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The spherical geodynamo model of Braginsky (1978} is re-integrated. The original model of Braginsky
modified the Taylor's condition to include the influence of viscous core-mantle coupling. Reinstating also the
¢-component of momentum wg(s)/dt [where wg(s) is the geostrophic shear] in the expression for the
modifted Taylor condition makes possible the investigation of solutions for small viscosities. Above a critical
dynamo number D, the solution enters a viscously-limited branch (“Ekman” or “coupling” branch} and,
eventually, as D is further increased, jumps to a strong-field branch. The original numerical solution of
Braginsky belongs to the latter branch and is duplicated. But, with weak viscosities, the solution on that
branch is proved inviscid. In that inviscid limit, Braginsky's model meets the Taylor’s condition. The same
code is used to re-investigate another «m dynamo model defined by a simpler choice of « and w effects
[e=R,cos8, m= R, {r—1}].

KEY WORDS: «w dynamos, Taylor’s condition, model Z, earth’s core.

1. INTRODUCTION

It is generally believed that a balance is struck, inside the Earth’s outer fiuid core,
between magnetic and Coriolis forces. “Intermediate” dynamo models have been
devised to study this balance. In these models, the distribution of density heterogenei-
ties, which provide the energy source, is prescribed. The momentum eguation,
where the acceleration Ov/dt and the viscous forces are neglected, is diagnostic
and allows us to derive the velocity v from the magnetic field. But, that solution
is not unique {arbitrary geostrophic motions can be added) and can be found if and only
if the action of the magnetic forces on the geostrophic cylinders vanishes (Tayior, 1963),
Different studies have shown how imposing the Taylor's condition determines the
geostrophic velocity, up to a bulk rotation of the core (Taylor, 1963; Fearn and Proctor,
1987). The very existence of “Taylor states” (magnetic field solutions obeying the
Taylor’s condition) has been subjécted to many investigations. Most of them have
approached the Taylor’s condition by iaking into account small mass flux in the
Ekman boundary layers below the core surface (Tough and Roberts, 1968). This makes
the mathematical probiem well posed: from a given magnetic field, an unigue velocity
field can always be found and can then be used to time-step the induction equation. Itis
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then possible to test whether the solution opts for a Taylor state in the limit of vanishing
viscosity.

Investigations of that question have relied on numerical integrations of nearly
axisymmetrical dynamo models (Barenghi and Jones, 1991; Hollerbach and Ierley,
1991; Barenghi, 1992; Hollerbach et al., 1992; Barenghi, 1993). A prescribed o effect
models generation of the mean axisymmetrical field by planetary waves (Braginsky,
1964). Shearing the meridional field by the azimutal thermal wind @y is called the
o effect.

The dynamo number D measures the product of the amplitude of the o and w effects.
These studies have found that above a critical dynamo number D, the solution enters
a coupling (or Ekman) regime where it scales as ¢'/? (¢ = E'/? and E is the Ekman
number). In some cases (2%, «% @ models), large dynamo number solutions have been
proved inviscid. Then, this sequence of regimes is said to follow the Malkus-Proctor
scenario after the authors of the 1975 paper where it was first sketched.

Braginsky (1975) suggested another view of the asymptotics (¢ —0). He envisioned
that the action of the magnetic forces on the geostrophic cylinders, which depends on

i (sz JB B, dz)
ds

where s is the cylindrical radius, B is the ¢p-component of the magnetic field, is made
small because the meridional field lines are increasingly parallel to the rotation axis Oz
[B,= O(e"*)]. As ¢ is decreased, the action of the magnetic forces on the geostrophic
cylinders, though small, does not vanish; it is balanced by the mass flux in the Ekman
boundary layers, which continues to play an important part because the geostrophic
velocity (the dominant part of the fluid velocity at the core surface) increases as g3,
Thus the solution he envisaged never attains an inviscid limit. We shall not detail any
further the model-Z theory, of which the main ingredient is a boundary layer analysis.
Let us only note that it is a non-linear theory. Braginsky (1978) and Braginsky and
Roberts {1987) presented numerical integrations of a particular ae dynamo, with an
intricate geometry of the « effect, to support that theoretical analysis. They were not
able to study the limit (¢— 0} and did not prove the asymptotic form proposed by
Braginsky (1975) but the model Z character of their solution was clear: most of the lines
of force of the meridional field are parallel to the symmetry axis. Furthermore,
Braginsky’s dynamo model is steady-state in contrast to the other aw dynamo models
reported in the literature. In this paper, it is shown that both the geometry and the
steadiness of the numerical model Z can be accounted for by the geometry of the
prescribed « effect: the kinematic solution, at the onset of dynamo action, shows
Z geometry. The limit (¢ — 0) is studied and the Malkus-Proctor scenario is shown to
apply.

Section 2 and 3 present, respectively, the basic equations and the numerical method
used. Section 4 investigates the solution for a reference wew model o= agcos8,
= wy{r — 1), discussing the approach to the Taylor’s regime. Section 5 deals with
Braginsky's numerical model. The final section gives scope for further work, comparing
different equations governing the geostrophic velocity. Geophysical implications of the
study are outlined also.
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2. BASIC EQUATIONS

Description of «w axisymmetrical dynamos equations can be found elsewhere (eg.
Fearn er al,, 1988, pp 179201, 289-305) and is not recalled here. Following Braginsky
(1978) and Braginsky and Roberts (1987), the axisymmetrical parts of the magnetic field
and of the fluid velocity are written:

BzBe¢+Vx(%e¢)=BT+BP,

v =s[wr+ oz + wg(s)]e, +V x (§e¢)zvr+v,,,

where ey is the prescribed thermal wind, ey is the magnetic wind created by magnetic
forces and myg is the geostrophic shear.

The Coriolis force is large compared with the inertial forces which are, except for
dwg/dt, neglected in the momentum equation. Thus wy and y are determined from the
magnetic field components B and . Time-stepping of the induction equation deter-
mines both B and  (sec again Braginsky and Roberts, 1987). With scaled variables:

%5 derg

e [ .

5 {B)+ AB +sB, 7 +R,sB, Vor, (1)
oy -

Ez —V'(va)+A lp‘*'RaSOfB (2)

with

1 Py sm@o [ 1 oy
_(v2_l)p, A=Y o0 1 W
AB (V 52) A=t 60(sin9 aa)’

D(B)=V+(Bv,) +—:-ZBSBZ —%BBP-VB,

(2Qupm*? is unit of magnetic field, 5 = 1/uo is magnetic diffusivity, o is conductivity,
jis permeability, Qis Earth’s rotation rate, the core radius a is unit of length, a? /iy is unit
of time. The Reynolds numbers R, and R, measure respectively the size of the « and
w effects. The poloidal velocity v, is calculated from its s-component v, derived from
the ¢-component of the momentum equation

I
v,= B, V(sB) 3)
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Braginsky (1975) assumed the zonal terms to be large compared to the meridional ones.
Therefore, the part of the magnetic wind wy depending on B2 can be neglected and the
g-cffect term can be omitted in the toroidal equation. Also, the balance between the
viscous core-mantle Friction at the CMB and the action of the magnetic forces on the
geostrophic cylinders inside the core then reduces to

P G () Ly P8 @)
G 2pEV?Qaus® ds :

—z;

where z2 + 5% =a?, Q is Earth’s rotation rate, v is viscosity, E=v/Qa® is Ekman
number. However, Fearn ef al. (1988) stressed that it is not legitimate, in the framework
of the model-Z, theory, to neglect the momentum term de /8t since oscillations around
the equilibrium are damped on a spin-up time scale (E/2Q)~ ! which is not small. When
the dew/dt term is retained, (4) has to be replaced by

dog  EVPQ odf ("
—= — — BBdz |=0.
a + 732 Y6 Spustaz, ds\ 2 )

—zs

With scaled variables, (4) and (5) are respectively transformed into

142 .—1 d z,
ojgzﬁgf_g(ﬁj‘m BSde), (6)
dw,  &w 1 d £t
Ro—C% 4% ———[5*| BBdz}=0 7
°Ta +zi"2 sazlds(s j—& sdz) ’ g

with ¢ = E¥/?, Ro = 5/Qa? is Rossby number. The parameters Ro and £ allow us to
compare the timescales entering the problem with the ohmic decay time a*/5: 2nRo
measures the rotation period and Ro/e the Ekman spin-up timescale. We have
time-stepped either (1) or (2) [with expression {6) substitued for &g in (1)1 or (1), (2),(7).
When {7} is used the ¢-component of the momentum equation yields instead of (3)

1 sRodw
o=—B_" Eutuiafutad
v, B, VisB) TR

(8)

and, as a consequence,

1 3 Ro _ dw
D(B)=V-(Bv }4+—=B.B>*—-BB_ - — B~
(B) V(B\F)Jrsz A ; VB + 5 B

Taylor (1963) suggested another method to calculate the geostrophic velocity, which
is straightforward when applied to axisymmetrical solutions. Here, the Taylor’s
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condition [(7) with e = Ro ={] is

V5o %(SZJ_ BBsdz)r-O. )

Discarding magnetic field solutions singular at the axis, we get
Vs j BB dz=0. (10)

Then, following Taylor (1963), we take the time derivative of the identity (10) and we
replace the terms 8B/9¢ and #B,/t by their expression inferred from (1) and (2). This
yields a relation involving the geostrophic shear . Braginsky (1975) showed how to
arrange the different terms to get:

z L £ B 2
( j sB? dz)é% =— j sBB, Vaodz +5° f (BP-V(;>) dz

—j ’ (BSAB+BABS+ocB%3)dz. (1)

The Taylor solution (11) for sd wg/ds can be compared with the same quantity obtained
along with the magnetic field solution. We shall see (Section 4) that it may shed light on
the approach to the Taylor regime by the solution for the Steenbeck and Krause model.
On the other hand, such a comparison gives no indication on the solutions for the
Braginsky's model because steady solutions always satisfy (11). Incidentally, (11} is
first-order in contrast with the more general second-order equation of Taylor (1963)
[his equation (4.5)7 because we have already discarded a solution (singular at the
origin) whilst writing (10). An inspection of (11) shows that the Taylor solution for
sdwg/ds may be O(1) at the axis (then mg— oo logarithmically as s—0) (see also
Section 6).

3. NUMERICAL METHOD

The method used is very similar to the method set out by Braginsky and Roberts (1987).
Few improvements have been implemented and the reader is referred to Braginsky
(1978) and Braginsky and Roberts (1987). Only solutions with dipole symmetry are
reported here. Finite differences in both directions are used. Most of the calculations
ate done with a spherical grid. O <r<!I, 0<8<n/2) but a cylindrical grid is
necessary to evaluate the meridional and the geostrophic velocity. Linear interpola-
tions are performed between the cylindrical and the spherical grids. The density of
points increases as r— 1 in order to study the magnetic boundary layer. As a conse-
quence, the spacings are not uniform and some of the numerical schemes are not
second-order accurate. There are NR points in r and NL in 0. Different truncation
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levels (33 < NR <120, 33 < NL < 180} have been used. The cylindrical grid is slightly
different from the grid used by Braginsky and Roberts. [t has been built in such a way as
to make the local density of points for the two grids similar everywhere. In particular, it
is not equally spaced in s in order again to sample the magnetic boundary-layer.
Following Braginsky (1978}, decomposition in spherical harmonics is used to imple-
ment the matching conditions for the poloidal field B, at the boundary with the
insulating container, Numerical convergence with respect to the size NLEG of the set of
Legendre polynomials entering the decomposition is monitored. Also, because electri-
cal currents flowing in the Ekman boundary layer make the horizontal component of
B, discontinuous through that layer, a jump in %, at the core surface, is calculated [see
again Braginsky and Roberts (1987)]. Diffusioninr and #is treated with the Alternative
Direction Implicit (ADI) method. Most of the other terms are treated with the explicit
Adams-Bashforth method. The poloidal equation is integrated first. As a consequence,
the Crank-Nicholson method can be used to compute the thermal wind in the toroidal
equation. The s-derivative of the geostrophic shear is calculated at semi-intervals of the
cylindrical grid. Otherwise, namely if sdw/ds was computed in the obvious way, i.e. on
the same cylindrical grid (s;)  as w, before being interpolated on the spherical grid,
Fegls; . 1) — mg(s;_ )] alone would play a part in the induction equation, the solutions
for wgls,,;) and wg(s,,.,) would be decoupled, and, with small viscosities, on the
strong-field branch, serrated geostrophic profiles would be obtained.

Braginsky (1975) introduced a dimensionless parameter R, which he called the
magnetic Reynolds number

avy
0’

Then, he showed that the equations (1),(2),(5),(7) are not changed when the variables
are scaled as

B :Rl,’zBr’ l!l :R-l,'?.!‘hr

, R,
R,=RR,, R,=

Those transformations (with R = R} make clear that two (D =R_R,,, ¢ =R} or
three (D, &, Ro’ = R, Ro) parameters only are independent. In order to compare our
results with both Braginsky (1978) and Braginsky and Roberts (1987), we have retained
the set of parameters (R, R,,, ¢) that they used [plus Ro when {7) and (8) are used]. So
there is a redundant parameter, and the parameter space can be entirely scanned with
the ratio R, /R, kept fixed. We have imposed |R,,/R,| = 10 and ¢ and Ro can be set to
model accurately the Earth’s fluid core. Both depend on R. Braginsky {1975) noted that,
with R = 100, the actual intensity of the Earth’s dipolar field, as well as the size of the
velocity field calculated from Earth’s magnetic field secular variation data, both at the
core surface, are modefled by quantities with values close to 1. Viscosity of the fluid in
the Earth's core is very small, on the order of 3 x 1072 P, (Poirier, 1988). It gives
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E=15x 1071 and with R =100, e=4 x 107 3. The Rossby number Rois 7 x 1077
again with R = 100,

4, STEENBECK AND KRAUSE CHOICE OF 2 AND w EFFECTS
‘We shall refer to
afr, 0y = R,cos8, wp(r,f)=R,(r—1)

as the Steenbeck and Krause choice. It defines a geodynamo model which is now
a benchmark. It has been studied at depth by Roberts (1972), Barenghi and Jones (1991)
and Hollerbach et al. (1992). We shall report here results for D=R, R, <0. The
conclusions drawn from the studies of the D < 0 and D > 0 cases are broadly similar. In
that part, the dwg/dt term shall be neglected and (6) shail be used.

Testing the programe with that model was deemed necessary. Both Braginsky
(1978) and Roberts {1989) reported that, using codes similar to ours, they could
not get solautions with a smooth «. Braginsky {1978) noted that he did not get solutions
for the simplest choices of o effect because the seed field was expelled from the
regions where « is large whereas Roberts {1989) observed that large gradients in
the geostrophic velocity developed until numerical instability occurred. Barenghi
and Jones (1991) wondered whether these failures can be accounted for by difficulties
encountered in the calculation of the geostrophic velocity. They devised a code
which ensures that the geostrophic shear term, in the induction equation, does not feed
energy in the magnetic field. Indeed, studying the changes in the toroidal magnetic
energy, Braginsky {1975) had shown that the only energy source originates from the
thermal wind. Magnetic induction due to the geostrophic velocity is the counterpart of
the work done by magnetic forces against viscous friction (here, changes in the kinetic
energy associated with the term dimg/0t are neglected), We have taken this remark into
account and we have checked, at each time step, that the contribution of the geos-
trophic term to the magnetic energy budget remains negative. Let us now summarize
the results.

At the onset of dynamo action, the solution is oscillatory. The critical dynamo
numberis D, = — 5526 and the oscillation frequency is w, = 54.18 (with NR = NL= 60)
in agreement with both Roberts (1972) and Barenghi and Jones (1991). As the dynamo
number D is increased above its critical value, the solution enters a viscously limited
regime, which has been described by Barenghi and Jones (1991) and Hollerbach et al.
(1992). It consists of dynamo waves which scale as ¢'/%, This geometry compares well
with previous results. However, we do not confirm that the Ekman branch solution
loses stability as D is further increased. At D &~ — 35000, the solution becomes doubly
periodic. It is reminiscent of the bifurcation reported by Barenghi and Jones (1991),
However, in contrast with their results, it turns out that beyond D~ — 35000, the
geostrophic term alone is still capable of equilibrating the field. Figure (1) shows that
the amplitude of the solution increases dramatically around D & — 35000 but it does
not diverge to infinity as D rises further. Now, we argue that this viscously-limited
branch is strongly influenced by the Taylor’s condition.
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Figure 1 ({(BF**)* "2 ((Bp™)*»"'%)!'"? versus D, Steenbeck and Krause's choice.

The geostrophic velocity derived from the Taylor’s prescription is calculated {equa-
tion {11}] and compared to the velocity obtained together with the solution {equation
(6)]. Above D = D,, the field has infinitesimal values because induction by the geost-
rophic velocity is dissipative and the transition is supercritical. Here the weak
geostrophic shear, which is O(B?), cannot identify with the solution w, of (11).
A necessary condition for the amplitude of @, to vanish at D = D, is indeed

Z1 Z1 aB
J sBB, Ve, dz + J (BSAB + BAB, + aBE) dz=0

—Z1 —Zy

and that amounts to [see (1) and (2)]

Aj " BB.dz=0,

-z

where 1 is the eigenvalue at the onset of dynamo action. As D rises above D, wg
increases as (D — D,) and eventually gets O{w,) amplitude. In the equation for the
zonal field B, the term modelling the shearing of the field by the geostrophic velocity is
now important and the magnetic field solution seeks to adjust its geometry to obey the
Taylor condition. Figure (2)illustrates that mechanism and shows how the geostrophic
shear, determined through {6), approaches a “Taylor” limit defined as the solution of
(11). From D & — 12000 onwards, the two shears are identical, except, during part of
the cycle, for an outer region. Interestingly enough, the ratio of the viscous dissipation
(changes in magnetic energy due to shearing of the meridional field by the geostrophic
velocity) to the ohmic dissipation, which is zero at the onset of dynamo action, has
value of order 1 about the same value of the dynamo number D. That justifies the
solution adjusting its geometry to minimize that viscous dissipation, and as a conse-
quence to satisfy the Taylor’s constraint. We will deal with these results in a future
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Figure2 Comparison between sduw, /ds calculated with the time-stepping code {fullline) and obtained from
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paper where we will give evidence of a transition, about D ~ — 12000, to a branch of
mixed parities (dipole and quadrupole) Taylor solutions. Here, let us simply conclade
by noting that integrations with a same program have yielded converged solutions for
both Braginsky’s and Steenbeck and Krause's choices of o and w effects (see also
Anufriyev et al., 1995). Let us now focus on Braginsky’s choice.

5. BRAGINSKY'S NUMERICAL MODEL

5.1 Geometry of the solutions

The geometry of the solutions is dictated by the forms of both « and w; chosen by
Braginsky:

oy = —3R,s*1 %)

o =0, s<08

o= 20Ra(§) (1 - G_)G) sin[n(9 —105)], s> 08.

The numerical coeficients entering these expressions and, as a consequence, the
dynamo number D(D = R,R,,) are arbitrary. With the convention D = max («) max
(Vwy), D would be an order of magnitude larger. Most «w dynamos are AC and
dynamo waves can be expected to travel in the region where both « and w; are
nonzero. The linear part of the equations (1),(2} is

%?:AB+ Rofe; x Vo) Vi, (12)
W _ A" + R,soB. (13)

ot
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With Braginsky's convention, (e, x Vo) is directed southwards in the external belts
where o is nonzero. As a consequence, the dynamo waves can be expected to propagate
northwardsin the inner part of the belt, where « is positive and southwards in the outer
part (see e.g, Fearn eral, 1988, pp159-162). If these waves are present in the
Braginsky’s dynamo model, they are confined to s > 0.8, have large wavenumbers and
high frequency. The special geometry of « makes another configuration of the magnetic
field possible. Out of the equatorial belt s > 0.8, the toroidal field B plays no part in the
poloidal equation (13). As a first consequence, in most of the volume of the core, the
poloidal field i obeys a simple diffusion equation; it diffuses from its source, the
equatorial belt, to the interior (s < 0.8). We expect that there the solution i resembles
the eigenfunction of the diffusion operator with the smaltest decay time (Figure 3).
Second, the zonal toroidal field generated in the inner part of the core (5 < 0.8) from the
shearing of the poloidal field by the thermal wind can build up in strength without
doing much dynamically. So we expect the toroidal field to be mostly confined to the
interior of the core. That large field may anchor the solution and make it steady. In
short, a steady-state magnetic field with a poloidal part close to the first eigenfunction
of the diffusion operator and with a toroidal part large in the interior of the core but
nearly zero in the equatorial belt is a plausible solution of the linear equations (12), (13).
This steady state solution is characterized by the separation of the places where
respectively the poloidal field and the toroidal field are generated. A numerical
integration appears necessary to decide which of the two possible solutions plays the
most important role.

5.2 Linear analysis

A linear stability code has been written according to the lines of Barenghi and Jones
(1991) (see their appendix). Figure 4 shows the respective growth rates of the two
dominant modes. The most easily excited mode is DC. Next, at a second dynamo
number, ¢ waves become linearly unstable. The latter mode, when excited, has growth

L

Figure 3 Poloidal diffusive modes y/(r, 8) with the largest decay time. (a) For the sphere, (b) For the region
5 < 0.8 with {|,_o 5 imposed.
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Figure4 Growth rates 2 of the two predominant kinematic mode with respect to the dynamo number
D (Braginsky's choice for « and ). (+) Steady mode with Z-geometry (x) aw waves in the outer belt s = 0.8
£2/100).

rate O(100) times farger than the former. Unfortunately, it has not been possible to use
truncation levels larger than NL = 28, NR = 20, NLEG = 8. So, the initial value code is
used to confirm this first study. Table 1 sums up the results which are in agreement with
the value D, = 5147 reported by Hofflin and James (1995). It validates the general
picture we had from the linear stability code. Table 1 stress how crucial the truncation
level of the harmonic expansion at the core surface is. Figure 5 shows the geometry of
the eigenmode with eigenvalue 0 at D,. The toroidal field is nearly zero in the external
belt {r > 0.8) where the a-effect is nonzero, It implies that a non-linear mechanism is not
needed to explain the “flux expulsion” noted by Braginsky. The field at the core surface
is nearly dipolar {the ratio between the octupolar and dipolar componentsis 0.01}. The
geometry of this mode is indeed everywhere very close to the geometry of the toroidal
and poloidal fields with the largest decay time. It explains the Z-like geometry of this
kinematic mode (the ratio B,/B, is (1.394).

Table I Critical dyname number (onset of dynamo action).
Braginsky’s dynamo, There ase NR points in » and N L points in
. NLEG Legendre odd degree polynomials are used in the
harmonic expansion required to ensure the matching of the field
through the boundary with the insulating condainer

NL NR NLEG D,

40 40 15 5194
50 50 10 6060
50 50 15 5127
50 50 20 5tit
60 60 20 5123
60 60 25 5129
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(b)

(a)

Figure 5. The solution at the onset of dynamo action (D == D). (a} The field kires of the axisymmetrical
meridional field B,. (b) The contours of equal field strength for the axisymmetrical zonal field B

5.3 The weak-field branch

The investigation of the coupling regime has been cross-checked with the simultaneous
study of weak amplitude solutions of numerical model-Z by Hofflin and James (1995).
In this regime, the field evolves very slowly towards its equilibrated value. Hence, very
long integration times are necessary. It is possible to omit the m /¢ term and (6) shall
be used. Again, in the limit of small ¢, the only important nonlinearity stems from
magnetic induction by the geostrophic shedr. Since this term is dissipative, the
bifurcation structure is supercritical. Above D = D_, at small viscosities, the solution
enters the coupling regime and the field scales /2. Figure 6 sums up the evolution of the
field amplitude as the dynamo number is increased. This viscously Himited solution
loses stability at D.. Table 2 shows that the error on the estimate of the Taylor dynamo
number D for different truncation levels is quadratic (the numerical schemes are
nearly second order accurate); that allows us to estimate D = 11200 which compares
well with D = 16900 obtained by Hofflin and James (19935). Let us now discuss whether
the Taylor’s condition plays some part in that regime,

First, a relation such as {11} is no longer available to monitor the approach of this
steady solution to the Taylor state. However, we already know that, just above D_, the
evolution of the system can be well described by an amplitude equation for the single
kinematic mode m,, with positive eigenvalue. It can be written as

d
ﬁzﬁ.ml — e~ tm}, (14)

ot

where A(D) is the linear growth rate, the term — y(D)e™'m? is induction by the
geostrophic velocity wg; p is positive. Indeed, just above D,, the field amplitude
increases with D as /D — D, Furthermore, Figure 4 (or rather, with a better resol-
ution, Figure 1 of Hofflin and James, 1995}, showing the evolution of 2 with D, is very
similar to Figure 6 showing the evolution of the amplitude of the field in the Ekman
regime. This is the first indication of the relation (14), with g nearly constant, describing




112 D.JAULT

1.5410° -
1.0"10°
5.0°10" .
T T 1 T T
0 2000 4000 B, 8000 8000 10000 Dy

Figure 6 Average amplitude of the field on the Ekman branch versus (D/100). Continuous line: {B*)!7?,
broken curve: { B2 >'/%. As D is increased larger grid sizes are required. Resuits from integrations with N = 40,
N =30, N =60, N="T0, N = 80 are plotted £ = 10"°.

Table 2 Taylor dynamo number. Braginsky’s dynamo

NL NR NLEG Dy

40 40 15 §100
50 50 20 9000
60 60 25 9700
0 70 30 10200
80 80 35 10350

the evolution of the fleld throughout the steady Ekman regime. That is further
confirmed by Figure 7 which shows that, for D = 10000, the non-linear solution has
a geomeltry identical to the kinematic mode. It means that, contrary to what has been
described above for the “Steenbeck and Krause” choice for « and o, there is no
progressive adaptation to the Taylor’s condition, throughout most of the Ekman
regime, and viscous dissipation is here negligible compared to ohmic dissipation (in the
ratio 10™* to 1). Now, the stability of the non-linear solution satisfying (14} reduces to
the original linear stability problem where w, would now stand for wg + w,. The
growth rate of m, for this new linear problem is exactly 0 but there should be a dynamo
number above which a second mode has positive growth rate. It turns out that the
Ekman branch solution loses stability at a dynamo number very close to the dynamo
number for which the second kinematic mode {(dynamo waves propagating in the outer
belt, see the linear analysis) has positive growth rate (D = 11660 after Hofflin and
James, 1995). This second mode has to be called for to describe how the solution settles
to equilibrium, just below D .. There is a narrow range of dynamo numbers D, for which
both modes take part in the equilibrated solution. Just below, the dynamo waves play




MODEL Z DYNAMO AND TAYLOR'S CONDITION 113

(a)

@ | IR N (d@)

Figure 7 Comparison between the geometry of the solutien on the Ekman branch (a) and (¢} and
the geometry of the kinematic model {b} and {d). D == 10000, (a) and (c) meridional field, (b} and (d) zonal
field.

a part in the transient solution but are eventually damped. This scenario is similar to
what has been described for some o?@ dynamos (Barenghi, 1993): steady Ekman state
followed by vacillating Ekman and steady Taylor states.

Above D = 15000, the kinematic steady mode is linearly stable. The null solution is
however unstable. Indeed, the complex conjugate pair of eigenvalues of the kinematic
modes made of «w waves propagating in the external belt keeps positive real part.
That growth rate is very large Re(})= O(100) and starting from an initial random
infinitesimal field, the waves grow quickly until their amplitude reaches an equilibrium
value which scales as ¢'/%, This solution is transient because the geostrophic velocity
associated with the ow waves adds to the thermal wind to make the steady mode
unstable. The field strength increases until it is O(1). The final solution is steady. In
the range 11000 < D < 15000, both modes are linearly unstable and the dynamo
waves play a part in the transient evolution of the field because their growth
rate Re(l)=Q(100) is large compared with the growth rate of the steady mode
A=0(1).
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5.4 The strong-field branch

At D, theamplitude of the transient field exponentially increases until it becomes O(1).
Here, the 8w /0t term is required to prevent numerical instabilities whilst converging
to the final steady solution. The final solution is inviscid and does not change any
further as the viscosity is decreased below 3 x 1073, Its geometry (Figure 8) is quite
close to what is found in the coupling regime. That had already been reported for «*
dynamo models (Barenghi, 1992). Figure 9 shows how the amplitude of the field
changes with the dynamo number D {for £ = 10~ %), Solutions exist for D = 1300, well
below D, = 5100, Figure 10 shows the geometry of this subcritical solution (D = 1300)
and Table 4 illustrates its inviscid character. With larger ¢, viscous dissipation cannot

(a) {b)

Figure 8 The inviscid solution. D= [0200. (a} The field lines of the axisymmetrical meridional field B,.
(b} The contours of equal field strength for the axisymmetrical zonal field B.

1.0 ’_/—'
0.8 /-/’
4"’—
0.6 L
-
’
4
s
4
0.4 —‘__—\
4
Fe
0.2
D, D,
0.0 T 1 T T T ]
0 5000 10000 15000 20000 25000 30000

Figure ¢ Amplitude of the solution versus D. &= 10"%. Continuous curve: B/B.. Dotted line: B.. Broken
line: zonal field B, NL = 180 NR = 120.
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|| |
| \
@ i | 1 | (b)

Figure 10 The solution at the highly subcritical dynamo number D= — 1300. (a} The field lines of
the axisymmetrical meridional field B,,. {b) The contours of equal field strength for the axisymmetrical
zonal field B.

Table3 Amplitude of the inviscid solution. D= 10200,
NR=NL=T0, NLEGE = 3{

£ {87 <B> {B>/<B.>
10-+ 0.2661 0.749 0.362
Ix 1078 0.2552 0.729 0376
10-* 0.2517 0.721 0383
e 0.2500 0717 0.388

Tabled SameasTabled. D =1300,NR= NL=60, NLEGE=20

€ (B, B> BB
1073 %]

Ix 107 0.312 0.262 0.390

10+ 0.3313 0.294 0.393

Ix 1077 0.338 0.360 0.396

1073 0.339 0.30¢ 0.396

be negtected and larger dynamo numbers are required to get finite amplitude solutions.
Above D 2 3000, the geometry of the solution changes very little. The ratio B, /B,
decreases with D, as Roberts (1989) found. Finally, we have compared out results with
the findings of Braginsky (1978) and Braginsky and Roberts (1987) which had been
obtained for D = 25000 and much larger viscosities.

First, their results for ¢ = 0.01 are duplicated. Then, the evolution of the solution
from £=0.01 to the limit of vanishing viscosities is monitored (Figure 11). From
e=0.01to ¢ = 0.001, the ratio B,/B, decreases and, as a consequence, the solution for
£=10.001 is strikingly axial (Figure 12a,b). However, from ¢ = 0.001 downwards, the
ratio B/B, increases again. Thus, the Taylor condition is not met by aligning the lines
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Figure 11 Amplitude of the solution versus — log, o274, D = 25000. (a) Fult line: zonal field strength { B2 »1/2
broken line: meridional feld steenth {BZ)Y2 (b) (BZ)Y?/(BI}V2 (c) log,,(Q,) where Q, is viscous
dissipation during one unit time. {d) {4) Q,(%}Q;, where @, is ohmic dissipation (NL=NR = 120).
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Figure 11 (Continued ).

@) {b)

(c)

Figare 12 The evolution of the geometry of the solution (D = 25000} from & = 10" 3(a)and (b}to g = 5.10"°
(c) and (d). (a) and (c} The field lines of the axisymmetrical meridional ficld B,,. (b} and (d)} The contours of
equal field strength for the axisymmetrical zonal field B{INL= NR = 120).

{d):
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of force of the poloidal field parallel to the symmetry axis, and for intermediate valnes of
the viscosity, the geostrophic velocity (Figure 13a) does not grow as ¢~ ' mainly because
the intensity of the poloidal field decreases sharply. As ¢ is further decreased, the
magnetic field solution (Figure 12¢,d) and the geostrophic shear wg(s) (Figure 13b)also
tend towards an inviscid limit. The geometry of this inviscid solution is smooth, as
indicated also by the sinall ohmic dissipation, Figure 13b shows evidence of a singular-
ity at the symmetry axis. {ts discussion is delayed until the next section. The cellapse of
the viscous dissipation (calculated as the change in magnetic energy due to the term
sB,dwmg/ds) is perhaps the most striking consequence of the approach to the Taylor

500+

500

-1000—

-1500—

2000

{a) -2500-

10004

500

500
-1300

-1500

(b) -2000-

Figure 13 The geostrophic shear wg{s} as a function of the distance from the polar axis, D = 25000
(NL=NR =120). (a) Full line &= 10~?, half dotted half broken line £ =23 x 1073, broken line = 1073,
dotted line £=3 x 10~* (b) Full line &= 107", half-dotted half-broken line, =5 x 10~* broken line
e=2x 107° dotted line e = 107 % full line e =5 x 1075
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Table 5 Braginsky's asymptotics. R, scales as g7 /3

D R, R, & B <B3/{B.>

4641 1468 3162 10732 0.360 0.383

6934 2193 3162 Ix 107 0.301 0.369
10000 3162 3162 107 0.272 0.364
14938 4724 31.62 Ix1077 0.250 0.350
21544 681.2 362 I 0.245 0.320
25000 500 50 1072 223 0.281
33930 676.3 50 4x 1073 1.48 0.264

regime (Figure 11c). Once the Taylor limit is attained, viscous dissipation scales rightly
as &. Now, the asymptotic form (¢ — 0) proposed by Braginsky (1975) was

wg=0("), B=0(@"), Br=0(1) (15)
with

R,=0(1), R,=0("'7).

@

Since R, changes as &~ '3, there is no straightforward contradiction with the finding of

inviscid regimes. Braginsky and Roberts (1987) noticed that their numerical results,
limited to large values of the viscosity ¢ = 0.004 — 0.04, do not rule out (15). Table 5
sums up the results, obtained with smaller D, together with those duplicating Braginsky
and Roberts results. The asymptotic form (15) is not vindicated.

In a recent paper, Braginsky and Roberts reinvestigate the strong field branch of the
Braginsky’s model. They pay particular heed to the quantities 0, @, respectively the
viscous and ohmic dissipation. They oppose “Taylor-like” (Q, « ;) to “Model-Z-like”
(Q. =~ Q) solutions. A detailed comparison with the present paper is not possible
because they study & > 2 x 107 * whereas we mainly investigate the approach to the
inviscid limit. Their results indicate also an evolution from “Model-Z-like” to “Taylor-
like” solutions as ¢ is decreased. Figare 11d (with D = 25000) is added to allow further
comparison with the Braginsky and Roberts (1994) study.

6. DISCUSSION

Reinstating the dwg/0t term in the equation for the geostrophic shear (7) has
allowed us to reach the inviscid limit of the Braginsky’s numerical model. Each
of the solutions obtained with (7) has been checked against the Ro/e—0 limit.
Once a converged steady solution is obtained, it can be used as a starting point
for a numerical integration without the inertial term, provided the time-steps are
small enough. The solutions obtained respectively in the limit Ro/e—0 and with
Ro=0 are identical. It demonstrates that the new ingredient plays here a mere
technical role, helping to prevent numerical instabilities. Let us consider a numerical
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d 2 Z
o[ o)

The ensuing error on wg is ¢ ‘e as the inertial term is omitted whereas it is only
Ro~'dte as it is reinstated (the typical time step dt is 5 x 107 % and Ro ™ 'dt is typically
on the order of 10). Thus, the inertial term 8w /0t altenuates the stiffness inherent in the
calculation of the geostrophic velocity with (6) and turns out to be an efficient way to
study inviscid branches.

In Section 5.4, we have used (7) only as a way to approach (6). However, another limit
of the equation (7) is worth pointing out. Setting £ =0 in (7), we get an equation for

torsional oscillations
Jw 1 d =
Ro—Ff ———|s* BB dz }=0

o z1s3ds(s j ) 1o

error ¢ on the term

which can also be used along with (1) and (2) to time-step the evolution of the field.
Indeed, the inviscid branch of the Braginsky’s model can also be attained this way (from
¢.g. an initial random field). These solutions are close to the solutions discussed in
Section 5.4 {e # 0, ¢ -+ 0). There are however differences (see Figure 14), which havetobe
explained. From (6) and (16), we can derive two different integral conditions on the
geostrophic velocity. Equation 6 yields

j S0el) g (17)
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-200-
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Figure 14 Samc as Figure [3. Fuil line s = 0, broken line £ = 1075 NL=180, NR=120.
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[and w4(1) =0] whatever the viscosity is. This identity states that the net viscous "
torque acting on the mantle is zero (because no other torque balances it). Asymptotic
solutions (¢ = 0) calculated with (6) have to satisfy (17) on top of the Taylor’s condition.
On the other hand, we get from (16)

1 3
J 22, %% (9ds = 0. (18)
o ot

This states that there is conservation of the core angular momentum and still holds in
the limit Ro - 0, The integral conditions (17}, (18) are a first indication that both limits
(s —0), and Ro— 0 are singular, The additional constraint wg(1) = 0 makes however
condition (17)more stringent since it is not passible to add simply a bulk rotation to the
solution to make wg satisfy (17). It can be checked that all the geostrophic velocity
solutions obtained with (6) obey the condition (17). To this end, the ratio

1 -1/M1
R=[I zl”zsaiwglds:l J z; P wgds.
0 0

is calculated, imposing wg{1) =0. R is zero when {17) is satisfied. All the solutions, for
the numerical model of Braginsky, calculated with either (6) or (7) {with R, «e) yield
R <0.10. In contrast, the geostrophic velocity solution shown on Figure 15 yields
R =10.89, Now, the constraint mg(1) = 0. arises becanse, using (6) or (7), we don’t model
the vertical boundary layer that replace the Ekman layer at the equator. So the
difference between the solutions respectively for ¢ = 0 and £ « 1 points to a limitation of
the model. Let us now discuss another interesting feature of the limits (¢ —+ 0) and Ro - 0.

With ¢ = Ro == 0., the geostrophic velocity doesn’t play a role as such. Indeed, in this
Taylor regime, oy is determined only through its role in the induction eguation, where
sdwg/ds alone plays a part. Hence, w, loses here some of its physical meaning. In
particular, an inspection of the induction equation shows that sdw/ds can be O(1) at
the axis (see also Section 2). In that event, wgz— o0 logarithmically as s—0. Let us
illustrate further this point. In the neighbourhood of the axis, the magnetic field and
velocity components can be expanded as:

B=by(2)s +b(2)5° + O(°), ¥ =yo(2)s> + O(s*), 1= 1o(2)s” + O(s%).

Then, the induction equation for the zonal field B at the order 1 in s is:

b 0%b farg \ & a; é
= (om0 ) (v e (-2 000)

Oz 0z

where, to simplify the discussion, ;= O(s?) is assumed {such is the case for the
Braginsky’s model). The zonal field vanishes at the boundary with the mantle
(bo(1) = b;(1)=0). So, we find that in the Taylor regime {z,{(1) =0}

dwg  3%hy o
- z=1— 62

Q.
5 Os oz *

z=1—
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Because this singularity is intolerable from a physical standpoint, such a solution
cannot be found while using equations such as (7} and (8) where the quantity wg bears
a physical meaning. This was discussed by Proctor {1975) and Fearn and Proctor
(1987), who suggested that in the presence of viscosity it would be accommodated by
a passive boundary layer. So, when we speak of “Taylor states” (Section 5.4), we mean
that core-mantle coupling plays no essential role over the surface (r = 1) except near the
symmetry axis s = 0. Surrounding the axis is a region where viscosity is important, and
in which the logarithmic singularity in oy is removed so that mg(0) is finite as is
demanded on physical grounds. Investigation of that boundary layer deserves further
work; it has not been possible to resolve its structure with the code used in the present
study.

Hopefully, the study of nearly axisymmetrical dynamo models will help us to decide
how to calculate the geostrophic velocity in dynamic geodynamo models. Here, it has
allowed us to suggest a new method to attain the inviscid limit and to discuss the nature
of that limit. Now, another ingredient, magnetic coupling with the mantle (and with the
inner core as well), should be added to model more closely the Earth’s outer core. It has
been cautiously argued (e.g. Roberts, 1989) that magnetic coupling can be simulated,
with qualitative correctness, by increasing the strength of the viscous coupling. As
a matter of fact, it is not clear whether one of the two core-mantle couplings, viscous or
magnetic, is predominant. Present estimates of the conductivity of the lower mantle are
lower than 10 years ago (around 10Sm™!) (Peyronneau and Poirier, 1989; Li and
Jeanloz, 1989; Shankland et al., 1993) and the conductance of the mantle (the integral of
the electrical conductivity over depth) may be no larger than 107 S. Such an estimate
makes the strength of the two couplings comparable. Furthermore, at low amplitudes,
it is erroneouns to mimic magnetic coupling by viscous coupling, Braginsky (1975) has
shown that when a thin conducting layer is added at the bottom of the mantle, the
boundary condition for the poloidal field is not changed at the first order and that the
boundary condition for the zonal toroidal field can be written:

1 3B
B= —uZ (—9,,—— + \'¢B,)
1o dr

where X is the conductance of the conducting layer. The Taylor condition, with
nonzero toroidal zonal field at the CMB, yields:

1 d 21
Vs 2(szj BBSdz)= — “(BB)s,z,).
stds o zy

Taking into account the nonzero magnetic wind at the core surface, we get, in

dimensionless form:
z B(s,z,)\? 198 z, d 2
E&{[QG(S)-i_(TL) ]B'Z(S’Zi)—i—;_@; r=17Br(S,Zl) =S—;E 52 . BBS(IZ . (19)

With infinitesimal magnetic field, o4 given by (19) is independent of the amplitude of
the field and is nonzero. Here, the weak field branch may not exist altogether, So, atlow
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magnetic field amplitude, magnetic and viscous coupling play very different roles (see
also Fearn and Proctor, 1992). Combining (6) and (19), we get a more general equation
for the geostrophic velocity, with two small parameters ¢ and Z/ac. With £ #0, it is
readily checked that even if ¢ « Z/ac, the bifurcation structure, at the onset of dynamo
action, is still supercritical. And as D is increased above D,, the solution scales as £/2,
and not as (Z/ag)'’?. The large amplitude case requires also additional studies.
Braginsky (1988) and Cupal and Hejda (1989) have shown that finite amplitude
solutions relying either on viscous coupling or on magnetic coupling are qualitatively
similar. However, these studies have attained neither the inviscid limit nor the small
conductance limit.

The steadiness, dipolar geometry, and O(1) amplitude of the Braginsky's numerical
model are the characteristics that make it a reference model. In particular, it iHlustrates
that predominance of magnetic diffusion in a large part of the core is one possible
explanation for the mainly dipolar geometry of the Earth’s magnetic field. That is
reminiscent of a recent study by Hollerbach and Jones (1993) who stressed the role
played by the region inside the cylinder tangent to the inner core to make the dynamo
steadier and to favour the dipole component of the field.
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