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a b s t r a c t

Growth of gas bubbles in magmas may be modeled by a system of differential equations
that account for the evolution of bubble radius and internal pressure and that are coupled
with an advection–diffusion equation defining the gas flux going from magma to bubble.
This system of equations is characterized by two relaxation parameters linked to the vis-
cosity of the magma and to the diffusivity of the dissolved gas, respectively. Here, we pro-
pose a numerical scheme preserving, by construction, the total mass of water of the
system. We also study the asymptotic behavior of the system of equations by letting the
relaxation parameters vary from 0 to1, and show the numerical convergence of the solu-
tions obtained by means of the general numerical scheme to the simplified asymptotic lim-
its. Finally, we validate and compare our numerical results with those obtained in
experiments.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

All volcanic eruptions involve a decompression of the magma during its ascent from the Earth’s crust to the surface. This
decompression causes the volatiles dissolved into the magma to come out of solution as gas bubbles. The way these bubbles
are growing, whether they coalesce with one another or travel faster than or with the magma, are all conditioning the way
the volcanic eruption will unfold. Bubbles that remain trapped with the magma they originally grew from will accumulate
gas pressure until failure of the magma releases it suddenly to produce an explosive eruption. Such scenario is most likely
when the magma is highly viscous and prevents bubble motion. This situation is propitious to modeling because bubbles can
be considered as immobile with respect to the magma and the resulting spherical geometry allows one to reduce bubble
growth to a system of differential equations describing the evolution of pressure and gas mass in a bubble coupled with
an advection–diffusion equation describing the drainage of the dissolved gas towards the bubble. A further assumption is
that bubbles are exclusively made of water vapor, which can be justified by the fact that water is, by far, the most abundant
volatile species in such viscous magmas.

Since the seminal work done in [1] several numerical schemes that solve such system of differential equations have
been proposed in the context of visco-elastic fluids (see [2–6]). Application to gas bubble in magmas is slightly more
recent (see [7–12]). All these schemes have in common a discretization of the advection–diffusion equation that is
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not conservative by construction with respect to the diffused species. In fact, they involve user-defined discretization
parameters that have to be empirically adjusted to ensure sufficient convergence and/or accuracy of the scheme. Devel-
oping alternate, robust schemes would allow including the dynamics of bubble growth into more sophisticated models
that take into account, for instance, that bubbles have different sizes, or that, if magma viscosity is low enough, bubbles
may rise with respect to the magma. In this paper we present a new numerical scheme, in which the flux in the advec-
tion–diffusion equation is computed in order to conserve the total water mass in the bubble–magma system at a dis-
crete level, and this despite the mesh discretization we apply. Moreover, under the assumption of constant in time
diffusion coefficient, we give some explicit solutions of the proposed model when the viscosity or the diffusion are very
large (infinity) or very small (zero), we shall call these asymptotics limit regimes; we also numerically verify the con-
vergence of the proposed scheme towards these limit regimes.

The present work is developed as follows. In Section 2, we recall the differential equations describing the respective evo-
lution of bubble radius and mass, together with the advection–diffusion equation describing the behavior of the water con-
centration in the magma. Following [7,8,11] we write the problem in dimensionless form, introducing two relaxation
parameters HV and HD. Section 3, is devoted to the numerical approximation of the model. The main novelty is the discret-
ization of the advection–diffusion equation, see Section 3.2, in which we explain how to compute the mesh and flux at each
iteration in such a way that the total mass is conserved. In Section 4 we deal with the asymptotics of the dimensionless prob-
lem, when the ratio between the relaxation parameters varies from 0 to1. Three main regimes are underlined: viscous, dif-
fusive, and equilibrium. For each limit, we also propose a way to discretize it. Numerical results, convergence of the solution
towards the simplified asymptotic limits, comparisons with experiments and with the code of reference [7], are discussed in
Section 5. Finally, in Section 6, we summarize our study and suggest possible extensions of the modeling of bubbles growth
in magma.

2. The model

We are interested in the modeling of bubble growth in a highly viscous, crystal-free magma. This has two main conse-
quences on the model. The first one is that we assume that bubbles do not interact with each other, in particular there
are no coalescence effects. This is strongly limitative for the simulation of a magmatic conduit, but the presence or absence
of coalescence can be controlled in laboratory experiments, see Section 5.2. The other point is that, due to the high viscosity
of the magma, bubbles travel along with the same velocity as the melt. In other words, they can be considered as immobile
with respect to the melt.

At this stage, we can consider that a bubble can be described with two parameters, its volume bV and its gaseous mass bM .
In this section, we denote with a hat the dimensional variables. Taking into account that the bubble is made only of water in
gaseous form, we can write the perfect gases law inside the bubble in order to relate the gas pressure bP to the gas density q̂:

GTq̂ ¼ bPMw; ð1Þ

with Mw the molar mass for water, G the perfect gas constant and T the gas temperature. Next, following [7,8,11] we assume
that the bubble is spherical, with radius bR, so that bV ¼ 4pbR3=3, and we set for future convenience bM ¼ q̂bR3, so that the bub-
ble mass is 4p bM=3. Thus we can choose the radius bR ¼ bRðtÞ and the variable bM ¼ bMðtÞ, proportional to the mass, to describe
the evolution of the bubble, and seek for a system of differential equations for these variables. Notice that in [11] an equation
on the pressure bPðtÞ is given, we choose here to track the bubble mass because it leads to a better handling of mass conser-
vation at the numerical level. Such a model gives a description of the growth of a single bubble, or for a population of iden-
tical, non-interacting bubbles: this is the so-called mono-disperse case.

2.1. Basic equations

Two main physical processes drive bubble growth, both originating from magma decompression caused by magma ascent
towards the surface. On the one hand, the gas trapped into the bubble is expanding; on the other hand, the water dissolved in
the magma is diffusing and eventually is vaporized in the bubble, so that the water concentration profile in the melt has to be
considered as well.

The equations describing the time evolution for the bubble radius and pressure and for the water concentration have been
described in the literature several times. Therefore, we shall not reproduce here this derivation and, for example, we refer the
reader to [1,2,7,8,13]. We recall briefly the origin of each equation, and their coupling.

The growth of the bubble in the magma involves viscous effects, surface tension effects and the ambient pressure in the
magma bPa ð̂tÞ, which is a given function of time. We define the decompression rate DP for a given ambient pressure functionbPað̂tÞ as

DP ¼ Pi

t�
;

where Pi is the initial ambient pressure and the time t� is such that bPaðt�Þ ¼ 0.
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From the momentum conservation of Navier–Stokes equation, neglecting the inertial terms and considering the incom-
pressibility of the melt, one obtains

bP ð̂tÞ � bPa ð̂tÞ ¼
2rbRð̂tÞ þ 4

_bRð̂tÞbRð̂tÞ ĝeff ; ð2Þ

where r is the surface tension, assumed constant in this paper, and ĝeff is the effective viscosity. In the following the viscosity
may be constant or vary in space as:

ĝeff ðr̂Þ ¼ ĝðbRÞ 1� ĝðbSÞ
ĝðbRÞaþ

bR3

ĝðbRÞ
Z bSbR dĝðrÞ

dr
1
r̂3 dr̂

0@ 1A; ð3Þ

with r̂ the radial distance from the bubble radius outwards, ĝ given by [14], and bS the radius of the so called influence region.
This region is the magma volume surrounding the bubble from which gas diffuse into the bubble. It is quite natural for a
spherical bubble to consider this influence region as a sphere, centered at the bubble center and with radius bS. The evolution
of the radius widehatS is obtained by assuming that the volume of the influence region is constant in time (see [11]), so that

bSðt̂Þ ¼ bS3
0 þ bRð̂tÞ3� �1=3

; ð4Þ

where bS0 is a constant representing the radius of the influence region when the bubble has a null radius. Finally, in Eq. (3),
a ¼ að̂tÞ is the magma porosity, or void fraction. Porosity is actually a macroscopic notion, but as far as it can be given a
meaning for a single bubble, we choose, following [7,8,11], to define it as

að̂tÞ ¼
bRðt̂Þ3bSðt̂Þ3 :

We rewrite Eq. (2) as a differential equation on the radius bR:

_bRð̂tÞ ¼ bRð̂tÞ
4ĝeff

bP ð̂tÞ � bPa ð̂tÞ �
2rbRð̂tÞ

 !
: ð5Þ

To obtain the internal pressure bP ð̂tÞ, or equivalently by (1) the gaseous water mass bMðt̂Þ, we need to write the mass con-
servation of water. First we consider the volatile mass balance at the bubble–magma interface, which reads in spherical
geometry

4p
3

d
dt̂

q̂bR3
� �

¼ 4pq̂mFbR ð̂tÞ; ð6Þ

where qm is the magma density and FbR ð̂tÞ represents the water flux from the magma into the bubble at the interface. Now, we
introduce the concentration of water in the melt, which is a function C ¼ Cðr̂; t̂Þ of the time t̂ and on the radial distance from
the boundary of the bubble, r̂ 2 ½bRð̂tÞ; bSðt̂Þ�. With this notation, the flux F ¼ Fðr̂; t̂Þ in Eq. (6) is given by

FbRðt̂Þ ¼ bDbR2@C
@r̂

����
r̂¼bRðt̂Þ; ð7Þ

where the diffusion coefficient bD ¼ bDðr̂Þmay depend on the distance r̂ via the concentration C, see for example [8,15], but is
assumed to be constant in all the numerical simulations we have performed.

The definition of the influence region implies that the total water mass inside it, that is the sum of the water mass in the
bubble and of the water dissolved in its influence region, must remain constant in time, see (4). Assuming that for a bubble of
radius zero the water concentration in magma is a constant C0, this may be expressed in the following form:

4pq̂ðt̂Þ
3

bR3 ð̂tÞ þ 4pq̂m

Z bS ð̂tÞbR ð̂tÞ r̂2Cðr̂; t̂Þdr̂ ¼ 4pq̂m

3
bS3

0C0: ð8Þ

Within the influence region, that is for radii r̂ 2�bRð̂tÞ; bSð̂tÞ½, the water concentration is assumed to follow an advection–dif-
fusion equation

@C
@t̂
þ vm

@C
@r̂
¼ 1

r̂2

@

@r̂
r̂2 bD @C

@r̂

� �
;

where vm is the radial velocity in the melt and is obtained by solving the continuity equation in radial form and considering
the incompressibility of the melt (see [1]):

vm ¼
_bR bR2

r̂2 :
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The advection–diffusion finally reads

@C
@t̂
þ _bR bR2

r̂2

@C
@r̂
¼ 1

r̂2

@

@r̂
r̂2 bD @C

@r̂

� �
ð9Þ

and has to be complemented with boundary conditions. For r̂ ¼ bR, that is at the bubble-melt interface, the pressure has to be
in equilibrium with water concentration, following Henry’s law

CðbR; t̂Þ ¼ KH

ffiffiffiffibPq
; ð10Þ

where KH is the Henry constant. The other boundary condition is given at the external interface of the influence region, and
follows from the global mass balance (8). Indeed, stating that the time derivative of (8) has to be zero, a straightforward com-
putation taking into account (9) and (6) shows that the water flux on the boundary of the influence region, r̂ ¼ bS, is null:

@C
@r̂

����
r̂¼bS ¼ 0: ð11Þ

Summarizing, we are lead to the following system of differential equations

_bR ¼ bR
4ĝeff

bP � bPa �
2rbR

� �
;

_bM ¼ 3q̂m
bDbR2@C

@r̂

����
r̂¼bR ;

ð12Þ

where C solves the advection–diffusion equation (9), with boundary conditions (10) and (11).

2.2. Dimensionless problem

In the preceding model, the physical parameters involved may vary for several orders of magnitude and in a very intricate
manner. Table 1 recalls their meaning and presents a sample of these values, which come from the experimental results
quoted below.

The behavior of the solutions to the model can vary drastically with these values, from one experimental situation to an-
other, and computational times may be very long. The aim of this section is to provide a dimensionless set of equations, in
order to identify several specific regimes and to eventually give analytical solutions to each regime.

Following [7,8,11], a set of five dimensions gives a physically relevant scaling, namely a bubble radius, a pressure, a den-
sity, a viscosity coefficient and a diffusion coefficient. These characteristic dimensions are chosen here as the corresponding
initial values: the initial bubble radius, Ri, the initial gas density qi, the initial ambient pressure Pi ¼ Paðt ¼ 0Þ and the dif-
fusion and viscosity coefficients, Di and gi, leading to the following scalings on variables and parameters:

geff ¼
ĝeff

gi
D ¼

bD
Di

qm ¼
q̂m

qi
R ¼ 2r

RiPi
;

R ¼
bR
Ri

S ¼
bS
Ri

r ¼ r̂
Ri

_R ¼
_bRPi

RiDP
;

P ¼
bP
Pi

Pa ¼
bPa

Pi
q ¼ q̂

qi
t ¼ t̂

DP
Pi
:

The time evolution equation of the radius of the influence region (4) becomes

S3ðtÞ ¼ S3
0 þ R3ðtÞ: ð13Þ

Table 1
Physics constants values.

D diffusivity 10�12 (m2 s�1)
ĝeff Viscosity 104 (Pa s)
Mw Molar mass for water 18:10�3 (kg mol�1)
G Perfect gases constant 8.3144 (J mol�1 K�1)
T Temperature 1098:15 (K)
r Surface tension 0.1 (J m�2)
qm Magma density 2154 (kg m�3)
KH Henry constant 3:44:10�6 (kg-1/2 m1/2)
S0 Influence radius for R ¼ 0 6:204:10�5 (m)
DP Decompression rate 105 (Pa s�1)
Pi Initial ambient pressure 108 (Pa)
C0 Water concentration for R ¼ 0 4:21 (wt.%)
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A convenient model for bPaðtÞ, quite simple and compatible with experimental conditions, is a constant linear decompression
function, which in dimensionless variables reads:

Pa ¼ 1� t ð14Þ

This ambient pressure function is the one considered in [11], and we shall apply it in the numerical simulations.
In this paper, we assume the temperature T to be constant, then the perfect gas law reads M ¼ qR3 and straightforward

computations show that the mass conservation equation (8) becomes

M þ 3qm

Z SðtÞ

RðtÞ
r2Cdr ¼ S3

0C0qm ð15Þ

and that the system of differential equations on mass and radius (12) rewrites

_R ¼ R
HVgeff

P � Pa �
R
R

� �
; ð16Þ

_M ¼ 3qm

HD
r2D

@C
@r

� �
r¼R

; ð17Þ

where we have introduced the relaxation parameters, see [11]:

HV ¼
4giDP

P2
i

; HD ¼
R2

i DP
DiPi

: ð18Þ

Finally, the water concentration in the melt satisfies the dimensionless advection–diffusion equation in the influence region

@tC þ
_RR2

r2 @rC ¼
1

HD

1
r2 @r r2D@rC

� 	
; ð19Þ

with the following boundary conditions:

CðR; tÞ ¼ CH

ffiffiffi
P
p

;
@C
@r

����
r¼S

¼ 0; ð20Þ

where CH is given by CH ¼ KH
ffiffiffiffi
Pi
p

.
The dimensionless parameters HD and HV defined by (18) are driving the behavior of all the equations involved, and will

be referred to as the viscosity HV and diffusion HD relaxation parameters. Their values may vary of several order of magni-
tude and define several specific regimes which are analyzed in Section 4 below.

At this stage, it is worth to focus on initial conditions. From the above adimensionalization, the initial radius is R ¼ 1, and
the corresponding initial pressure is assumed to be at equilibrium with the ambient pressure and the surface tension:
Pð0Þ ¼ ðPi þ RÞ=HV . In experiments, after the first decompression jump ensuring bubble nucleation, we actually wait for
the bubble mass and radius to reach an equilibrium state, so that for instance bubble radius stops to evolve. The initial water
concentration in the influence region is Cð0; rÞ for r 2 ½Rð0Þ; Sð0Þ�. We choose a constant initial concentration Cð0; rÞ ¼ Ci. The
behavior of the solutions drastically depends on the relationships between the initial concentration and the initial bubble
pressure. A particular case is given by

Cð0; rÞ � Ci ¼ CH

ffiffiffiffiffiffiffiffiffiffi
Pð0Þ

p
; r 2 ½Rð0Þ; Sð0Þ�: ð21Þ

These ‘‘well-prepared’’ initial data correspond physically to some equilibrium between the inner bubble pressure and the
water concentration. The solution behaves nicely as expected: the radius increases, the inner pressure decreases. On the
other hand, when (21) is not satisfied, one can observe some jumps at small times (depending on the value of HV ), where
bubble pressure and water concentration try to reach equilibrium. If Ci > CH

ffiffiffiffiffiffiffiffiffiffi
Pð0Þ

p
, there is a water excess in the melt, so

that the radius may decrease or the pressure increase very fast before reaching a smooth regime. On the contrary, no bubble
should exist when the water is not sufficient, Ci < CH

ffiffiffiffiffiffiffiffiffiffi
Pð0Þ

p
, and the solution may exhibit almost discontinuous behavior, or

even not exist.

3. Numerical approximation

In this section we consider the numerical approximation of the model (16)–(19), on RðtÞ and MðtÞ and Cðr; tÞ, together
with the boundary conditions (20) and the external assumption (13) and (14). We propose a numerical scheme for the
advection–diffusion equation which conserves exactly the water mass by construction. This is a delicate point of the discret-
ization; the flux at the bubble border has to be carefully computed because the magnitude of the relaxation parameters HV

and HD may differs of several orders. We shall first present the straightforward discretization of the system of differential
equations (16) and (17) and then present the more delicate discretization of the advection–diffusion equation (19).
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3.1. The differential system

We describe here the basic elements of the numerical scheme for the differential system (16) and (17). Let us first define,
for n 2 N, the time tnþ1 and the ambient pressure Pnþ1

a ¼ Paðtnþ1Þ, at the iteration step nþ 1, respectively by:

tnþ1 ¼ tn þ Dtn;

Pnþ1
a ¼ 1� tnþ1;

where the time step Dtn is computed at each iteration and must satisfy some stability conditions which will specified later
on, see Section 3.3. The numerical results, see Section 5, will be plotted in term of the ambient pressure Pa, which may be
considered as a time variable.

We choose a semi-implicit scheme for the discretization of (16), in the sense that the discrete bubble radius Rn ¼ RðtnÞ is
treated implicitly, whereas the pressure Pn ¼ PðtnÞ remains explicit. Thus the evolution of the discrete radius is given by

Rnþ1 ¼ Rn � Dtn R
HVgn

eff

 !
1� Dtn ðP

n � Pn
aÞ

HVgn
eff

 !�1

: ð22Þ

Next we discretize the equation for the mass balance at the magma–bubble interface, (17), by a semi-explicit scheme. Defin-
ing the discrete bubble mass by Mn ¼ MðtnÞ, we recall that the pressure is given for all n by PnðRnÞ3 ¼ Mn. We denote by
Fn

0 ¼ FðR; tnÞ the discrete flux at the interface r ¼ R, and we set

Mnþ1 ¼ Mn þ 3qm
Dtn

HD
Fnþ1

0 : ð23Þ

Finally, the discrete radius of the influence region, Sn ¼ SðtnÞ is given by Sn ¼ Rnð Þ3 þ S3
0

� �1=3
.

We turn now to the definition of the discrete flux Fnþ1
0 , which follows from the discretization of the advection–diffusion

equation (19).

3.2. The advection–diffusion discretization

The advection–diffusion equation for the water concentration Cðt; rÞ is solved by splitting the equation between the
advection step and the diffusion step. The advection step consists in discretizing the following transport equation:

r2@tC þ _RR2@rC ¼ 0: ð24Þ
We choose to solve it by a Lagrangian method, namely, a set of mesh points at time tn being given, rn

i ; 0 6 i 6 N, we compute
a new mesh at time tnþ1 by solving explicitly the equation of characteristics

r2
i

dri

dt
¼ R2 _R; ð25Þ

which integrates in

rnþ1
i ¼ Rnþ1

� �3
� Rnð Þ3 þ rn

i

� 	3
� �1=3

: ð26Þ

The above relation defines the mesh for all n P 1 as soon as the initial discretization r0
i ; 0 6 i 6 N, is fixed. Inspection of (26)

shows that, if r0
0 ¼ R0 and r0

N ¼ S0 are known, we have for all n P 1 : rn
0 ¼ Rn and rn

N ¼ Sn, so that any choice

R0 < r0
1 < � � � < r0

N�1 < S0 is relevant, in particular the uniform grid defined by r0
i ¼ ði=NÞS3

0

� �1=3
. Finally, we denote by Drn

i

the (non uniform) space discretization step, Drn
i ¼ rn

iþ1 � rn
i .

The diffusion step consists in discretizing the equation

r2dtC ¼
1

HD
@r r2D@rC
� 	

:

Following a standard finite volume strategy, we integrate the above equation on the mesh ½tn; tnþ1½��rnþ1
i ; rnþ1

iþ1 ½, looking for
piecewise constant solutions Cn

i on the mesh. We obtain, for i ¼ 1; . . . ;N � 1:

Cnþ1
i ¼ Cn

i þ
Dtn

HD

3 Fnþ1
iþ1 � Fnþ1

i

� �
r3

iþ1 � r3
i

; ð27Þ

where Fnþ1
i stands for the discrete flux between cells i� 1 and i. As an approximation of r2D@rC for r ¼ rnþ1

i , we choose a cen-
tered finite difference:

Fnþ1
i ¼ Dn

i

2 rnþ1
i

� 	2

rnþ1
iþ1 � rnþ1

i�1

Cn
i � Cn

i�1

� 	
: ð28Þ
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The boundary conditions (20) become

Cnþ1
0 ¼ CH

ffiffiffiffiffi
Pn

p
; Fnþ1

N ¼ 0: ð29Þ

We are now in position to close Eq. (23) by setting the value of the discrete flux at the bubble-magma interface, Fnþ1
0 . The

trick here is to obtain a discrete analogue of the mass preservation (15). Defining the discrete total water mass Mn by

Mn ¼ Mn þ qm

XN�1

i¼0

Cn
i r3

iþ1 � r3
i

� 	
; ð30Þ

we have the following result.

Proposition 1. Let Fnþ1
0 be given by

Fnþ1
0 ¼ Fnþ1

1 � HD

Dtn
r3

1 � r3
0

3
ðCnþ1

0 � Cn
0Þ: ð31Þ

Then the numerical scheme (22)–(31) conserves the discrete total water mass, that is Mn ¼M0; 8n 2 N.

Proof. The total water mass at time tnþ1 is equal to:

Mnþ1 ¼ Mnþ1 þ qm

XN�1

i¼0

Cnþ1
i r3

iþ1 � r3
i

� 	
:

Applying (23), splitting the sum for i ¼ 0 and i ¼ 1 . . . N � 1 and replacing (27) in the sum, we obtain:

Mnþ1 ¼ Mn þ 3qm
Dtn

HD
Fnþ1

0 þ qmCnþ1
0 ðr3

1 � r3
0Þ þ qm

XN�1

i¼1

Cn
i ðr3

iþ1 � r3
i Þ þ 3qm

Dtn

HD

XN�1

i¼1

Fnþ1
iþ1 � Fnþ1

i

� �
:

Hence, simplifying the last sum we get:

Mnþ1 ¼ Mn þ 3qm
Dtn

HD
Fnþ1

0 þ qmCnþ1
0 ðr3

1 � r3
0Þ þ qm

XN�1

i¼1

Cn
i ðr3

iþ1 � r3
i Þ þ 3qm

Dtn

HD
ðFnþ1

N � Fnþ1
1 Þ:

Recalling that Fn
N ¼ 0 for all n, and splitting, in the definition Mn, the sum for i ¼ 0 and i ¼ 1 . . . N � 1, we must have that:

3qm
Dtn

HD
Fnþ1

0 þ qmCnþ1
0 ðr3

1 � r3
0Þ � 3qm

Dtn

HD
Fnþ1

1 ¼ qmCnþ1
0 ðr3

1 � r3
0Þ;

which is verified since Fnþ1
0 is defined by (31). h

Remark 1. Notice that Proposition 1 holds true for any choice of the discrete flux in (28) for 1 6 i 6 N � 1.

3.3. Stability conditions

In this section, we describe how to compute for each n P 1 a time step Dtn ensuring some stability conditions on the
numerical approximations. The idea is to compute a bound for Dtn for each numerical approximation (radius, mass, concen-
tration), and then to take as Dtn the minimum of these three stability conditions.

We cannot obtain a completely satisfactory stability condition ensuring the bubble mass positivity in (23). However, a
partial condition is given by asking that the discrete bubble pressure Pn remains larger than the ambient pressure Pn

a at each
iteration n. This leads to

Dtn < HV
jðPn

a � PnÞðR3Þn � 3qmðr3
1 � r3

0ÞC
n
0j

j3qmFn
1j

�����
����� ð32Þ

This condition yields reasonable time steps in almost all cases, namely Dtn � 10�9 instead of 10�12 when both HV and HD are
small. This condition is not sufficient to avoid oscillations in the solution, in particular when the initial conditions are not
well prepared in the sense given above, see Eq. (21). In some rare case, the oscillations blow up, but this is consistent with
the physical incompatibilities concerning (21). The scheme is, nevertheless, robust in the sense that these oscillations, which
appear at the beginning of the computation, tend to disappear when time increases.
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We look now for stability conditions for (22) and (27). In particular we search a bound of the time step Dtn such that each
solution is positive.

Proposition 2. Assume that for n 2 N

Dtn < min
RnHVgn

eff

R
;

HVgn
eff

jPn � Pn
a j

 !
: ð33Þ

Then the solution to the numerical scheme (22) is positive, i.e. Rn > 0.

Proof. Let us assume that at the iteration n all the variables are positive, then at the iteration nþ 1, using (22), Dtn must be
such that:

Rn � Dtn R
HVgn

eff

 !
1� Dtn Pn � Pn

a

HVgn
eff

 !�1

> 0:

We have two possibilities. The first one is when Pn � Pn
a 6 0. Then we have:

1� Dtn Pn � Pn
a

HVgn
eff

> 0:

Hence,

Rn � Dtn R
HVgn

eff

> 0;

which implies,

Dtn <
HVgn

eff R
n

R
:

The second one is: Pn � Pn
a > 0. Then Dtn must be the positive solution of a second order equation with a positive dominant

coefficient: RðPn � Pn
aÞ=ðHVgn

eff Þ
2. Hence Rnþ1 is positive, if Dtn is external to the roots:

HVgn
eff

Pn � Pn
a

;
RnHVgn

eff

R
:

Finally, we remark that the choice (33) verifies both conditions.

Proposition 3. Assume that, for n 2 N,

Dtn <
HD

6
min

i
ðr3

iþ1 � r3
i Þ

rnþ1
iþ1 � rnþ1

i�1

Dnþ1
i ðrnþ1

i Þ2

 ! !
: ð34Þ

Then the solution to the numerical scheme (27) is positive, i.e. Cn
i > 0 for all i ¼ 1; . . . ;N � 1.

Proof. We first remark that the Dirichlet condition on the boundary r ¼ R implies that Cn
0 > 0 for all n 2 N.

Assuming that at the nth iteration Cn
i is positive for all i ¼ 0 . . . N � 1, we want Dtn to verify Cnþ1

i > 0. Thus from (27), it
must be, for i ¼ 1 . . . N � 1:

Cn
i þ

3Dtn

HDðr3
iþ1 � r3

i Þ
Fnþ1

iþ1 � Fnþ1
i

� �
> 0:

Recalling that Fnþ1
i is given by (28), collecting the terms with respect to Cn

i�1;C
n
i and Cn

iþ1 and considering that Cn
i are positive

for all i, we get a sufficient condition for the positivity of Cnþ1
i in the form, for i ¼ 1 . . . N � 2:

1� 6Dtn

HDðr3
iþ1 � r3

i Þ
Dnþ1

iþ1 ðrnþ1
iþ1 Þ

2

rnþ1
iþ2 � rnþ1

i

þ Dnþ1
i ðrnþ1

i Þ2

rnþ1
iþ1 � rnþ1

i�1

 !
> 0:

Since

rnþ1
iþ2 � rnþ1

i

Dnþ1
iþ1 ðrnþ1

iþ1 Þ
2 > 0;

the time step Dtn given by (34) verifies the above condition.
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If now i ¼ N � 1, recalling that Fn
N ¼ 0 for all n, we obtain that Dtn must satisfy:

Dtn <
HD

6
ðr3

N � r3
N�1Þ

rnþ1
N � rnþ1

N�2

Dnþ1
N�1ðrnþ1

N�1Þ
2

 !
;

which concludes the proof. h

4. Limit cases

As mentioned in Section 2, the system of Eq. (16)–(19) has two relaxation times, HV and HD defined by (18), which may
differ by several order of magnitude, depending on the values of, for instance, diffusivity or viscosity. In many experiments HV

and/or HD are very small, of the order of 10�7. The time steps Dtn depending on these values, the computational time needed to
reach a porosity close to 1 is very large. The study of the limit cases, such as when HV and HD tends to1 or to 0, is thus an
attractive alternative to solving the full system because it leads to simplified models with smaller simulation times. In par-
ticular, we will classify the different limits in regimes of bubble growth by considering the ratio HV=HD. Following [11],
we define a viscous regime when the ratio is very small, see Section 4.1, an equilibrium regime when the ratio is of order
1, see Section 4.2, and a diffusive regime when the ratio is large, see Section 4.3. At the end of each section, we will also sum-
marize when necessary the numerical scheme corresponding to the simplified cases. As we are mainly interested in the
behavior of the bubble physical dimensions (pressure P and radius R), we shall only describe how to compute these two quan-
tities. In particular, we recall that, when comparing with experiments, we consider the porosity: a ¼ R3=S3, and we note that
all the simulations performed in this paper tend to compute until a porosity a as close as possible to 1, even if it is not realistic
from a physical viewpoint: the crossover value above which our model of bubbles in a melt is no longer valid is around 0.7.

We list all the possible limits in Table 2, which references each simplification to compute the bubble radius R and mass M
(or pressure P). We note that these simplifications are relevant only under the assumption that temperature is constant, so
that the perfect gas law reads M ¼ PR3. We give when possible the expression of the simplified solutions for variable viscos-
ities and diffusivities. In Table 2 we also give the orders of magnitude delimiting each regime.

4.1. Viscous regime: HV=HD 	 1

We first consider the case when the viscous relaxation parameter is smaller than the diffusion one. There are three pos-
sibilities: HV tends to zero and HD is of order 1 or tends to infinity; and HV is of order 1 and HD tends to infinity.

4.1.1. HV � 1 and HD !1
Since HD is very large, Eq. (19) reads r2dtCðr; tÞ ¼ 0, which yields to:Z SðtÞ

RðtÞ
r2Cðr; tÞdr ¼

Z Sð0Þ

Rð0Þ
r2C0dr: ð35Þ

Table 2
Limit cases.
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Concerning the bubble mass evolution, since HD 
 1 the water mass inside the bubble is constant and Eq. (17) reads _M ¼ 0,
which is equivalent to:

M ¼ Mð0Þ: ð36Þ

In fact, a large diffusive relaxation parameter may be physically given by a very small value for the diffusivity in magma;
hence there will not be diffusion of water from the magma into the bubble, and the bubble water mass will not change.

As HV � 1, no simplification is possible for the equation giving the evolution of the bubble radius (16). Still, recalling that
Mð0Þ ¼ M ¼ PR3 and that the ambient pressure is given by (14), we can write a differential equation only depending on R:

_R ¼ 1
HVgeff

Mð0Þ
R2 � RPa � R

� �
; ð37Þ

or equivalently on P:

_P ¼ � 3P
HVgeff

P � Pa � R
P

Mð0Þ

� �1=3
 !

:

This result is identical to that obtained in [11]. Eq. (37) can be easily solved with an implicit scheme.

4.1.2. HV ! 0 and HD !1
When HD is large, the simplifications (35) and (36) are always true. In particular, water mass in the bubble is constant:

M ¼ Mð0Þ.
Regarding Eq. (16), since HV is very small, multiplying by HV , recalling that Mð0Þ ¼ PR3, and simplifying allows us to ob-

tain a third order equation on R:

R3Pa þ RR2 � Pð0Þ ¼ 0;

which admits a unique real solution given by the explicit relation

R ¼ c
6a
þ 2b2

3ca
� b

3a
; ð38Þ

where a ¼ Pa=Pð0Þ; b ¼ R=Pð0Þ and c ¼ ð108a2 � 8b3 þ 12
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27a2 � 4b3
p

aÞ1=3.

4.1.3. HV ! 0 and HD � 1
If HD � 1, the simplifications of Section 4.1.1 no longer hold. There is, for instance, no possible simplification for Eqs. (17)

and (19). Nevertheless, since HV 	 1, we have:

P ¼ Pa þ
R
R
; ð39Þ

which links the bubble pressure P to the radius R. On the other hand, considering that M ¼ PR3 and Eq. (17), we obtain the
following differential equation for R:

_R ¼ 3qm

HD
r2D

@C
@r

� �
r¼R

þ R3
� �

2RRþ 3R2ð1� tÞ
� ��1

; ð40Þ

where the water concentration is obtained solving the advection–diffusion equation (19).
Numerically, we compute Mnþ1 and Cnþ1

i using respectively equations (23) and (27), then we apply relation M ¼ PR3 to
compute P and finally from (39) we obtain R.

4.2. Equilibrium regime: HV=HD � 1

In this section we deal with those regimes in which the relaxation parameters HV and HD are of the same order of mag-
nitude. More precisely, when both HV and HD tend to zero, or to 1, since otherwise no simplification is possible.

4.2.1. HV ! 0 and HD ! 0
This is an interesting situation because on the one hand computational time is very long and on the other hand it corre-

sponds to the so-called equilibrium growth, which is a common situation in natural magmas: the bubble is always at its
maximum possible radius. First notice that, since HV 	 1, following the discussion of Section 4.1.3, we have the simplifica-
tion (39).

Next, let us consider HD 	 1, then multiplying the water concentration equation (19) by HD and simplifying, we have:

1
r2

@

@r
r2D

@C
@r

� �
¼ 0
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for which the solution, taking into account the boundary conditions (20), reads:

Cðr; tÞ ¼ CðR; tÞ ¼ CH

ffiffiffi
P
p

8r 2 ½RðtÞ; SðtÞ�: ð41Þ

When HD tends to zero, Eq. (17) is no longer valid to compute the water mass variation inside the bubble. Therefore, we
consider the total mass conservation equation (15). Replacing C by (41) in (15) and recalling (13), we obtain

M ¼ qmS3
0ðC0 � CH

ffiffiffi
P
p
Þ: ð42Þ

Now since M ¼ PR3, Eq. (42) is a second order equation in X ¼
ffiffiffi
P
p

, which turns out to have one positive solution, namely

P ¼
�Y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðY þ 4R3C0=CHÞ

q
2R3

0@ 1A2

; where Y ¼ CHqmS3
0: ð43Þ

Hence R and P (or M) are uniquely defined by combining (39) with (43) or (42) (which we have used in our numerical
resolution).

Eq. (42) allows one to establish an expression for the porosity a ¼ aðtÞ. Recalling that the porosity is defined by a ¼ R3=S3,
we have

R3 ¼ S3
0

a
1� a

:

Replacing M by PR3 in (42) gives readily

P
a

1� a
¼ qm C0 � CH

ffiffiffi
P
p� �

;

which in turns leads to

a ¼ b
P þ b

; whereb ¼ qm C0 � CH

ffiffiffi
P
p� �

: ð44Þ

Expressing (44) in dimensional gives:

â ¼ c
Mw
bP þ c

; where c ¼ RTq̂mKH

ffiffiffiffiffi
P̂0

q
�

ffiffiffiffibPq� �
; ð45Þ

where bP0 is the pressure of a bubble of radius zero. Eq. (45) is equivalent to the most commonly used formula to calculate
porosity in the equilibrium regime (e.g. [16]). We underline, however, that in the common formula bP ¼ bPa, whereas the pres-
sure in (45) accounts for surface tension because bP ¼ bPa þ 2r=bR.

4.2.2. HV !1 and HD !1
This situation could result from a very large viscosity, which yields HV 
 1, combined with a very small diffusivity, which

yields HD 
 1. Following experimental evidence (see [17]), we can imagine that the physical system is ‘‘fixed’’ or ‘‘frozen’’.
On the one hand, as discussed in Section 4.1.1, the water mass in the bubble is constant, see Eq. (36). On the other hand,

since HV 
 1, from Eq. (16) we also obtain _R ¼ 0, that is:

RðtÞ ¼ Rð0Þ ¼ 1: ð46Þ

Since both the mass M and the radius R are constant, the pressure P is explicitly determined by M ¼ PR3, and no numerical
scheme is needed.

4.3. Diffusive regime: HV=HD 
 1

In this last section, we treat regimes which have the viscous relaxation parameter larger than the diffusion one. We have
to differentiate three cases: when HD is small and HV is of order one or tends to infinity, and when HD is of order one and HV

tends to infinity.

4.3.1. HV !1 and HD � 1
As shown before, when HV !1, we obtain Eq. (46) and the bubble radius is constant in time. Recalling that M ¼ PR3, we

have _M ¼ _P, hence from (17) we get the following differential equation on P:

_P ¼ 3qm

HD
r2D

@C
@r

� �
r¼R
; ð47Þ

with C solution of (19).
Numerically, the radius R is constant, and the pressure P is computed using the numerical scheme of Section 3.
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4.3.2. HV !1 and HD ! 0
Considering the discussion of Sections 4.2.2 and 4.2.1, both simplifications (46) and (43) hold. From (46), the bubble ra-

dius is constant, R ¼ 1, so that the bubble pressure is also constant, and is explicitly obtained by simplifying Eq. (43):

P ¼ �Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YðY þ 4C0=CHÞ

p
2

 !2

; Y ¼ CHqmS3
0: ð48Þ

4.3.3. HV � 1 and HD ! 0
Since HV � 1, there is no possible simplification for the radius equation (16), but, from Section 4.2.1, the bubble pressure

is computed by (43). In this case, the radius R must be computed using the numerical scheme of Section 3, while the pressure
P is explicitly given by (43).

5. Numerical results

In this section we compare first the numerical results obtained using the general scheme of Section 3 to those obtained
with the numerical approximation of the simplified schemes of Section 4. This is followed by a comparison between the
behavior of our numerical results and experimental data described in [18]. Finally, we consider the reference code described
in [7] and compare its numerical results with those obtained using the general scheme.

Let us first discuss the dependence of our results on the number of discretization points N with respect to the radial var-
iable r. Various numerical tests show that a small number of points is sufficient in order to well capture the behavior of the
discrete flux Fn

0 on the bubble surface. The relative errors for the bubble radius R, the bubble pressure P, and the porosity a
with respect to the reference ones with N ¼ 2500, are of order 10�3 for N ¼ 50 and of order 10�4 for N ¼ 250, respectively.
Therefore we choose N ¼ 50 in all the following computations.

In Fig. 1 we show the evolution of the concentration function Cðt; rÞ computed solving the general scheme with
HV ¼ 0:000236 and HD ¼ 5:28929. Bubble size evolution is sketched as grey circles of increasing radius R. We clearly see
the mesh refinement near the bubble wall (the grey circle portion) when the concentration function becomes stiffer.

5.1. Numerical convergence

We show now through a few selected examples the numerical convergence of the global numerical scheme defined in
Section 3 towards the simplified limit cases discussed in Section 4. Convergence is determined by fixing either HV or HD

and varying the other one. In Fig. 2 we show the convergence for the bubble radius towards selected limit cases. On the left,
we plot the bubble radius evolution with respect to the ambient pressure Pa which linearly decreases in time, fixing HD ¼ 0:1
and varying HV from 10�5 to 101, together with the radius computed as explained in Section 4.1.3 or just defined as the con-
stant 1, as justified in Section 4.3.1. On the right, we plot the bubble radius evolution with respect to time, fixing HV ¼ 0:1
and varying HD from 10�3 to 103, together with the radius obtained as explained in Sections 4.1.1 and 4.3.3. In both cases we
can observe the transition of the general unsimplified regime (the middle case in Table 2) from one simple growth regime to
the next.

5.2. Experimental data vs. numeric

Controlled decompression experiments on high temperature magmas are able to produce gas bubbles. By varying the end
pressure, data on bubble size and porosity have been retrieved for different initial conditions such as magma chemical

Fig. 1. Bubble growth and gas concentration function in the influence region.
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composition, temperature, decompression rate, etc. In this work we illustrate how comparisons between such experimental
data and model outputs can be carried out. Let us first present here the experimental framework used in [18]. Samples of
viscous magma are saturated in water and maintained under pressure for about 5 days for the water to be homogeneously
dissolved into the magma. Then an instantaneous decompression gives rise to bubble nucleation. After waiting for a few
minutes that these initial, small bubble reach their equilibrium sizes, a linear decompression is applied until a final pressure
where samples are quenched by a sudden cooling to ambient temperature. The cold samples are then sliced and analyzed to
obtain bubble sizes and porosity. One experiment quenched just after the sudden decompression that nucleates the bubbles
gives the initial conditions for our model.

The physical values used and measured during the experiments are the following: the initial radius Ri ¼ 17:5 � 10�6, the
diffusion coefficient Di ¼ 5:79 � 10�12, the initial concentration C0 ¼ 3:44 � 10�2, the initial pressure Pi ¼ 108, the surface ten-
sion r ¼ 0:1, the viscosity gi ¼ 5:9 � 10�4, the magma density qm ¼ 2400, the gas porosity density qi being calculated by the
perfect gas law (1), the temperature T ¼ 1098, and the decompression rate DP= 10�5. We tested two different experimental
series. In the first series, bubbles growth was only due to gas expansion and water diffusion form the magma. In the second
series, bubbles growth was also due to coalescence processes. The porosity evolution of both series is comparable but the
evolution of bubble size differ.

In Fig. 3 we show the evolution of the porosity a and of the radius R with respect to the ambient pressure Pa. On the left
graph are represented three numerical results for different viscosity calculation and initial porosities along with the exper-
imental results obtained in [18] (triangles). The run represented by the grey line had a constant viscosity g, whereas the
black line and the dashed line had variable viscosity geff computed applying the formula (3). We remark that considering
a variable viscosity geff instead of a constant one has an impact on the numerical result only when the ambient pressure be-
comes very small because the grey and the black curves diverge only when Pa < 0:1. The dashed line is a numerical result
computed starting from the porosity measured on the experiment quenched just after the sudden decompression (porosity
a ¼ 0:056). The other two runs use the equilibrium state in Section 4.2.1, which predicts a porosity of 0:0779 instead of

Fig. 2. Bubble radius evolution and convergence. Left: convergence towards the limit cases 4.1.3 and 4.3.1. Right: convergence towards the limit case 4.1.1
and 4.3.3.
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Fig. 3. Porosity a (on the left) and radius R (on the right) with respect to ambient pressure Pa: effect of a variable viscosity geff .
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0:056. We note that the experimental points fit better the dashed line at high Pa and are closer to the two other curves at low
Pa. This leads us to conclude that during the first phase of the experiments the time between nucleation and the beginning of
the decompression was not enough to reach the equilibrium. The right graph shows the numerical radii R as a function of the
ambient pressure Pa for the same three numerical runs. Experimental results are now represented by squares centered on
the median value of the experimental radii and a standard deviation representing the spread of measured bubble radii.
We note that the three numerical runs are very similar, regardless of initial conditions, and that the fit between experiments
and numerical results is worse for radius than porosity. The larger misalignment of experimental radii compared to that of
porosity is explained by the fact that each experimental point in Fig. 3 is a full decompression run starting from Pa ¼ 1. As a
result, bubble nucleation dynamics occurring during the initial decompression step is only approximately similar from one
experiment to the next.

5.3. Discussion of a particular experiment

In Fig. 4 we compare the experimental results obtained in [18] when bubble coalescence occurs to our numerical results
with variable viscosity for three different initial porosities. The left graph, which displays the evolution of porosity with
ambient pressure, indicates that this experimental series is best reproduced numerically by starting from an initial porosity
of 0.035. This is lower than the best fit value of the other series. A tentative explanation of this situation is an even shorter
delay between bubble nucleation and the start of the decompression. We plotted on the right graph, which shows the evo-
lution of R with ambient pressure, distribution histograms of measured bubble radii. The three computed bubble radii R all fit
the experimental measurements within a standard deviation, but, considering the large spread of bubble sizes, it is not pos-
sible to choose which numerical results has the better fit. As discussed in [18], the poly-disperse nature of bubble growth in
the experiments was caused by bubble coalescence. Hence, one should consider poly-disperse modeling of the bubble pop-
ulation in order to produce more accurate results that resolve the spread in bubble sizes.
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Fig. 5. Evolution of the porosity a (on the left) and the radius R (on the right) with respect to a nonlinear decompression Pa .
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5.4. Tasting various decompression rates

The behavior of the proposed numerical scheme when considering linear decompression has been discussed in Fig. 3.
Here we present some numerical test ensuring the robustness of the numerical scheme when considering non-linear decom-
pression of the ambient pressure PaðtÞ. We have performed one test that considers decompression by pressure jumps, and
one test that considers an increasing ambient pressure, i.e. DP < 0. In Fig. 5, we show the behavior of the porosity (on the left)
and radius (on the right) for the run with pressure jumps. The physical values we have considered are:
R0 ¼ 4:4 � 10�6; ai ¼ 0:041; D ¼ 2 � 10�12; Ci ¼ 0:036; Pi ¼ 7 � 107; r ¼ 0:1; qm ¼ 2354; T ¼ 998, a variable viscosity geff

and DP ¼ 2:5 � 105 for the linear decompression; whereas, for the nonlinear decompression, we have a series of instanta-
neous pressure jumps every 20 s.

In the increasing ambient pressure test, we have first linearly decompressed the ambient pressure from 1 to 0 and then
linearly compressed it back, with the same decompression rate (in absolute value). There is a very good agreement between
the numerical results of the decompression phase and the compression one. For instance the relative error between the ini-
tial radius and the one at the end of the decompression/compression cycle is of order 10�3.

5.5. Comparison with existing code

Lastly, we compare our numerical code with the one of reference described in [7]. The main differences between the two
schemes are: in [7] temperature and diffusion are not constant, as it is the case in our study; vitrification and crystallization
are taken into account and we do not consider them; the viscosity function is not the same in the two schemes. We find that
computational times of the [7] code are much smaller than those of our code. In Fig. 6 we show the radius evolution with
respect to the ambient pressure and computed with the two codes starting from the same initial data. The small difference at
the beginning of the computation (when the ambient pressure is 1) is due to the lack of control of the time discretization in
the code of [7], so that the results miss some initial time points to better capture the pressure jump. The difference at final
time (when ambient pressure is smaller than 0.1) may be due to the difference in the viscosity formula, or to crystallization
or vitrification. Overall, both numerical results are in good agreement. Further comparisons with other experimental results
are under investigation and will be exposed in a future work.

6. Conclusions

We have proposed and applied a numerical scheme for the approximation and simulation of the solution of a non-linear
system of differential equations coupled with an advection diffusion equation, previously proposed in the volcanology liter-
ature (see for example [7,8,11]). Our goals were to give a discretization of the system that is conservative by construction and
to study the asymptotic limits when the two relaxation parameters HV and HD tend to 0 or 1.

In the recent years (see for example [12] and the reference therein), the numerical approach to solve the model governed
by Eqs. (16)–(19) is based on the one proposed in [7]: the transport term in the advection–diffusion equation is simplified by
the means of a change of variable at the continuum level, leading to an heat equation with non standard diffusion term. Nev-
ertheless, with the method proposed in [7], a large number N of discretization points in the radial direction is greatly reduced
by the means of a variable mesh size. This size is controlled by an empirically defined parameter that ensures the conser-
vation of water mass and that precisely captures the behavior of the flux on the bubble border. With our approach, a small
number of points, N ¼ 50, also guarantees precise results, but the mesh size is automatically defined. In fact, the discrete flux
on the bubble border is defined in such a way that the numerical scheme preserves water mass (see Proposition 1). There is
thus no need to adjust an empirical parameter to ensure scheme accuracy. This advantage is balanced by more strict stability
conditions that yield small time steps and long computation times.

Fig. 6. Bubble radius as a function of the ambient pressure Pa: PSA-line is the numerical result using the reference code [7].
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Concerning the asymptotic behavior of the coupled system of equations, we have analytically deduced simplified models
in three regimes: viscous, when HV=HD 	 1, diffusive, when HV=HD 
 1, and in equilibrium, when HV=HD � 1. In particular,
when both HV and HD tend to 0, we retrieve the equilibrium state of the coupled system of equations. We have numerically
shown the convergence of the scheme towards the solutions of the three regimes when varying the relaxation parameters.
We also determined numerically the boundaries between the various regimes.

We compared our numerical results with data obtained from decompression experiments of natural magmas. We per-
formed numerical tests that verify the behavior of the code when considering non-linear decompressions with pressure
jumps and decompression/compression cycles. This validation of the code gives also a feedback on the quality of experimen-
tal results. In particular, we show that, unlike originally assumed by the authors, decompressions in [18] started while bub-
bles were still growing, i.e. equilibrium was not reached. Finally, it appears that the simplified mono-disperse framework is
not accurate enough to capture the spreading bubble size distributions produced by coalescence. We thus infer that an
extension of the physical model to include a poly-disperse description for the bubbles population is a worthy pursuit.
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