

Time Manipulations of Waves

Mathias Fink

Ecole Supérieure de Physique et Chimie Industrielles (ESPCI Paris), CNRS, PSL Research University 1 rue Jussieu, 75005 Paris, France mathias.fink@espci.fr

COLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS

The duality between Space and Time variables in Wave Physics

$$\begin{cases} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c(\vec{r})^2} \frac{\partial^2}{\partial t^2} \end{cases} \varphi(\vec{r}, t) = 0 \qquad \qquad 2^{d} \text{ order Linear PDE} \\ \text{Space-Time} \qquad (4D) \end{cases}$$

Physicists want to determine the solutions in a « hypervolume (4D) » if one knows the field on its boundary (a « hypersurface (3D) »)

We may define two types of Cauchy conditions that contain enough information to predict the field everywhere at any time (past or future) :

S

1 – Cauchy (spatial) boundary conditions (BC) prescribe both

$$\{\varphi(\vec{r},t), \partial_{\mathbf{n}}\varphi(\vec{r},t)\}\$$
 for $\vec{r} \in S$, for all t

2 spatial and 1 temporal dimensions

2 – Cauchy Initial conditions (IC) prescribe both $\left\{ \varphi(\vec{r}, t = t_i), \partial_t \varphi(\vec{r}, t = t_i) \right\}$ for all $\vec{r} \in V$

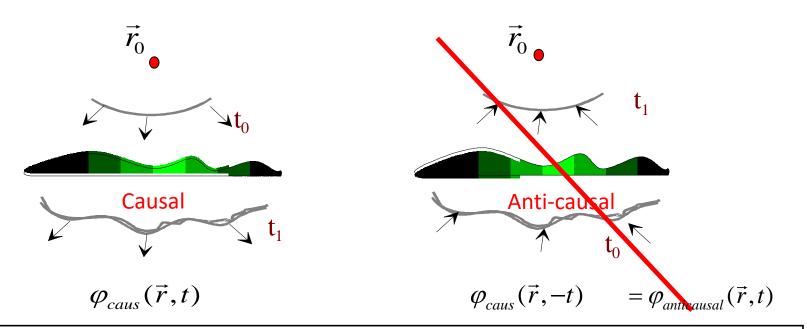
3 spatial dimensions

Causality

Non dissipative heterogeneous medium with a source

$$\left\{\Delta - \frac{1}{c^2(\vec{r})} \frac{\partial^2}{\partial t^2}\right\} \varphi(\vec{r}, t) = s(\vec{r}, t)$$

Dual Solutions - Time-Reversal Invariance



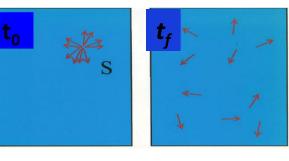
To build a Time Machine for Waves : 2 approaches 1- The Loschmidt approach (IC) : instantaneous TR 2- TR on the boundary (BC) : the time reversal mirror

I – Manipulating initial conditions (IC). The Instantaneous Time Mirror (ITM) "à la Loschmidt"

• record on the whole volume V the final conditions at time t_f

$$\left\{ \varphi(\vec{r}',t_f); \partial_t \varphi(\vec{r}',t_f) \right\}$$

Analogy with Trajectory Reversal of N particles

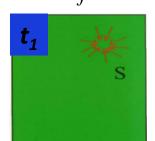


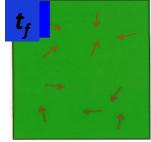
• prepare new initial conditions:

$$\varphi(\vec{r}', t_i) = \varphi(\vec{r}', t_f)$$
 and $\partial_t \varphi(\vec{r}', t_i) = -\partial_t \varphi(\vec{r}', t_f)$

$$\left\{ \varphi(\vec{r}',t_f); -\partial_t \varphi(\vec{r}',t_f) \right\}$$

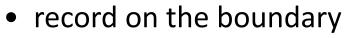
The Loschmidt Daemon





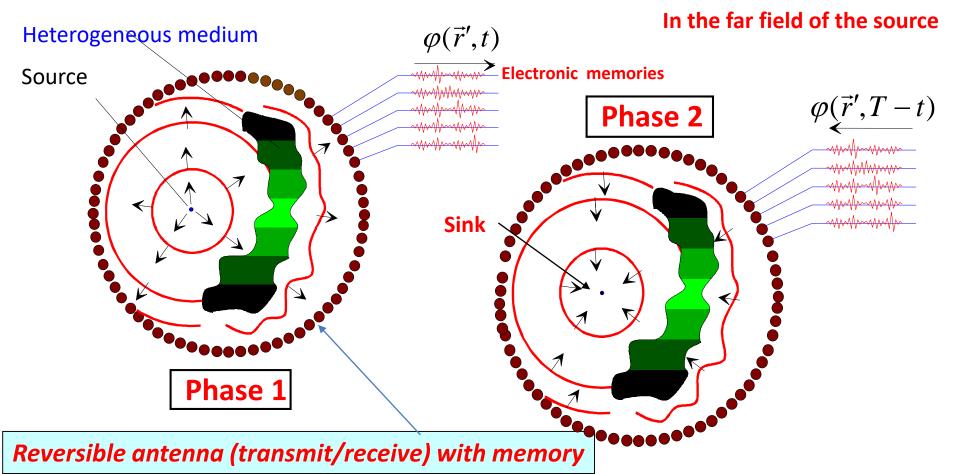
How can you change the relation between the wave field and its temporal derivative ? The concept of time boundary!!

II – Manipulating (spatial) boundary conditions (BC) : <u>the Time-Reversal Mirror approach</u>



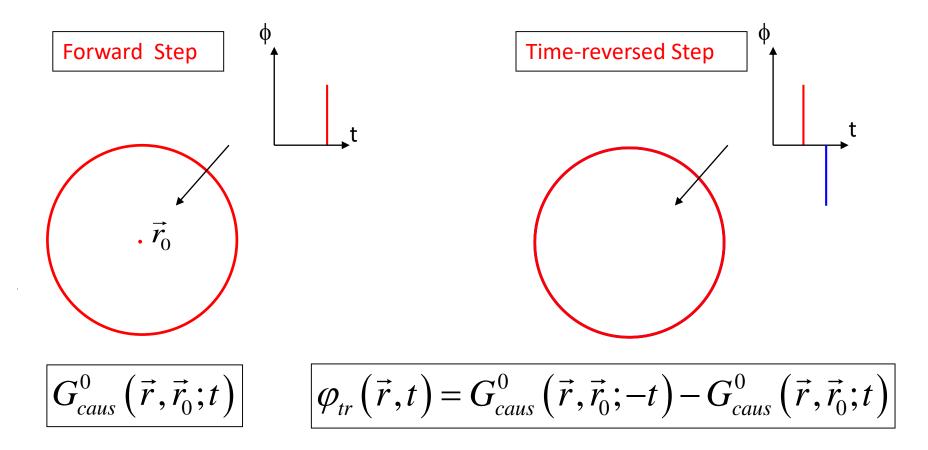
• transmit from the boundary $\varphi(\vec{r}', T-t); \partial_n \varphi(\vec{r}', T-t)$

 $\varphi(\vec{r}',t); \partial_{\mu}\varphi(\vec{r}',t)$

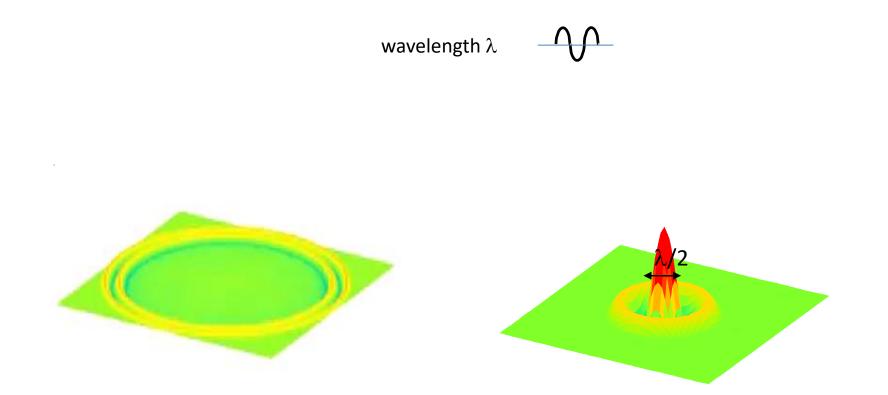


Origin of Diffraction Limits in Wave Physics

Pulsed mode – the homogeneous medium

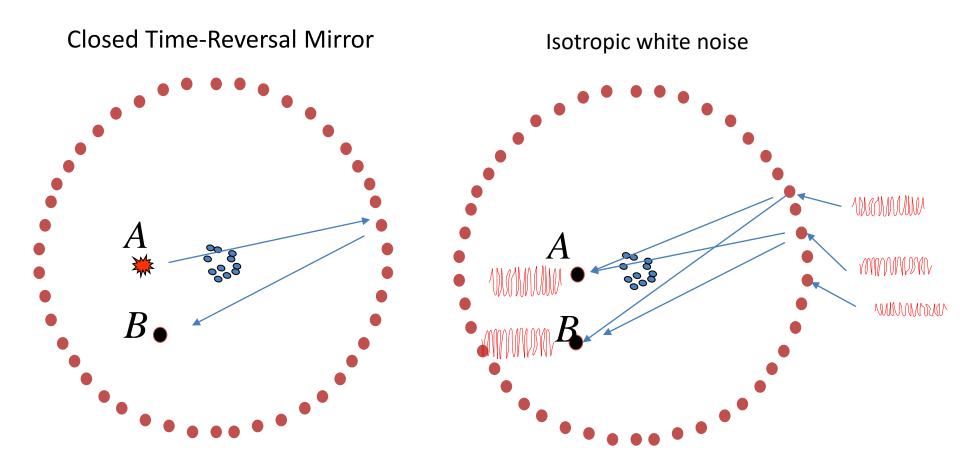


Origin of Diffraction Limits in Wave Physics



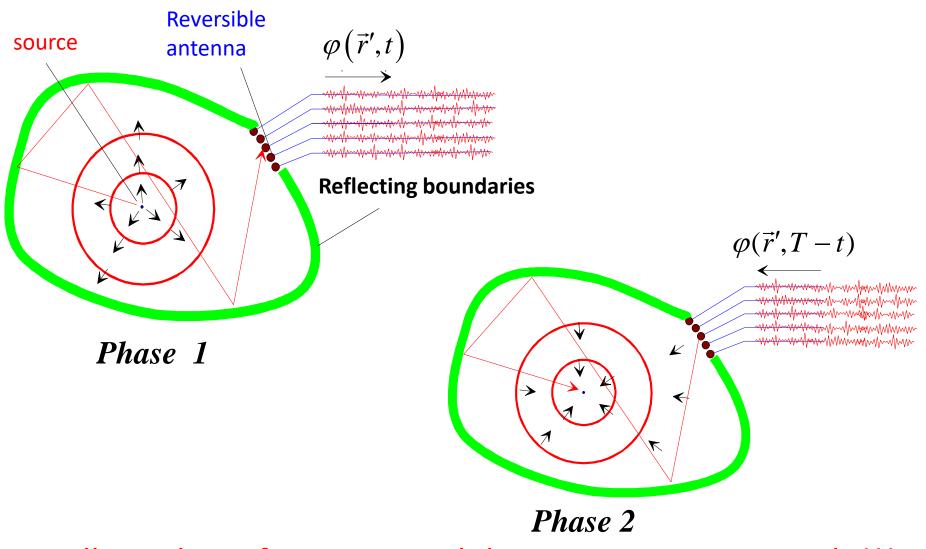
Diffraction limit is only due to the fact that we live in a Causal World

Analogy bewteen a TR experiment and spatial correlation in white noise



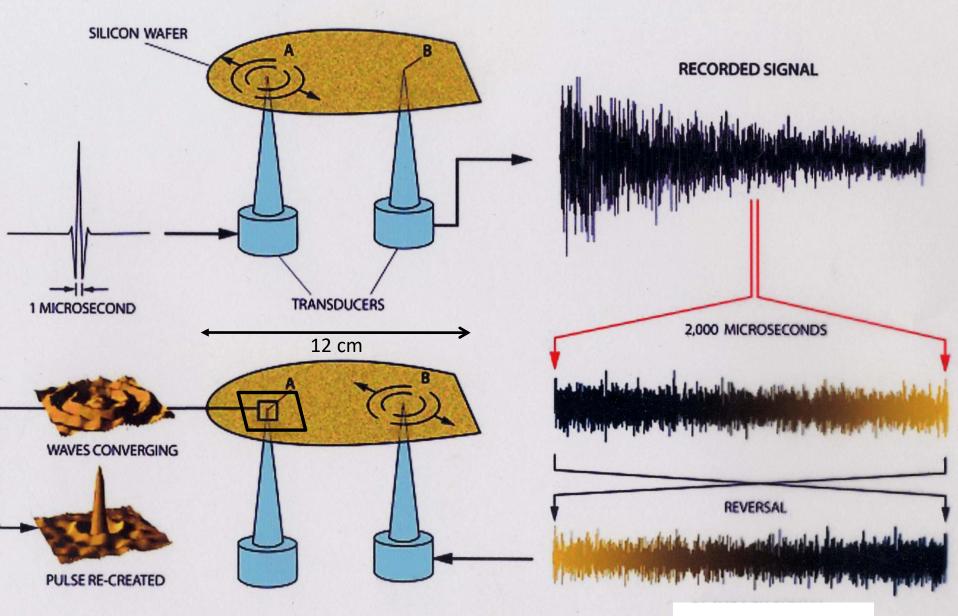
 $\varphi_{TR-mirror}(B,t) = G_{caus}(A,B;-t) - G_{caus}(A,B;t) \quad \partial_t C(A,B,t) \prec G_{caus}(A,B;-t) - G_{caus}(A,B;t)$

Time-reversal mirror in a reverberating medium

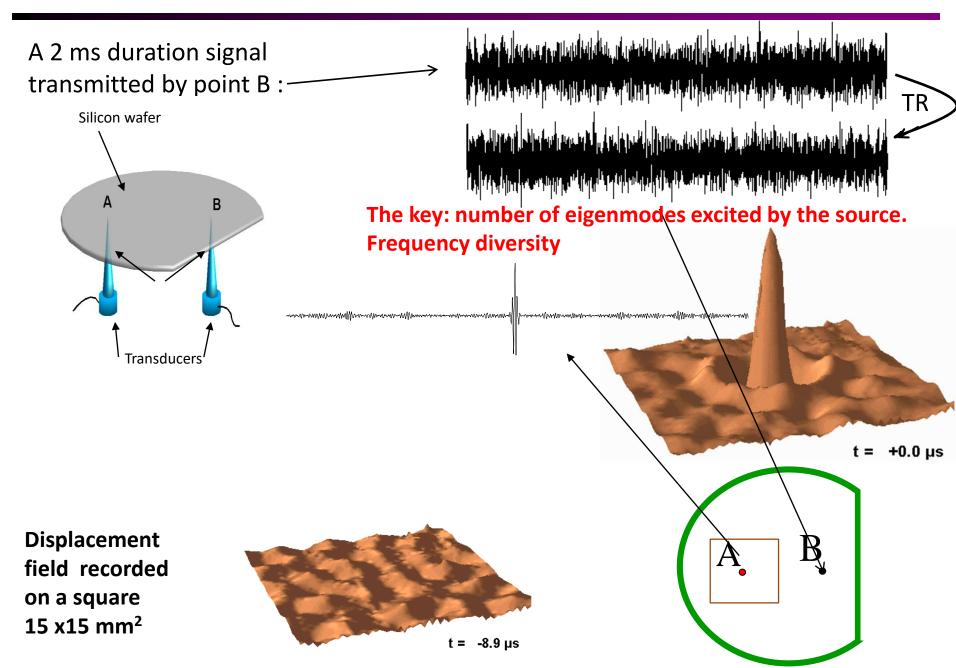


A small number of antenna with large memory is enough !!!

A one transducer time-reversal mirror



The time-reversed wave opticaly detected



II- Time-Reversal « à la Loschmidt » Manipulating time boundaries.

The Instantaneous Time Mirror

A water wave experiment

Revisiting Loschmidt point of view

- record on the whole volume V the final conditions at time t_f

 $\varphi(\vec{r},t_f);\partial_t\varphi(\vec{r},t_f)$

- prepare new initial conditions : changing the relation between the wave field and its temporal derivative

$$\left\{\varphi(\vec{r},t_i);\partial_t\varphi(\vec{r},t_i)\right\} = \left\{\varphi(\vec{r},t_f);-\partial_t\varphi(\vec{r},t_f)\right\}$$

A first alternative : Canceling the time derivative : $\partial_t \varphi(\vec{r}, t_i) = 0$ $\{\varphi(\vec{r}, t_i); \partial_t \varphi(\vec{r}, t_i)\} = \{\varphi(\vec{r}, t_f); 0\}$ « À la Neumann »

$$\left\{\frac{1}{2}\varphi(\vec{r},t_f);\frac{1}{2}\partial_t\varphi(\vec{r},t_f)\right\} + \left\{\frac{1}{2}\varphi(\vec{r},t_f);-\frac{1}{2}\partial_t\varphi(\vec{r},t_f)\right\}$$

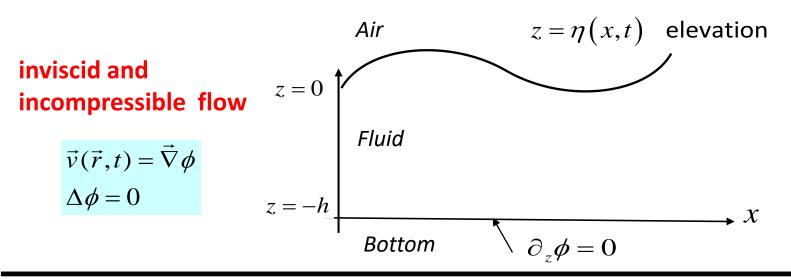
1/2 the forward wave + 1/2 the time-reversed wave

A second alternative : Canceling the field : $\varphi(\vec{r},t_i) = 0$ $\{\varphi(\vec{r},t_i);\partial_t\varphi(\vec{r},t_i)\} = \{0;\partial_t\varphi(\vec{r},t_i)\}$ « À la Dirichlet » $\{1/2 \varphi(\vec{r},t_f);1/2 \partial_t\varphi(\vec{r},t_f)\} - \{1/2 \varphi(\vec{r},t_f);-1/2 \partial_t\varphi(\vec{r},t_f)\}$ 1/2 the forward wave - 1/2 the time-reversed wave How to change suddendly the relation between the wavefield and its temporal derivative ? It depends on the wave velocity.

Imagine that you can change instantaneously the wave velocity in the whole space ?

Let us look Water Waves as a first example

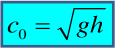
The case of Water Waves . The main restoring force is Gravity : Gravity Waves



Linearization

 $\partial_t \eta = \partial_z \phi \quad \text{at} \quad z = 0$ $\partial_t \phi + g \eta = 0 \quad \text{at} \quad z = 0$ $\phi(x, z, t) = Z(z) \exp(kx - \omega t) \quad \Rightarrow \quad \text{Dispersion relation} \quad \omega^2 = gk \, \tanh(kh)$

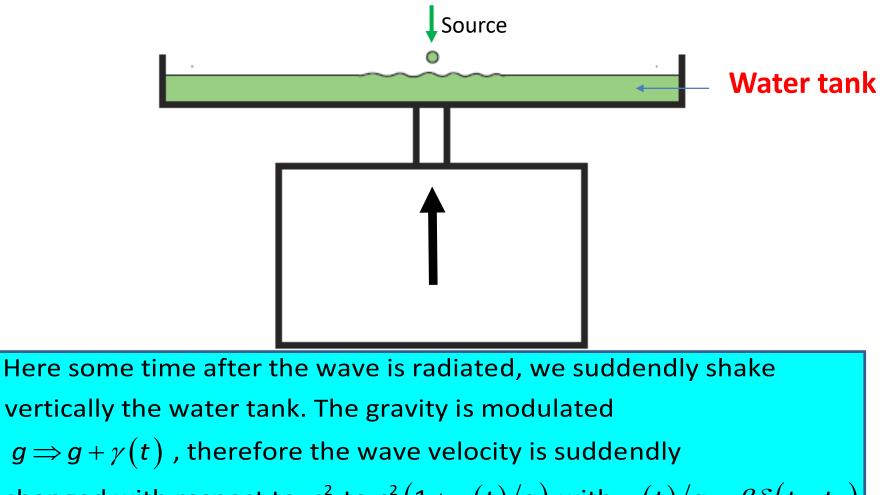
For shallow water



How to change wave velocity ? change gravity !!!!!

Let us try a very brief vertical acceleration of a water tank !!

Transient observation of water wave radiated by an impulsive source

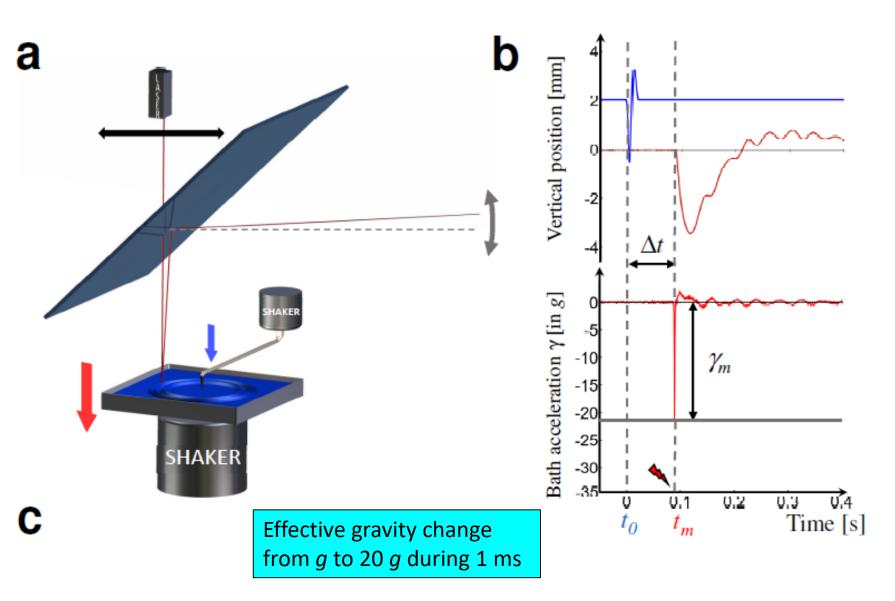


changed with respect to c_0^2 to $c_0^2 \left(1 + \gamma(t)/g\right)$ with $\gamma(t)/g \sim \beta \delta(t - t_f)$

One creates a time discontinuity in the water tank by changing suddendly the wave velocity

V. Bacot, M. Labousse, A. Eddy, M. Fink, E. Fort. « Time reversal and holography with spacetime transformations »,, Nature Physics (Oct 2016)

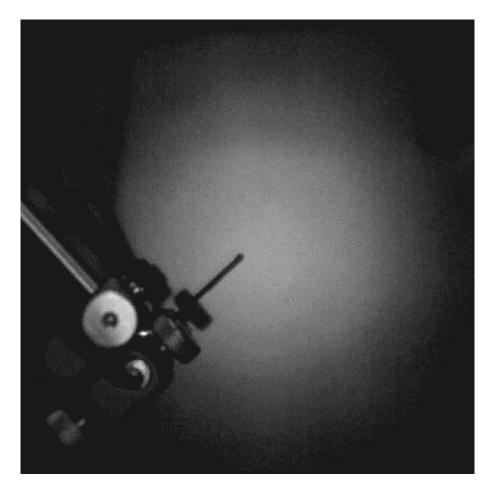
The setup



V. Bacot, M. Labousse, A. Eddy, M. Fink, E. Fort.

« Time reversal and holography with spacetime transformations »,, Nature Physics (2016)

The instantaneous time mirror (ITM) experiment



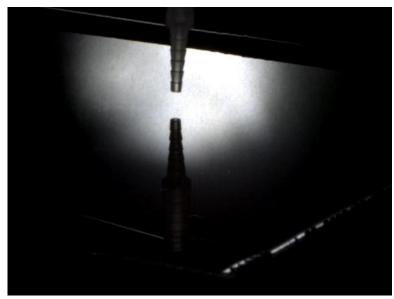
Instantaneous emission of a backpropagating wave ...

... from the whole space

In situ time reversal : instantaneous, no need to record the phase

From above, slowed down 27 times

The instantaneous time mirror (ITM) experiment



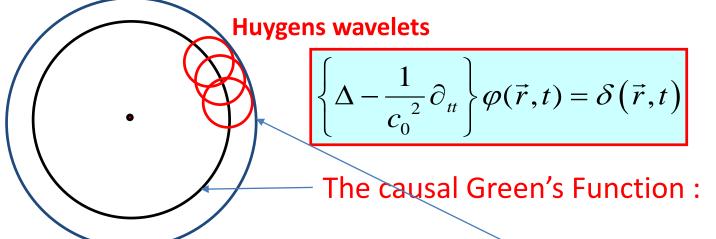
From the side, slowed down 50 times

Apparition of reversed wave at instant of jolt

Huygens Principle revisited. The Cauchy Problem

The Huygens Intuition

The case of shallow water (no dispersion)



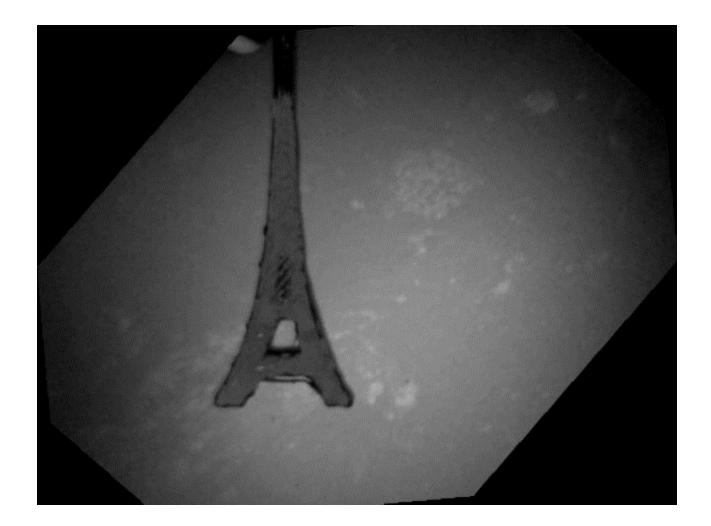
The wavefront at any instant conforms to the <u>upper envelope</u> of spherical wavelets emanating from every point on the wavefront at the prior instant

Why does an expanding spherical wave continue to expand outward from its source, rather than re-converging inward back toward the source ?

Later Fresnel and Kirchoff introduced the concept of interference and shows that in order to build a self-consistent solution the wavelets are to be monopole and dipole with obliquity factors

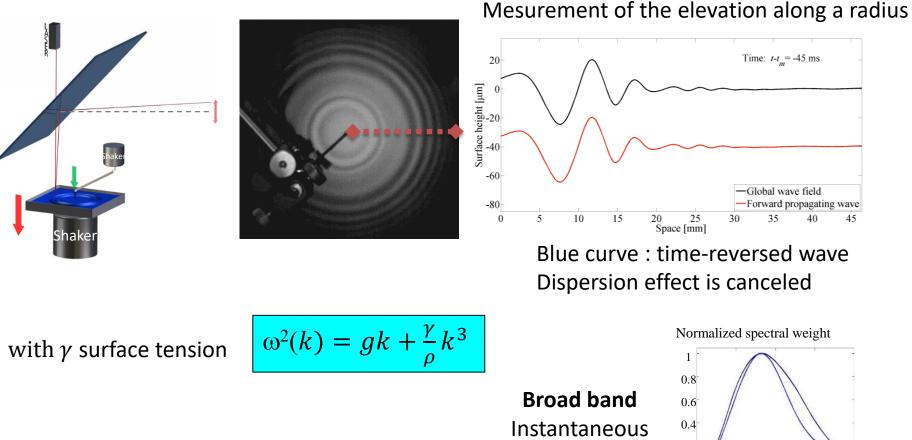
Huygens revisited by a sudden shake

$$\begin{split} \left\{ \Delta - \frac{1}{c_0^2 \left(1 + \gamma(t)/g\right)} \partial_{tt} \right\} \varphi(\vec{r}, t) &= 0 \\ & \downarrow \\ \text{Energy injection} \\ \text{Equivalent to a wave equation with a source term} \\ \text{at time } t_f \left\{ \Delta - \frac{1}{c_0^2} \partial_{tt} \right\} \varphi(\vec{r}, t) &= s(\vec{r}, t) \\ \text{where } s(\vec{r}, t) &\approx -\frac{\gamma(t)}{c_0^2 g} \partial_{tt} \varphi(\vec{r}, t) \text{ with } \frac{\gamma(t)}{g} \approx \beta \delta(t - t_f) \\ \text{monopoles} \\ \varphi(\vec{r}, t) &= \iiint \left[G(\vec{r}, \vec{r}'; t - t_i) s(\vec{r}', t_f) \right] d^3 \vec{r}' \text{ with } s(\vec{r}', t_f) = -\frac{\beta}{c_0^2} \partial_{tt} \varphi(\vec{r}, t = t_f) \end{split}$$



V. Bacot, M. Labousse, A. Eddy, M. Fink, E. Fort. « Time reversal and holography with spacetime transformations »,, Nature Physics (2016)

The effect of dispersion: Capillary-Gravity waves



Time Reversal

0.2

0

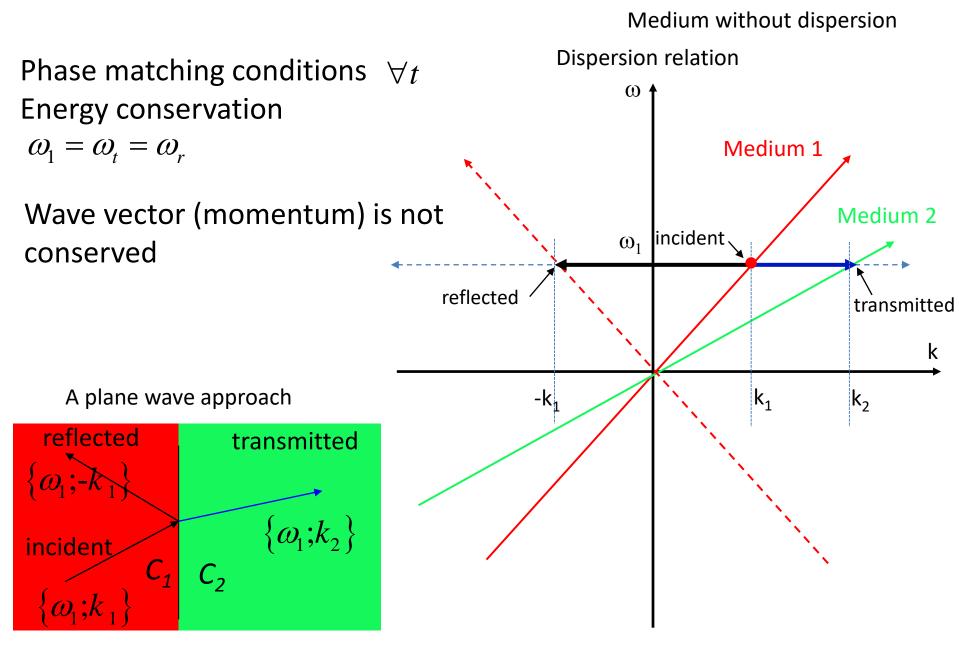
40

Frequency [Hz]

80

Conservation Laws

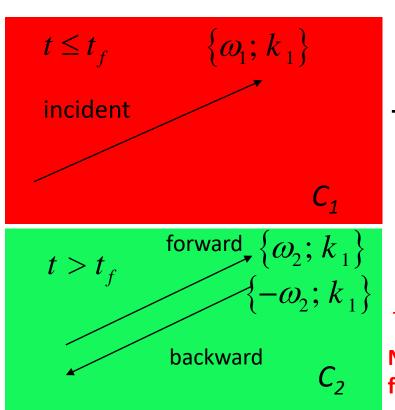
Conservation law for spatial discontinuity *c*(*z*)

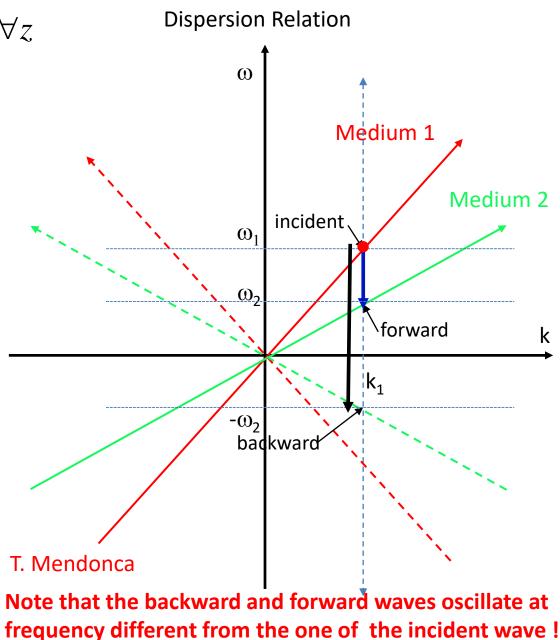


Conservation law for temporal discontinuity c(t)

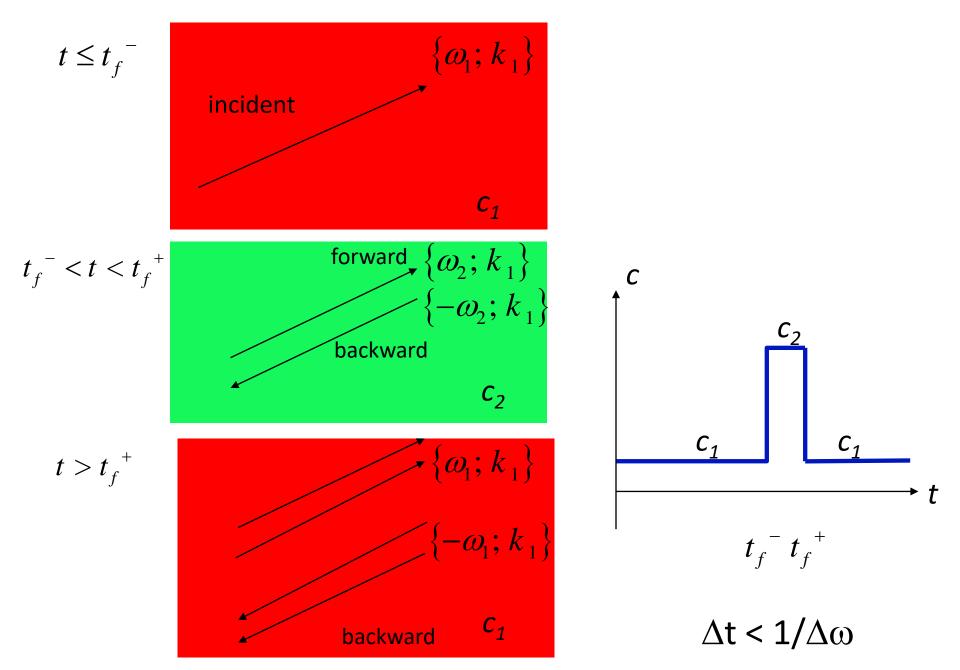
Phase matching conditions $\forall z$ Energy (frequency) is not conserved $\omega_2 \neq \omega_1$

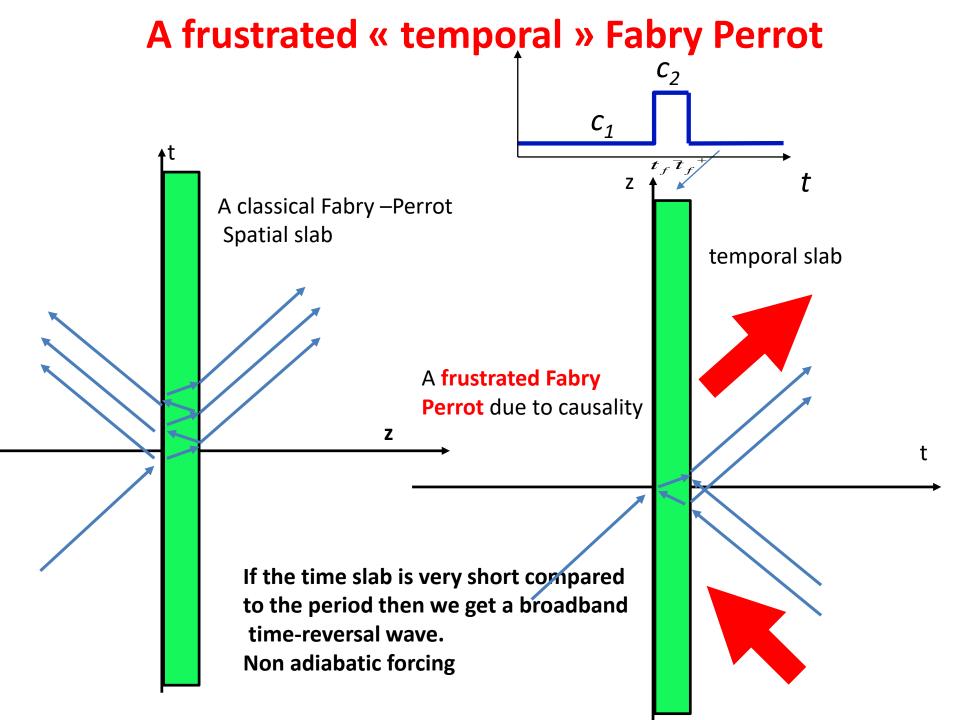
Wave vector conservation $k_1 = k_f = k_b$ momentum

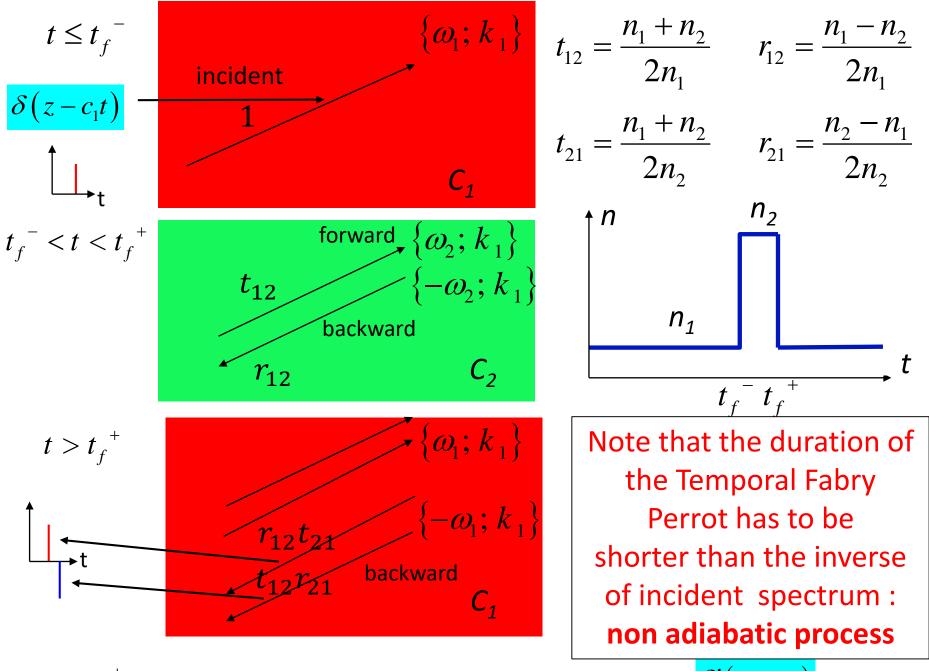




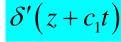
To recover the initial spectrum : 2 successive discontinuities

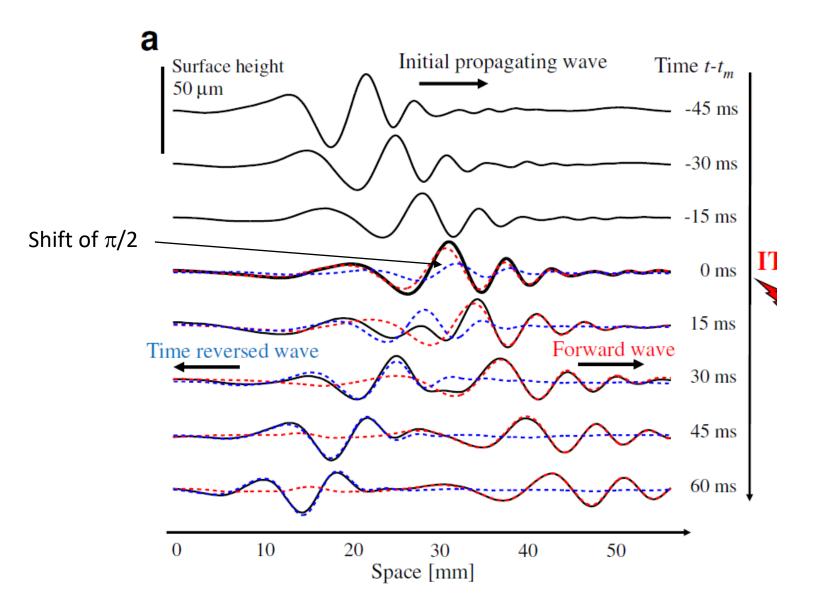






When $t_{f}^{+} - t_{f}^{-}$ tends to 0, one gets for the total backward wave





How to describe our Experiment in term of Initial Conditions Transformation ?

Our initial goal was (The Loschmidt Daemon) :

$$\left\{\varphi(\vec{r},t_f);\partial_t\varphi(\vec{r},t_f)\right\} \Longrightarrow \left\{\varphi(\vec{r},t_f);-\partial_t\varphi(\vec{r},t_f)\right\}$$

Or more modestly :

$$\left\{\varphi(\vec{r},t_f);\partial_t\varphi(\vec{r},t_f)\right\} \Rightarrow \left\{0;\partial_t\varphi(\vec{r},t_f)\right\}$$

In fact we are doing only :

$$\left\{\varphi(\vec{r},t_f);\partial_t\varphi(\vec{r},t_f)\right\} \Longrightarrow \left\{\varphi(\vec{r},t_f);\partial_t\varphi(\vec{r},t_f)\right\} + \left\{0;\frac{\beta}{c^2}\partial_{tt}\varphi(\vec{r},t_f)\right\}$$