
Mathias Fink

Ecole Supérieure de Physique et Chimie Industrielles (ESPCI  Paris), 
CNRS, PSL Research University

1 rue Jussieu, 75005 Paris, France
mathias.fink@espci.fr

Time Manipulations of Waves



The duality between Space and Time variables
in Wave Physics
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Physicists want to determine the solutions in a « hypervolume (4D) »  
if one knows the field on its boundary ( a « hypersurface (3D) ») 

We may define two types of Cauchy conditions that contain enough
information to predict the field everywhere at any time (past or future) : 
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1 – Cauchy (spatial) boundary conditions (BC) prescribe both

2 spatial and 1 temporal dimensions
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2 – Cauchy Initial conditions (IC) prescribe both

3 spatial dimensions

2d order Linear PDE
Space-Time     (4D)
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Non dissipative heterogeneous medium with a source  
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Causality

Dual Solutions - Time-Reversal Invariance

To build a Time Machine for Waves : 2 approaches
1- The Loschmidt approach (IC) : instantaneous TR

2- TR on the boundary (BC) : the time reversal mirror
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I – Manipulating initial conditions (IC). 
The Instantaneous Time Mirror (ITM) “à la 

Loschmidt”

• record on the whole volume V the final conditions at time tf

 ( , ); ( , )f t fr t r t  

 ( , ); ( , )f t fr t r t  

How can you change the relation between the wave field and its 
temporal derivative ?      The concept of time boundary!!

• prepare new initial conditions:
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The Loschmidt
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II – Manipulating (spatial) boundary conditions (BC) :
the Time-Reversal Mirror approach

• record on the boundary
• transmit from the boundary
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Reversible antenna (transmit/receive) with memory

In the far field of the source

Source 
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Electronic memories
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Forward  Step Time-reversed Step

Origin of Diffraction Limits in Wave Physics
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Pulsed mode – the homogeneous medium
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Origin of Diffraction Limits in Wave Physics

l/2

wavelength l

Diffraction limit is only due to the fact that we live in a Causal World 
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Closed Time-Reversal Mirror

Analogy bewteen a TR experiment and spatial correlation in white noise

Isotropic white noise
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Time-reversal mirror in a reverberating medium
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Reflecting boundaries

A small number of antenna with large memory is enough !!!



12 cm

A one transducer time-reversal mirror



The time-reversed wave opticaly detected 

Displacement
field recorded
on a square
15 x15 mm2

A 2 ms duration signal 
transmitted by point B : 

A B

TR

The key: number of eigenmodes excited by the source.
Frequency diversity

Silicon wafer

Transducers



II- Time-Reversal « à la Loschmidt »
Manipulating time boundaries. 

The Instantaneous Time Mirror

A water wave experiment
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Revisiting  Loschmidt point of view

( , ); ( , )f t fr t r t 

 ( , ); ( , )f t fr t r t 

- record on the whole volume V the final conditions at time tf

- prepare new initial conditions : changing the relation between 
the wave field and its temporal derivative
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« À la Neumann »

« À la Dirichlet »



How to change suddendly the relation between the
wavefield and its temporal derivative ?  

It depends on the wave velocity.

Imagine that you can change instantaneously the 
wave velocity in the whole space ?

Let us look Water Waves as a first example



The case of Water Waves .
The main restoring force is Gravity : Gravity Waves
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How to change wave velocity ? 
change gravity !!!!!!

Let us try a very brief vertical acceleration of a water tank !!

inviscid and 
incompressible  flow



Transient observation of water wave radiated by an impulsive source
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Here some time after the wave is radiated, we suddendly shake 

vertically the water tank. The gravity is modulated  

  , therefore the wave velocity is suddendly 

changed with respect to   to 
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Water tank

Source

One creates a time discontinuity in the water tank by changing
suddendly the wave velocity

V. Bacot, M. Labousse, A. Eddy, M. Fink , E. Fort.  
« Time reversal and holography with spacetime transformations »,, Nature Physics (Oct 2016)

doi:10.1038/nphys3810



The setup
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V. Bacot, M. Labousse, A. Eddy, M. Fink , E. Fort.  
« Time reversal and holography with spacetime transformations »,, Nature Physics (2016)

Effective gravity change 
from g to 20 g during 1 ms



Instantaneous emission of a 
backpropagating wave ...

... from the whole space

In situ time reversal : 
instantaneous, no need to record 
the phase

From above, slowed down 27 times

The instantaneous time mirror (ITM) experiment
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Apparition of reversed wave
at instant of jolt

From the side, slowed down 50 times

The instantaneous time mirror (ITM) experiment



Why ?

Huygens Principle revisited.
The Cauchy Problem



The Huygens Intuition
The case of shallow water (no dispersion)

The causal Green’s Function :

Later Fresnel and Kirchoff introduced the concept of interference and 
shows that in order to build a self-consistent solution  the wavelets are to 
be monopole and dipole with obliquity factors
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Huygens wavelets

Why does an expanding spherical wave continue to expand outward from 
its source, rather than re-converging inward back toward the source ?

The wavefront at any instant conforms to the upper envelope of spherical 
wavelets emanating from every point on the wavefront at the prior instant



Huygens revisited by a sudden shake  
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monopoles

Energy injection



V. Bacot, M. Labousse, A. Eddy, M. Fink , E. Fort.  
« Time reversal and holography with spacetime transformations »,, Nature Physics (2016)



An instantaneous hologram that is played back with a time discontinuity. 
It creates a real image of the object !!!!!!!!!!!!!!!!! 



Shaker

Shaker

The effect of dispersion: 
Capillary-Gravity waves

Mesurement of the elevation along a radius

Frequency [Hz]

Normalized spectral weight
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𝜌
𝑘3with 𝛾 surface tension 

Blue curve : time-reversed wave
Dispersion effect is canceled



Conservation Laws
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Conservation law for spatial discontinuity c(z)

transmittedreflected

Phase matching conditions 
Energy conservation

Wave vector (momentum) is not
conserved
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 1 2;k

Dispersion relation
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A plane wave approach
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Medium without dispersion
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Conservation law for temporal discontinuity c(t)

forward

backward

Wave vector conservation 
k1  kf  kb momentum

Phase matching conditions 
Energy (frequency) is not
conserved
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Dispersion Relationz

Note that the backward and forward waves oscillate at
frequency different from the one of  the incident wave ! 

T. Mendonca
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To recover the initial spectrum : 2 successive discontinuities
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A frustrated « temporal » Fabry Perrot

If the time slab is very short compared
to the period then we get a broadband
time-reversal wave. 

Non adiabatic forcing
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A classical Fabry –Perrot
Spatial slab

z

t

A frustrated Fabry 
Perrot due to causality

temporal slab
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2 backward waves with
opposite sign.
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Note that the duration of 
the Temporal Fabry 

Perrot has to be
shorter than the inverse 
of incident  spectrum : 
non adiabatic process



Shift of p/2
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How to describe our Experiment in term of
Initial Conditions Transformation ?

Our initial goal was (The Loschmidt Daemon)  :  

   ( , ); ( , ) ( , ); ( , )f t f f t fr t r t r t r t     

In fact we are doing only :  

Or more modestly :
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