Institut Langevin

Time Manipulations of Waves

Mathias Fink

Ecole Supérieure de Physique et Chimie Industrielles (ESPCI Paris), CNRS, PSL Research University
1 rue Jussieu, 75005 Paris, France mathias.fink@espci.fr

The duality between Space and Time variables in Wave Physics

$\left\{\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{c(\vec{r})^{2}} \frac{\partial^{2}}{\partial t^{2}}\right\} \varphi(\vec{r}, t)=0$ 2^{d} order Linear PDE
Space-Time (4D)

Physicists want to determine the solutions in a « hypervolume (4D) » if one knows the field on its boundary (a « hypersurface (3D) ») We may define two types of Cauchy conditions that contain enough information to predict the field everywhere at any time (past or future) : 1 - Cauchy (spatial) boundary conditions (BC) prescribe both
$\left\{\varphi(\vec{r}, t), \partial_{\mathrm{n}} \varphi(\vec{r}, t)\right\}$ for $\vec{r} \in S$, for all t 2 spatial and 1 temporal dimensions
2 - Cauchy Initial conditions (IC) prescribe both $\left\{\varphi\left(\vec{r}, t=t_{i}\right), \partial_{t} \varphi\left(\vec{r}, t=t_{i}\right)\right\}$ for all $\vec{r} \in V$

3 spatial dimensions

Causality

Non dissipative heterogeneous medium with a source

$$
\left\{\Delta-\frac{1}{c^{2}(\vec{r})} \frac{\partial^{2}}{\partial t^{2}}\right\} \varphi(\vec{r}, t)=s(\vec{r}, t)
$$

Dual Solutions - Time-Reversal Invariance

$$
\varphi_{\text {caus }}(\vec{r}, t)
$$

To build a Time Machine for Waves : $\mathbf{2}$ approaches
1- The Loschmidt approach (IC) : instantaneous TR
2- TR on the boundary (BC) : the time reversal mirror

I - Manipulating initial conditions (IC). The Instantaneous Time Mirror (ITM) "à la Loschmidt"

- record on the whole volume V the final conditions at time t_{f}

$$
\left\{\varphi\left(\vec{r}^{\prime}, t_{f}\right) ; \partial_{t} \varphi\left(\vec{r}^{\prime}, t_{f}\right)\right\}
$$

Analogy with Trajectory Reversal of N particles

- prepare new initial conditions:
$\varphi\left(\vec{r}^{\prime}, t_{i}\right)=\varphi\left(\vec{r}^{\prime}, t_{f}\right)$ and $\partial_{t} \varphi\left(\vec{r}^{\prime}, t_{i}\right)=-\partial_{t} \varphi\left(\vec{r}^{\prime}, t_{f}\right)$
$\left\{\varphi\left(\vec{r}^{\prime}, t_{f}\right) ;-\partial_{t} \varphi\left(\vec{r}^{\prime}, t_{f}\right)\right\}$

How can you change the relation between the wave field and its temporal derivative ? The concept of time boundary!!

II - Manipulating (spatial) boundary conditions (BC) : the Time-Reversal Mirror approach

- record on the boundary $\varphi\left(\vec{r}^{\prime}, t\right) ; \partial_{n} \varphi\left(\vec{r}^{\prime}, t\right)$
- transmit from the boundary $\varphi\left(\vec{r}^{\prime}, T-t\right) ; \partial_{n} \psi(\vec{\prime}, T-t)$

Origin of Diffraction Limits in Wave Physics

Pulsed mode - the homogeneous medium

Origin of Diffraction Limits in Wave Physics

$$
\text { wavelength } \lambda \quad \bigcap \cap
$$

Analogy bewteen a TR experiment and spatial correlation in white noise

Closed Time-Reversal Mirror

Isotropic white noise

$\varphi_{T R-\text { mirror }}(B, t)=G_{\text {caus }}(A, B ;-t)-G_{\text {caus }}(A, B ; t) \quad \partial_{t} C(A, B, t) \prec G_{\text {caus }}(A, B ;-t)-G_{\text {caus }}(A, B ; t)$

Time-reversal mirror in a reverberating medium

Phase 2
A small number of antenna with large memory is enough !!!

A one transducer time-reversal mirror

The time-reversed wave opticaly detected

A 2 ms duration signal transmitted by point B:

 TR
 The key: number of eigenmodes excited by the source. Frequency diversity

$$
t=+0.0 \mu \mathrm{~s}
$$

Displacement field recorded on a square $15 \times 15 \mathrm{~mm}^{2}$

II- Time-Reversal «à la Loschmidt » Manipulating time boundaries.

The Instantaneous Time Mirror

A water wave experiment

Revisiting Loschmidt point of view

- record on the whole volume V the final conditions at time t_{f}

$$
\varphi\left(\vec{r}, t_{f}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{f}\right)
$$

- prepare new initial conditions : changing the relation between the wave field and its temporal derivative

$$
\left\{\varphi\left(\vec{r}, t_{i}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{i}\right)\right\}=\left\{\varphi\left(\vec{r}, t_{f}\right) ;-\partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}
$$

A first alternative : Canceling the time derivative : $\partial_{t} \varphi\left(\vec{r}, t_{i}\right)=0$

$$
\begin{aligned}
& \left\{\varphi\left(\vec{r}, t_{i}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{i}\right)\right\}=\left\{\varphi\left(\vec{r}, t_{f}\right) ; 0\right\} \quad \text { "A la Neumann" } \\
& \left\{1 / 2 \varphi\left(\vec{r}, t_{f}\right) ; 1 / 2 \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}+\left\{1 / 2 \varphi\left(\vec{r}, t_{f}\right) ;-1 / 2 \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\} \\
& 1 / 2 \text { the forward wave }+1 / 2 \text { the time-reversed wave }
\end{aligned}
$$

A second alternative : Canceling the field : $\quad \varphi\left(\vec{r}, t_{i}\right)=0$

$$
\begin{array}{r}
\left\{\varphi\left(\vec{r}, t_{i}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{i}\right)\right\}=\left\{0 ; \partial_{t} \varphi\left(\vec{r}, t_{i}\right)\right\} \quad \text { «A la Dirichlet» } \\
\left\{1 / 2 \varphi\left(\vec{r}, t_{f}\right) ; 1 / 2 \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}-\left\{1 / 2 \varphi\left(\vec{r}, t_{f}\right) ;-1 / 2 \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}
\end{array}
$$

$1 / 2$ the forward wave $\quad-1 / 2$ the time-reversed wave

How to change suddendly the relation between the wavefield and its temporal derivative?

It depends on the wave velocity.

Imagine that you can change instantaneously the wave velocity in the whole space ?

Let us look Water Waves as a first example

The case of Water Waves .

The main restoring force is Gravity : Gravity Waves

inviscid and
incompressible flow

$$
\begin{aligned}
& \vec{v}(\vec{r}, t)=\vec{\nabla} \phi \\
& \Delta \phi=0
\end{aligned}
$$

Linearization

$$
\begin{aligned}
& \partial_{t} \eta=\partial_{z} \phi \quad \text { at } \quad z=0 \\
& \partial_{t} \phi+g \eta=0 \quad \text { at } \quad z=0 \\
& \phi(x, z, t)=Z(z) \exp (k x-\omega t) \quad \Rightarrow \quad \text { Dispersion relation } \omega^{2}=g k \tanh (k h)
\end{aligned}
$$

For shallow water $\quad c_{0}=\sqrt{g h}$ How to change wave velocity? change gravity !!!!!!

Let us try a very brief vertical acceleration of a water tank !!

Transient observation of water wave radiated by an impulsive source Source

Water tank

Here some time after the wave is radiated, we suddendly shake vertically the water tank. The gravity is modulated $g \Rightarrow g+\gamma(t)$, therefore the wave velocity is suddendly changed with respect to c_{0}^{2} to $c_{0}^{2}(1+\gamma(t) / g)$ with $\gamma(t) / g \sim \beta \delta\left(t-t_{f}\right)$

One creates a time discontinuity in the water tank by changing suddendly the wave velocity
V. Bacot, M. Labousse, A. Eddy, M. Fink , E. Fort.
« Time reversal and holography with spacetime transformations »,, Nature Physics (Oct 2016)

The setup

V. Bacot, M. Labousse, A. Eddy, M. Fink , E. Fort.
«Time reversal and holography with spacetime transformations »,, Nature Physics (2016)

The instantaneous time mirror (ITM) experiment

Instantaneous emission of a backpropagating wave ...
... from the whole space

In situ time reversal : instantaneous, no need to record the phase

The instantaneous time mirror (ITM) experiment

Apparition of reversed wave at instant of jolt

From the side, slowed down 50 times

Why ?

Huygens Principle revisited. The Cauchy Problem

The Huygens Intuition

The case of shallow water (no dispersion)

The wavefront at any instant conforms to the upper envelope of spherical wavelets emanating from every point on the wavefront at the prior instant Why does an expanding spherical wave continue to expand outward from its source, rather than re-converging inward back toward the source ?

Later Fresnel and Kirchoff introduced the concept of interference and shows that in order to build a self-consistent solution the wavelets are to be monopole and dipole with obliquity factors

Huygens revisited by a sudden shake

Energy injection

Equivalent to a wave equation with a source term
$\begin{aligned} & \text { at time } t_{f}\left\{\Delta-\frac{1}{c_{0}{ }^{2}} \partial_{t t}\right\} \varphi(\vec{r}, t)=s(\vec{r}, t) \\ & \text { where } s(\vec{r}, t) \simeq-\frac{\gamma(t)}{c_{0}{ }^{2} g} \partial_{t t} \varphi(\vec{r}, t) \text { with } \gamma(t) / g \approx \beta \delta\left(t-t_{f}\right) \\ & \text { mongpoles }\end{aligned}$

V. Bacot, M. Labousse, A. Eddy, M. Fink , E. Fort.
«Time reversal and holography with spacetime transformations »,, Nature Physics (2016)

An instantaneous hologram that is played back with a time discontinuity. It creates a real image of the object !!!!!!!!!!!!!!!!!

The effect of dispersion: Capillary-Gravity waves

Mesurement of the elevation along a radius

with γ surface tension

$$
\omega^{2}(k)=g k+\frac{\gamma}{\rho} k^{3}
$$

Broad band Instantaneous Time Reversal

Normalized spectral weight

Conservation Laws

Conservation law for spatial discontinuity $c(z)$

Medium without dispersion
Phase matching conditions $\forall t$ Energy conservation

$$
\omega_{1}=\omega_{t}=\omega_{r}
$$

Wave vector (momentum) is not conserved

A plane wave approach

Dispersion relation

Conservation law for temporal discontinuity $c(t)$

Phase matching conditions $\forall z$ Energy (frequency) is not conserved $\quad \omega_{2} \neq \omega_{1}$

Wave vector conservation $k_{1}=k_{f}=k_{b} \quad$ momentum

Dispersion Relation

To recover the initial spectrum : $\mathbf{2}$ successive discontinuities

A frustrated « temporal » Fabry Perrot

How to describe our Experiment in term of Initial Conditions Transformation?

Our initial goal was (The Loschmidt Daemon) :

$$
\left\{\varphi\left(\vec{r}, t_{f}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\} \Rightarrow\left\{\varphi\left(\vec{r}, t_{f}\right) ;-\partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}
$$

Or more modestly :

$$
\left\{\varphi\left(\vec{r}, t_{f}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\} \Rightarrow\left\{0 ; \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}
$$

In fact we are doing only :

$$
\left\{\varphi\left(\vec{r}, t_{f}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\} \Rightarrow\left\{\varphi\left(\vec{r}, t_{f}\right) ; \partial_{t} \varphi\left(\vec{r}, t_{f}\right)\right\}+\left\{0 ; \frac{\beta}{c^{2}} \partial_{t t} \varphi\left(\vec{r}, t_{f}\right\}\right.
$$

