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Abstract. Discrete multiplicative turbulent cascades are described using a formalism involving infinitely
divisible random measures. This permits to consider the continuous limit of a cascade developed on a
continuum of scales, and to provide the stochastic equations defining such processes, involving infinitely
divisible stochastic integrals. Causal evolution laws are also given. This gives the first general stochastic
equations which generate continuous multifractal measures or processes.

PACS. 02.50.Ey Stochastic processes – 05.40.Fb Random walks and Lévy flights

1 Introduction

Multiplicative cascades were first introduced in turbu-
lence to model the energy flux in the inertial range.
The cascade formalism was originally introduced as
a discrete (in scale) procedure, with a fixed (often 2)
scale ratio between the scale of a structure and that
of the daughter structures (see [1–4]). Discrete cascade
models lead to discrete scale invariance, characterized
by log-periodic modulations [5–8]. On the other hand,
a continuous symmetry leading to scaling for any scale
ratio has been proposed, and corresponds to a scale
densification of cascade models [9–14]. Scale densifica-
tion implies the use of infinitely divisible (ID) random
variables, defining cascade models that can be called
log-ID [10,11,13], and have been compared to ex-
perimental data in various studies [15–20]. This then
leads to an interrogation: discrete cascade models are
built using a simple recursive multiplicative procedure (see
below), but what is the continuous limit of this proce-
dure? What is the stochastic equation generating contin-
uous multifractals? Up to now, the process generated by
such continuous multiplicative cascades has not been ex-
plicitly described in the general case; only its statistical
moments are given [13], or some general relation verified
by the pdf at different scales [21]. This paper aims at de-
tailing how ID random measures can be introduced for
discrete cascades; their continuous limit is then given in
the form of ID stochastic integrals. The stochastic evo-
lution laws that generate causal continuous multifractal
processes will also be provided. This is of direct impor-
tance for providing estimators of the future state of the
process.
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2 Discrete multiplicative cascades

Soon after Kolmogorov and Obukhov published their log-
normal proposal for the statistics of the small-scale dis-
sipation field [22,23], experimental studies showed that
the dissipation field had long-range power-law correlations
[24,25]. This lead Yaglom to propose a random cascade
model with long-range correlations and small-scale lognor-
mal statistics [1]. Yaglom’s multiplicative cascade model is
at the basis of most cascade models introduced later to ac-
count for turbulent intermittency. It is a discrete (in scale)
model, but most of its properties are shared by continuous
models. A lognormal pdf is assumed, but this is an unnec-
essary hypothesis, as is now well recognised. This model
is multiplicative, nested in a recursive manner. The multi-
plicative hypothesis generates large fluctuations, and the
stacking generates long-range correlations, giving spatially
to these large fluctuations their intermittent character.

As is classically done (see e.g. Frisch [26]), we define
the cascade yielding a dissipation field ε(x) at the smallest
scale `0, as the product

ε(x) =
n∏
i=1

Wi,x (1)

of n independent realisations Wi,x of a common, positive
law (see Fig. 1). The cascade is developed from the
largest scale L down to `0 = L/Λ where Λ = λn1 is the
total scale ratio and λ1 > 1 is the constant scale ratio
between two consecutive scales. Generally one assume
for convenience λ1 = 2, but we will later on consider the
λ1 → 1 limit corresponding to a continuous cascade [27].
Since all random variables are independent, one has the
moments of order q > 0 of ε:

〈(ε(x))q〉 =
n∏
i=1

〈(Wi,x)q〉 = 〈W q〉n = ΛK(q) (2)
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Fig. 1. Schematic representation of a discrete multiplicative
cascade.

where K(q) = logλ1
〈W q〉. For discrete cascades, the an-

alytical expression taken by K(q) is only loosely con-
strained a priori: by conservation K(0) = 0, K(1) = 0,
and since K(q) is – up to a logλ1 factor – the second
Laplace characteristic function of the random variable
logW , it is a convex function (see [28]).

To densify the cascade described above, we keep the
total scale ratio Λ large but fixed; the continuous limit
can be obtained by increasing the total step number n,
hence λ1 = Λ1/n → 1+ (see [13,19,27,29]). Equation (1)
then shows that, in this limit, log ε is an ID random vari-
able (see [28] for ID random variables): continuous cascade
models are log-ID [10,11,13,14]. This restricts the eligible
cascade models, since ID laws define a specific family of
probability distributions.

Let us also mention one of the main properties of
multiplicative cascades: long-range power-law correla-
tions. Following the development given by Yaglom [1],
one can consider two points separated by a distance
r as having common ancestors from steps 1 to p, and
separated (hence the corresponding random variables
are independent) paths for steps p to n, where λp1 ≈ r.
Direct calculations then provides the classical result for
two-points correlations of multifractal fields [30,31]:

〈ε(x)pε(x+ r)q〉 ≈ ΛK(p+q)rK(p)+K(q)−K(p+q) (3)

for p > 0 and q > 0. Since K(q) is non-linear for multifrac-
tal distributions, the exponent K(p) + K(q) − K(p + q)
quantifies the long-range power law correlations of mul-
tifractal measures. For p = q = 1, this yields the µ =
K(2) exponent originally given for usual correlations by
Yaglom [1].

The scaling law for the moments (1) and the power-law
correlations (3) are the two signatures of multifractality,
that are to be recovered by multifractal stochastic models,
as we define them below.

3 ID random measures and stochastic
integrals

The densification of a multiplicative cascade implies that
log ε is an ID random variable; we now express this densifi-
cation in the form of ID stochastic integrals. Since we need
below to consider moments of order q > 0 of the ID ran-
dom variable Γ = log ε, we consider ID laws for which the

second Laplace characteristic function ΨX(q) = log〈eqX〉
converges for a given domain Θ. For an ID random vari-
able X , one has the general result that ∀ n integer, ΨX(q)

n
is still a second characteristic function. This shows that
a family of ID laws can be defined: two ID laws belong
to the same family if their second characteristic function
is proportional. Then each ID family can be character-
ized by a reference function Ψ0(q). We choose a reference
function such that Ψ0(1) = 1, and for an ID random vari-
able X , we define its scale S(X) as the proportionality
factor, giving the general identity ΨX(q) = S(X) Ψ0(q).
The scale is a positive real number; it is an additive func-
tion since for two independent ID random variables X
and Y of the same family, it is easily checked that we
have S(X+Y ) = S(X)+S(Y ). An ID random variable is
then uniquely characterized by its reference second char-
acteristic function and its scale (relative to this reference
function). As examples, Ψ0(q) = q2 for a Gaussian law,
and Ψ0(q) = log2(1 + q) for a Gamma law.

We then define ID random measures as set func-
tions M(A), such that ∀ A, M(A) is an ID random
variable, with a scale given by S(M(A)) = m(A),
m(A) being the control measure of M(A). We can
easily check that M(A) possesses the basic additive
property of random measures: for two sets A and B with
A ∩ B = ∅, let us note C = A ∪ B. By definition, M(C)
is a ID law, and its scale verifies: S(M(C)) = m(C)
= m(A) + m(B) = S(M(A)) + S(M(B)), hence that
M(C) = M(A)+M(B). This corresponds to the following
second characteristic function for M(A):

ΨM(A)(q) = m(A) Ψ0(q). (4)

This expression takes a more familiar form in the 1D case
when A = [0, t] is an interval, and taking M(A) = Y (t)−
Y (0) = Y (t) where Y is a process with independent and
stationary increments. Then one has the classical result
ΨY (t)(q) = t ΨZ(q) where Z is the stationary process given
by Z(t) = Y (t) − Y (t − 1). In the following we keep the
random measure notation, which is more general.

Having introduced an ID random measure M , a
stochastic integral can be built (see e.g. [33]), as a Stiltjes
integral:∫ b

a

f(t)M(dt) = lim
n→∞

n−1∑
i=0

f

(
a+ i

b− a
n

)
×M

(
a+ i

b− a
n

, a+ (i+ 1)
b− a
n

)
. (5)

As we will see below, the densification of the cascade leads
to a stochastic integral with f(t) = 1 ∀ t. In this case,
the second characteristic function of the integral has a
simple expression. Let us note I =

∫
AM(dx). By ad-

ditive property, I is still an ID law of the same family
as M , and its scale is given by S(I) = S

(∫
A
M(dx)

)
=
∫
A dx = m(A), such that we have still equation (4)

with M(A) =
∫
AM(dx) and m(A) =

∫
A dx. Let us

note that when f is not identically 1, the result is not
so simple, since an addition of ID random variables be-
longs to the same family, but not a linear combination.
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Fig. 2. Conic structure starting at position x, corresponding
to the integration surface to obtain Γ (x).

One has is this case (if the integral converges, see [33]):
ΨI(q) =

∫
A
Ψ0 (qf(x)) dx, showing that in general, ΨI(q)

is not proportional to Ψ0(q).

4 Densification of the cascade and stochastic
equations
Let us introduce λ a variable scale ratio, verifying
1 ≤ λ ≤ Λ, where Λ is the fixed largest scale ratio.
We also introduce R = logΛ and r = logλ. The
elementary scale ratio introduced above writes now
λ1 = λ1/n = eR/n. The discrete cascade corresponds to
introducing a stochastic kernel M and intervals Ap and
Bp such that

Γ (x) = log ε(x) =
n−1∑
p=0

M (Ap, Bp(x)) (6)

where here M(A,B) is a random variable depending only
on m(A), giving ΨM(A,B)(q) = m(A)Ψ0(q). The intervals
Ap and Bp, responsible for the cascading parent/children
structure, are built in the following way: the width of
Ap is linear in r, giving Ap = [pRn ,

(p+1)R
n ]. The intervals

Bp(x) are centered in x and of width proportional to
λp1 = epR/n, giving Bp(x) = [x − τ

2 epR/n, x + τ
2 epR/n]

where τ = L/Λ is the resolution. The densification,
corresponding to n → ∞, transforms then equation (6)
into a stochastic integral and using equation (5) (with
f=1), we obtain finally that:

εΛ(x) = Λ−c exp
∫ Λ

1

M

(
cdλ
λ
,DλI0(x)

)
(7)

where c > 0 is a parameter, I0(x) is the interval of length
τ centered in x, and Dλ is the dilatation operator of fac-
tor λ. At a given position x, the stochastic integral cor-
responds to a kernel visiting a conical structure, as rep-
resented in Figure 2. This expression can be generalized
to d-dimensional domains, and also to anisotropic scaling
symmetries.

It can be easily verified that this stochastic equation
generates a multifractal field. Indeed, the moments are
scaling as 〈εqΛ〉 = ΛK(q) with

K(q) = c (Ψ0(q)− q) . (8)

Moreover the two-points statistics can also be recov-
ered: as was done above for equation (3), the correlation

Fig. 3. Intersection of two conic structures centered at posi-
tions x and x+ y.

〈(εΛ(x))p (εΛ(x+ y))q〉 involves two integrals which have
no intersection (and thus are independent random vari-
ables) for λ < λ0, where λ0 = er0 = y

τ . λ0 is the scale ratio
of transition, as shown in Figure 3, and for λ0 ≤ λ ≤ Λ,
the random variables corresponding to the two stochastic
integrals are no more independent. After some calcula-
tions, this leads to the same expression as equation (3) for
discrete cascades.

We also give the expression for causal cascades, where
the position is time and the past does not depend on
the future. This case is of particular importance for
prediction of multifractal times series. In this case, one
can readily modify the intervals Bp(t) by taking an
interval of the same length as before but preceding t:
Bp(t) = [t − τ exp(pR/n), t]. This gives the following
causal stochastic evolution law for continuous multifrac-
tals:

εΛ(t) = Λ−c exp
∫ Λ

1

M

(
cdλ
λ
, [t− τλ, t]

)
(9)

Let us finally consider an important family, cor-
responding to logstable multifractals [9,32], including
the lognormal case. Stable laws are ID, and possess a
stronger property corresponding to stability, which can
be written here M(kA) .= k1/αM(A) for k > 0, where ‘ .=’
means equality in distribution and 0 ≤ α ≤ 2 is the Lévy
index; α = 2 for the Gaussian case [33,34]. We have here
Ψ0(q) = qα; we note that when α < 2, the second Laplace
characteristic function is defined for positive moments
only for asymmetric laws for which hyperbolic pdf cor-
responds to negative fluctuations (Pr(−X > x) ≈ x−α),
whereas positive fluctuations have an exponential decay
[9,32]. Then, by splitting equation (6) into two integrals,
corresponding to backward and forward domains, and
introducing the change of variables u = x − τ

2λ and
v = x + τ

2λ respectively, one obtains (introducing the
Lévy measure Lα(du) = M(du, [u, x])) a stable stochastic
integral:

εΛ(x) = Λ−c exp
∫
A(x)

|u− x|−1/αdLα(cu) (10)

where A(x) = [x−X/2, x− τ/2]∪ [x+ τ/2, x+X/2] and
Λ = X/τ . This equation corresponds to the exponential
of a fractional integration (over a limited domain) of
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order 1− 1/α of a Lévy-stable noise. This expression was
already given [9,31] by phenomenological arguments, and
is here derived as a direct consequence of the densification.
When the position is time, we obtain the following causal
stochastic evolution equation for a logstable multifractal
generated with a fixed scale ratio Λ = T/τ :

εΛ(t) = Λ−c exp
∫ t−τ

t−T
(t− u)−1/αdLα(cu). (11)

This can be directly used in numerical simulations. For
lognormal multifractals Lα is replaced by the Wiener mea-
sure W .

5 Conclusion

We now discuss the new results provided by our approach,
compared to related papers. She and Waymire [13] have
given a general expression for K(q) for continuous cas-
cades, using the canonical Lévy-Khinchine representation
for the second characteristic function of ID laws. This
could of course also be provided here. On the other hand,
we have pushed further the analysis, since the process it-
self was not studied in [13]. Castaing and collaborators
have studied the convolution properties of the probabil-
ity density of velocity increments under a change of scale,
for continuous cascades [14,18,21]. This property is re-
covered here (it can be obtained from equation (7)), and
we also provide the stochastic equation for the process it-
self. Other studies have provided Fokker-Planck [35] or
Langevin [36] equations for the cascade process in the
scale-ratio space. These equations apply only to lognor-
mal cascades. These studies consider a fixed spatial (or
temporal) position and provide stochastic equations for
the cascade process developing at this particular position.
This framework is then different from ours by the fact that
(i) the position is not taken into account, whereas we in-
cluded the position in our equations, and (ii) we provided
equations for the general log-ID case, and not only for the
lognormal case.

We have obtained continuous multifractals as the
exponential of a stochastic integral. This formalization
is of great interest for theoretical studies since it pro-
vides the first general stochastic equations for continu-
ous multifractals. These equations can be generalized to
anisotropic situations, and their dynamical properties (i.e.
error growth and the corresponding predictability limit, or
return times) are now open to theoretical studies, whereas
before such studies were possible only through numerical
simulations. We have also provided the general evolution
equation for causal continuous multifractal processes. We
have shown how these equations simplify for log-stable
and lognormal multifractals.

These equations can be used for numerical simulations
of continuous multifractals. In the general log-ID case,
equation (7) can be used as follows: a 2D ID noise must be
generated, in the r (r = logλ is the logarithm of the scale
ratio) -position plane. Then for each position, a numerical
path-integration is performed in this plane, as given by
this equation. In the stable case the procedure is simpler,

since it is enough to simulate a 1D stable (or Gaussian)
noise and to proceed to a fractional integration over this
noise, as given by equation (10).

The impetus to undertake this work has been given some
time ago by C. Nicolis, which is gratefully acknowledged.
The authors thank also S. Lovejoy, T. Over, D. Schertzer,
S. Vannitsem for useful discussions. An anonymous referee is
thanked for useful comments.
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