A2 9T (9T A%+ £ (VTP A - A" =0 (6.194)
p p
which gives the following equations by taking the scalar and cross products:

(VT -1)(A°- VD) =0

(BAVTP-1D(A°- VD) =0 (6.195)

il

For waves propagating at speed o, the following eqﬁgtion

A"xVT=0 (6.196)



288 Jean VIREEUX

should be verified and demonstrates that we have compressive waves called P
waves parallel to VT or slowness vector p. The amplitude is linearly polarized per-
pendicular to the wavefront

Al=A4; ¢, (6.197)
For waves propagating at speed f, the following equation
A’-VT=0 (6.198)

shows that the motion is perpendicular to the slowness vector and creates a shear
wave called § waves. The amplitude is elliptically polarized from the general ex-
pression ;

'

A=A g+ A, & (6.199)

Figure 6.39 summarizes the polarization of the two kinds of waves. The expres-
sion for the P-wave displacement in the frequency domain is

u(x, @) = S(w)tA; (x) L™ (6.200)

with an amplitude proportionnal to 1/Va pl]1. By going back to the time domain,
we find a similar solution to the acoustic case

ux, ) =t¢;(y, YZ)R{\/I_ E(t—TP (x))} . (6.201)

ap]

For § waves, an arbitrary selection of eigenvectors g; and g, leads to a coupling
between the propagation of amplitude A; and amplitude A,. For a specific set of
eigenvectors such that

dg

2t (6.202)

we obtain an independent propagation for quantities A, and A,. These partic-
ular vectors, denoted e, and e;, are those of the ray-centered coordinates system
(Figure 6.40) which provides a simple description of the propagation with a de-
coupling between A; and A,. I think this is the most important contribution of
this particular coordinate system. The S-wave displacement is given finally in the

Seismic ray tracing
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Figure 6.39 Polarization vectors in a 3D medium.

ray

Figure 6.40 Geometrical relation between Frénet vectors and ray-centered coordinate sys-

tem
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time domain by

ulx, ) =e ¢ (v, )R {—i: 3(f“ T, (X))}
VBpJ

+e; ¢2 (}/17 }/2) R {—1__.:: 3‘(1"" Tx (X))} . (6203)
Bp]
We must follow the evolution of the vectors e, and e, during the propagation.

This is the only added difficulty compared with the acoustic case, a remarkable re-
sult of the ray theory.

6.12 Interfaces
6.12.1 Discontinuity of first order

High frequency propagation assumes a smooth variation of physical proper-
ties of the medium, while in the Earth sharp boundaries are often met. If the
boundary is sharp enough in order to avoid any effect of a length scale, we can
still apply the ray theory from one side to the other one of the discontinuity and
check explicitly the “continuity” of the solution along the interface.

Starting with an incident wave denoted with subscript 7, a reflected wave de-
noted with subscript r and a transmitted wave denoted with subscript # are gener-
ated at the interface position. The continuity of the phase of the wave field and
the invariance with respect to time implies the equality of travel-times:

T,=T,=T, (6.204)

while the spatial tangential invariance along the interface implies the following
equality

axV . T;=nxV.T,=nxV,T, (6.205)

which is known to be the Snell-Descartes law. At the same time, we must require
the continuity of displacements and stresses along the interface. We must evaluate
the surface of ray tube intersected by the interface for the three kinds of rays as
well as reflection and transmission coefficients. The incident pressure at position
x; on the interface

P (x;, @) =S () ¢(y,, Yz)\/ 1 T ) =% KMAH (6.206)
u(xp)|J: (xp) |

generates reflected pressure at position x

m _'—1“_61@10() o5 KMAH (6.207)
P,(x, w) = S(®) ¢(11, )’Z)R'\/ [ xp Y u (], (0] ]

as well as transmitted pressure

U, (xp) l]l (XI) ! 1 €l‘wT’ (x) e-,‘% KMAH

u(x)1]; xpl Va1 0]

P,(x, 0) = S(@) o (1, mT\j
(6.208)

Denoting 6, the angle between the normal at the interface and the slowness vector
of the incident field at the hitting point as well as the angle 6, for reﬂecged fields
and the angle 6, for transmitted fields (Figure 6.41), we found geometrically

L) = -] {xp)
]t (x[) ][ (%) cosé,
L&) = Jr(x) cosf; (6.209)

and the continuity of the energy implies that J; is continuous which means

I _ ) (6.210)
cosf, cos6

reflected ray

incident ray planar approximation

at the hitting point M

interface

refracted ray

Figure 641 Geometry of rays at the interface between two media.
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"l?he reflected and transmitted coefficients R and T are those for plane waves hit-
ting a planar interface as a valid approximation at the high frequency we are look-
ing (Figure 6.41). Incorporating the effect of geometrical spreading in the coeffi-
cients published in the literature (Cerveny e al., 1977; Aki and Richards, 1980)
we found extended coefficients proposed by Cerveny (personal communication)

il

t=T¢wunum@l

u; (x7)| cost; |
r=R. (6.211)

;{‘he f{nal solution for a ray which has undertaken different conversions at inter-
aces is ;

P(x, @) =5 (w) ¢(y,. H\/I iT, (x) =i KMAH
¢ 14! 72) u(x)l](x){ e e’z , (6.212)

where IT is the product of extended coefficients r and ¢ along the ray. For the dis-

placement, we have to modify slightly the final formula as shown in the elastic ap-
proach and we get

f= T\/p/uz (x1) | cos8, |
piu; (X[) ! COSG{ l
r=R (6.213)
as well as the displacement
u(x, 0)=S(@) ¢y, Y1 \/“___1 £0T: () i3 KMAH
T Vp@wewiiml T C (6214
Finally, the ray theory is valid for smooth variation of reflection coefficients and

the mterfac'e curvature. Different strategies must be used when these properties
are not fulfilled as we have seen in a previous section.

6.12.2 Boundary conditions for paraxial rays

ane we have solved continuity conditions for the ray we must know how the
paraxial ray is converted through an interface. In other words, we must know how
the evolution of the ray tube is modified by the interface, which is a more difficult
problem than estimating the ray tube intersection with the interface.

A complete discussion is beyond the purpose of this course. Let us underline
that the Hamiltonian formalism has been useful to construct the connecting for-
mula as shown by Farra ef al. (1989), while the previous analysis by Cerveny et al.
(1974) was performed by pure differential geometry operators. Whatever the way
we construct this transformation, it must be a local linear transformation ex-
pressed by a matrix.

The new paraxial vectors 8y’ is obtained in the new medium through a linear
relation with the paraxial vector 8y of the incident medium. Basically two trans-
formations are required. The first operation is a projection [T along the slowness
vector of the reference ray of the paraxial vector on the interface. Then a second
operation, denoted T, must be performed and involves the curvature of the inter-
face at the hitting point of the reference ray. This term is difficult to estimate be-
cause media on each side of the interface can be heterogeneous, a situation found
only in seismology. Figure 6.42 summarizes the different transformations to allow

Incident Converted

.~ Ray
Hamiltonian egg + ~ ¥ H=(
\

1 AN

| ! |
| |
|

Same poin’F Same tangent 760M Same curvature

i —

Figure 6.42 Schematic interpretaion of boundary conditions at an interface for both rays and
paraxial vectors. The top panel shows the incident and converted hypersurfaces of each Hamil-
tonian equal to zero. These hypersurfaces are completely disconnected. The continuity of travel-
time connects the two hypersurfaces as one can seen in the leftof the bottom panel. The conti-
nuity of travel-time first-derivative requires the first “rotation” of one hypersurface with respect
to the other (middle figure of the bottom panel) and the continuity of travel-time second-deriva-
tive requires the second “rotation” (right figure of the bottom panel).
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a ray to be converted at an interface: a) the continuity of the time associated with
a translation of the incident and converted Hamiltonians at the intersecting point,
b) the continuity of the first derivative equivalent to the Snell law which implies
the first rotation of the Hamiltonians, ¢) the continuity of the second derivative
which implies the transformation between paraxial vectors.

6.12.3 Topology between interfaces and surrounding media

When solving ray tracing equations, we must always face the same problem
which is to know where is the ray position at each step of integration. The prob-
lem is now more difficult because the ray might have hit an interface and might go
into another medium. Therefore, we must provide a link between the description
of the different media and the description of interfaces. Basically, one interface
separates two media. This additional information about the topology of interfaces
and media must be provided to the ray tracing solver. Also, the different conver-
sions of the ray on interfaces must be defined. This is achieved through a signa-
ture saying into which media the ray is going through. A more global strategy is to

Model Misc
Frame Position
Xenin[ 000 Xemax| 3000 X[ T8 Km
Zmin[ 00 Zmax| 400 2[7755%5 Km
Add Control Point
Zomin | -
Zoum Out ’

i 0.00 20.00
0.0
- Mew interface
+ Add Point |
f L] L]
. Move Point |
n/\/\n
L]
. Velocity | 4.00
Draw Data Fite

Figure 6.43 Interface representation shown in a computer frame to define complex 2D mod-
els.
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assign a given type of conversion at a given interface and to let rays bouncing on
these interfaces until they reach the free surface.

It is worth mentioning that, whatever is the sophisticated formulation of ray
theory, the efficiency of a ray tracing code is linked to the efficiency of analyzing
the new estimated point of the ray. Many strategies exist and some of them have
been borrowed from graphical software or from image synthetics. For example,
instead of looking for an intersection with interfaces surrounding the current
medium where is the ray, we might look at intersections with simple basic vol-
umes/surfaces enveloping the interfaces. If the intersection is obtained, we must
go one step further and check the intersection with the interface itself. If not, we
have saved our time for an intersection search with a complex object as an arbi-
trary interface (Virieux and Farra, 1991). Figure 6.43 shows an interface defined
through B-spline interpolation, with control points which attract the interface
curve. Because the B-spline is of order 4, three points are needed to make the
curve going through the control point. Of course, discontinuity in curvature or in
slope is possible by handling carefully a multiplicity of control points.

6.13 Synthetic seismograms
6.13.1 Difficulties of ray seismograms

We have seen that, once one knows the ray arriving at a station, evaluating
synthetic seismograms is a simple matter in the framework of the ray theory. The
signal at the station is the contribution along the ray of an infinitely thin portion
of the medium. Constructing this line is a time-consuming task and missing a ray
is always possible. This is a weakness of the ray theory.

For finite frequencies, we expect singularities to be smoothed out by diffu-
sion: other areas of the medium not crossed by rays contribute to seismograms
(Chapman and Orcutt, 1985).

An intermediate approach between full wave propagation (Aki and Richards,
1980) and high frequency approximation of the ray theory has been proposed by
Chapman (1978) and has its root in spectral methods. The basic idea is to propose
a contribution of rays propagating into the medium even if they do not reach the
station.

6.13.2 WKB] seismograms

Let us start with a two-dimensional homogeneous medium of speed ¢. The
pressure P in the spectral domain is given by

P(x, w):éHé (-‘."l) (6.215)

c
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The Hankel function is decomposed into exponential functions which gives the
Weyl integral

e d
Pix, o)=L | gows g L (6.216)
4 Jeeo q
where
2, ,2_1
Fepi=t (6.217)
c

for positive frequency @ and positive coordinate z. The quantity ¢ needed in the
integral 6.216 requires the definition of the square root: we select ¢ such that
Inm (g) > 0 in order to have a damping of waves when z is positive. When the
square root is real, eq. 6.216 is a decomposition in plane waves and, when the
square root is complex, we have contribution of inhomogeneous waves (Figure
6.44).

The solution in the time domain

1 o o N dp
J2 - iw(px + gz~ 1) .
(x, ) = J dcoJ. e 37, (6.218)

can be evaluated either by integrating on p before integrating on @ — reflectivity
method (real p) and full wave theory (complex p) — or by integrating first on @
and then on p - generalized ray method (complex p) or WKBJ method (real p).
The last method has a simple physical interpretation related to rays and we de-
scribe it now.

Changing the integration variable from p to angle 6 by

sin@ cos@
=00 nd =0 (6.219)
simplify even more eq. 6.218
_ 1 im(T—t)i
P 0= [do Le -de. (6.220)

The contour L is given by Figure 6.45 where angle 0 has imaginary components.
Integration is often along the real axis. Oher contours are possible: the full wave
theory (Aki and Richards, 1980) select the complex Cagniard path to estimate the
solution. The travel-time T = p - x is the travel-time of a plane wave with a direc-
tion p. This equation is exact with inhomogeneous waves along the z axis. These
waves which are important near the source are often neglected at high frequency.
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Figure 6.44 Summation of plane waves (progressive and evanescent waves) for a seismogram
at the observer.
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Figure 6.45 Integration path over the complex angle 6.

Moreover, the principal contribution of the oscillating exponential term comes
from the saddle point where the oscillation is the smallest. This saddle point is
given by

%:%(xcos@»zs’in()), . (6.221)
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which gives the angle of the geometrical ray arriving at the station (Figure
6.46)

tan (6;) = g (6.222)
and a contribution to the pressure from the saddle point approximation
__H (t - 1)
S N N
4 ¥ r
. \/ LT
c

equal to the high frequency approximation computed previously. We extend the
integral evaluation on the real contour of L and obtain by integration on @

(6.223)

1 7 1
Px,)=—R||?> ——— d6]. .
(0= [J-gz—T(e) ] (6.224)

This integral has contribution of many angles corresponding different rays and has
a singularity in ¢ = T which is removed by an adequate smoothing: a small imagi-
nary part {(often equal to /A where At is the time sampling) is added to the travel-
time T. The missing segments of contour L induce cut-off phases because plane
waves have equal importance in their contribution to the pressure, but the ap-

nearly zero o
conftribution s:gnlfl.can'f
contribution

to seismogram

Figure 646 Summation of gaussian waves.
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proximation is better than taking only the geometrical arrival which need not to
be calculated: two-point ray tracing is avoided.

The extension in a medium with arbitrary vertical variation of the velocity is
straigthforward and one obtains

Q(Zoﬁp)
P(x, £) = j ‘,q(z, ; t—T(p, — (6.225)

where ¢ is now depending in z and the travel-time T(p, 2, x) is the sum of the
travel-time of the ray reaching the depth z and the horizontal travel-time between
x and the position of the ray X(p, z) as shown in Figure 6.46, ie.

T, z, x) = Tp, 2) +plx—X(p, 2)). (6.226)

The procedure to compute pressure P is done in three steps: 1) decomposition of
the source in Snell waves (decomposition in p), 2) propagation of each Snell wave
and 3) summation at the station of the different Snell waves with the travel-time T
and the geometrical spreading 1/4/g. An extension of the method, called Maslov
method, allows to consider laterally variable medium.

The cut-off phases coming from neglecting inhomogeneous waves are the
main drawback of this approach. It has been proposed to evaluate asymptotically
these branches. Another technique is to make negligable the contribution of these
branches by deforming the plane wave decomposition in order to have more local
decomposition around the geometrical arrival. Finally, other approximations of
the path integral are possible and the WKM method mentioned by Helmberger
(1996, this issue) is a slight investigation in the complex p plane to reduce these
cut-off phases.

6.13.3 Gaussian beam summation

The geometrical spreading in a vertically varying medium without interfaces is
given by

osb iy, (6.227)

q(z, p)= @

for a plane wave. We write the decomposition (6.225) in a more explicit expres-
sion

P, t)=

c(@cosls - 4o
6.228)
J- \/c(zo)coste t=T(p, z, x) (



300 JeEAN VIRIEUX

and generalize the factor O, to a factor Q which includes the effect of the plane
wave as well as the effect of the point source. The geometrical spreading can be

defined by

Q=0+¢'Q, (6.229)

as seen in the paraxial theory section: the plane wave with a zero curvature of the
wavefront is deformed into a wave with a curvature M given by

P +e'P,
M= (6.230)
Qi+em

and related to a wavefront defined by
T %2 =T )+px-Xp, )+ % =X, D Mx-X@, 2. (6.231)

The good selection of ¢ is still an open question (White ez af., 1988; Weber, 1988)
and is related to the completeness of the decomposition of the pressure in these
local waves. For a fixed arbitrary error in the initial pressure, a decomposition in
gaussian waves can be performed. For Gaussian Beam Summation, the parameter
€ is complex, while, for the Maslov method, the parameter ¢ is real. Moreover, for
the Maslov method, the parameter € is such that one obtains plane waves at the
receiver.

These extensions of the ray theory for synthetizing seismograms have partici-
pated to the renewal of the ray theory in seismology and have increased their do-
main of application.

6.14 Conclusions

The ray theory allows many interpretations of propagation inside the Earth.
In these notes, we have not considered dissipation or dispersion which are often
met during propagation. Anisotropy has been a subject we have neglected. Also
the layered structure which is questionable for the deep crust has not been consid-
ered here. Many extensions of the ray theory are possible and the future will show
us how rich of consequences is this theory as it has already been in the past.

For applications, let us quote an obvious list. Locating earthquakes requires
ray tracing between the expected position of the earthquake and stations at the
Earth surface. The different slowness vectors at the source position allows to move
the source towards a more accurate position which minimizes travel-time residues.
At the same time, these initial slowness vectors gives the position onto the focal
sphere of different stations: focal mechanisms can be deduced. Routine programs
use mainly the layered approximation which is often a crude approximation for
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many local networks. Synthesizing seismograms is also very important for the in-
terpretation of seismic profiles along complex geological structures. Travel-time
tomography with very sophisticated inversion schemes needs efficient ray tracing
in order to give the most accurate image of the Earth interior. Going to diffraction
tomography where the amplitude is also analyzed is a further step where ray the-
ory brings its efficiency and its capacity of interpretation. These different subjects,
which have been presented in other lectures, are those which should interest you
for different applications of ray theory.
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A. Dziewonski and W.-J. Su for providing me the Figure 6.4.

Finally, without the support of the Institut Universitaire de France, this work
would not have been performed.
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Portable broadband seismology:
results from an experiment in New Zealand
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7.1 Instrumentation, deployment, and database
7.1.1 Modern field seismology

Two separate technological advances made in the last 5 years have allowed us
to collect observatory-quality seismic data from affordable, temporary arrays. One
was the development of robust instruments with stable response characteristics
over a wide range of frequencies, including surface wave frequencies. Their essen-
tial characteristic is ease of installation: an expensive site requiring, for example,
mains power and precise temperature and pressure control would defeat the ob-
ject of portability. The other was the advent of cheap mass storage to preserve the
enormous volume of data these instruments produce, particularly when running
continuously rather than in triggered mode. We now think nothing of using hard
disks with a capacity of 1 Gbyte, backed up on cheap tapes holding several
Gbytes each. A large dynamic range is needed to preserve the full range of seismic
amplitudes, from emergent body wave arrivals to surface waves. Analogue systems
could not record both P and surface waves on the same trace and the signal was
therefore split into short period and long period recordings, with different gains
and sampling frequencies. This restricted seismic studies either to permanent ob-
servatory sites, which are not always in ideal locations of interest or even sited
with earthquake seismology in mind (indeed the first permanent arrays, such as
NORSAR, were deliberately sited in uninteresting areas so as to reduce site effects
on the signals), or to field arrays with short- period instrumentation, usually de-
signed for specific local or regional studies, run in triggered mode. Triggering in-
variably leads to a loss of interesting data, and central récording is essential in pre-
venting spurious triggers from events close to one of the stations. The new tech-
nology means that we can now put the “observatories” where we want them, pro-
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