
Role of scattering in correlation-based imaging in random media

Josselin Garnier (Université Paris Diderot)
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Active imaging through a homogeneous medium

~xs ~xr

~y

• Sensor array imaging of a reflector located at ~y. ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

1

c20

(

1 + σref1Bref
(~x− ~y)

)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)
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Active imaging through a homogeneous medium

~xs ~xr

~y

• Sensor array imaging of a reflector located at ~y. ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

1

c20

(

1 + σref1Bref
(~x− ~y)

)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Image with Kirchhoff Migration:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xr), ~xr; ~xs

)

It forms the image with the superposition of the backpropagated traces.

T (~yS , ~x) is the travel time from ~x to ~yS , i.e. T (~yS , ~x) = |~yS − ~x|/c0.
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Kirchhoff Migration:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xr), ~xr; ~xs

)

IKM(~yS) =
1

2π

Nr
∑

r=1

Ns
∑

s=1

∫

û(ω, ~xr; ~xs) exp
{

iω
[

T (~xs, ~y
S) + T (~yS , ~xr)

]

}

dω

• When λ ≪ a ≪ L:

Cross-range resolution: λL/a, where λ is the central wavelength, L is the distance

from the array to the reflector, and a is the array diameter.

Range resolution: c0/B, where c0 is the background velocity and B is the bandwidth.

• Very robust with respect to additive measurement noise.

• Sensitive to clutter noise (scattering medium): If the medium is scattering, then

Kirchhoff Migration (usually) does not work.
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Imaging through a weakly scattering medium

~xs ~xr

~y

Sensor array imaging of a reflector located at ~y. ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

If the medium is weakly scattering, then Kirchhoff migration does not work:

∣

∣IKM(~yS)
∣

∣

2
=

∣

∣

∣

∣

Ns
∑

s=1

Nr
∑

r=1

∫

û(ω, ~xr; ~xs) exp
{

iω
[

T (~xs, ~y
S) + T (~yS , ~xr)

]

}

dω

∣

∣

∣

∣

2

=

Ns
∑

s,s′=1

Nr
∑

r,r′=1

∫∫

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ , ~xs′)

× exp
{

− iω
[

T (~xr, ~y
S) + T (~xs, ~y

S)
]

+ iω′[T (~xr′ , ~y
S) + T (~xs′ , ~y

S)
]

}

Problem because û(ω, ~xr; ~xs) and û(ω′, ~xr′ , ~xs′) can be uncorrelated.
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Imaging through a weakly scattering medium

~xs ~xr

~y

Sensor array imaging of a reflector located at ~y. ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

If the medium is weakly scattering, then image with Coherent Interferometric

Imaging (CINT) [1]:

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤Xd

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ , ~xs′)

× exp
{

− iω
[

T (~xr, ~y
S) + T (~xs, ~y

S)
]

+ iω′[T (~xr′ , ~y
S) + T (~xs′ , ~y

S)
]

}

It forms the image with the superposition of the backpropagated local cross

correlations of the traces.

[1] L. Borcea, G. Papanicolaou, and C. Tsogka, Inverse Problems 22, 1405 (2006).



Coherent Interferometric Imaging (CINT):

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤Xd

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ , ~xs′)

× exp
{

− iω
[

T (~xr, ~y
S) + T (~xs, ~y

S)
]

+ iω′[T (~xr′ , ~y
S) + T (~xs′ , ~y

S)
]

}

• Cross-range resolution: λL/Xd (for Xd < a). Range resolution: c0/Ωd (for Ωd < B).

• Statistical stability

Var
(

ICINT(~y
S)

)

E
[

ICINT(~yS)
]2 < 1 when

Xd

Xc
< 1,

a

Xc
> 1 and/or

Ωd

Ωc
< 1,

B

Ωc
> 1

where Ωc is the decoherence frequency (frequency gap beyond which the frequency

components of the recorded signals are not correlated) and Xc is the decoherence

length (distance between sensors beyond which the signals are not correlated).

• The optimal values for the parameters Ωd and Xd are Ωc and Xc (can be found by

a statistical analysis that depends on the propagation regime).

• An adaptive procedure for estimating optimally the parameters Ωd and Xd is based

on the minimization of a suitable norm of the image.

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Numerical simulations (in strongly scattering medium)

Top: computational setup.

Bottom left: image obtained with Kirchhoff Migration using the surface array.

Bottom right: image obtained with CINT using the surface array.

Cargèse April 24, 2013



Use of an auxiliary passive array

Imaging below an ”overburden”

From van der Neut and Bakulin (2009)

Imaging below a strong interface

From Mehta et al (2007)
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Imaging below an overburden: problem

~xs

~xq

~y

Use of a secondary passive array. ~xs is a source, ~xq is a receiver located below the

scattering medium. Data: {u(t, ~xq; ~xs), q = 1, . . . , Nq, s = 1, . . . , Ns}.

If the overburden is scattering, then Kirchhoff Migration does not work:

IKM(~yS) =

Nq
∑

q=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xq), ~xq; ~xs

)
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Numerical simulations

Top: computational setup.

Left: image obtained with Kirchhoff Migration using the surface array.

Right: image obtained with Kirchhoff Migration using the bottom array.
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Imaging below an overburden: proposed solution

~xs

~xq

~y

~xs is a source, ~xq is a receiver. Data: {u(t, ~xq; ~xs), q = 1, . . . , Nq, s = 1, . . . , Ns}.

Image with Kirchhoff Migration of the cross correlation matrix:

I(~yS) =

Nq
∑

q,q′=1

C
(

T (~xq, ~y
S) + T (~yS , ~xq′), ~xq, ~xq′

)

,

with

C(τ, ~xq, ~xq′) =

Ns
∑

s=1

∫

u(t, ~xq; ~xs)u(t+ τ, ~xq′ ; ~xs)dt , q, q′ = 1, . . . , Nq

Functional proposed by Bakulin and Calvert (virtual source method) [1].

- Analogy: imaging with ambient noise.

- Main idea: The cross correlation is related to the Green’s function.

[1] A. Bakulin and R. Calvert, Geophysics 71 (2006), SI139-SI150.



Imaging below an overburden: proposed solution

~xs

~xq

~y

~xs is a source, ~xq is a receiver. Data: {u(t, ~xq; ~xs), q = 1, . . . , Nq, s = 1, . . . , Ns}.

Image with Kirchhoff Migration of the cross correlation matrix:

I(~yS) =

Nq
∑

q,q′=1

C
(

T (~xq, ~y
S) + T (~yS , ~xq′), ~xq, ~xq′

)

,

with

C(τ, ~xq, ~xq′) =

Ns
∑

s=1

∫

u(t, ~xq; ~xs)u(t+ τ, ~xq′ ; ~xs)dt , q, q′ = 1, . . . , Nq

It is a “special” CINT functional:

I(~yS) =
1

2π

Ns
∑

s=1

Nq
∑

q,q′=1

∫

dωû(ω, ~xq; ~xs)û(ω, ~xq′ ; ~xs) exp
{

iω
[

T (~xq, ~y
S) + T (~yS , ~xq′)

]

}
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Proof of concept (in ideal situations)

I(~yS) =

Nq
∑

q,q′=1

C
(

T (~xq, ~y
S) + T (~yS , ~xq′), ~xq, ~xq′

)

,

with

C(τ, ~xq, ~xq′) =

Ns
∑

s=1

∫

u(t, ~xq; ~xs)u(t+ τ, ~xq′ ; ~xs)dt , q, q′ = 1, . . . , Nq

• If the sources are point-like and densely surround the region of interest Ω:

Ĉ(ω, ~xq, ~xq′) ≃

∫

∂Ω

Ĝ(ω, ~xq; ~xs)Ĝ(ω, ~xq′ ; ~xs)dσ(~xs) |f̂(ω)|
2

where Ĝ(ω, ~xq; ~xs) is the time-harmonic Green’s function (with reflector)

(û(ω, ~xq; ~xs) = f̂(ω)Ĝ(ω, ~xq; ~xs)).

• By Helmholtz-Kirchhoff identity, we find that, in ideal situations:

Ĉ(ω, ~xq, ~xq′) ≃
ω

c0
Im

(

Ĝ(ω, ~xq; ~xq′)
)

|f̂(ω)|2

→֒ the cross correlation of the signals at two receivers ~xq and ~xq′ looks like the signal

recorded at ~xq when ~xq′ is a source.

Therefore, Kirchhoff Migration of the cross correlation matrix should give a good

image.
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Analysis (in realistic, scattering situations)

I(~yS) =

Nq
∑

q,q′=1

C
(

T (~xq, ~y
S) + T (~yS , ~xq′), ~xq, ~xq′

)

,

with

C(τ, ~xq, ~xq′) =

Ns
∑

s=1

∫

u(t, ~xq; ~xs)u(t+ τ, ~xq′ ; ~xs)dt , q, q′ = 1, . . . , Nq

• Does the imaging function give good images in realistic situations ?

→֒ It is possible to analyze the resolution and stability of the imaging function in

randomly scattering media.

• Analysis of several situations (with sources everywhere at the surface) [1]:

- weakly scattering, isotropic random medium (paraxial regime),

- strongly scattering, randomly layered medium,

- strong deterministic interface.

→֒ The effect of the random medium is canceled.

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).



Analysis (in realistic, scattering situations)

I(~yS) =

Nq
∑

q,q′=1

C
(

T (~xq, ~y
S) + T (~yS , ~xq′), ~xq, ~xq′

)

,

with

C(τ, ~xq, ~xq′) =

Ns
∑

s=1

∫

u(t, ~xq; ~xs)u(t+ τ, ~xq′ ; ~xs)dt , q, q′ = 1, . . . , Nq

• Does the imaging function give good images in realistic situations ?

→֒ It is possible to analyze the resolution and stability of the imaging function in

randomly scattering media.

• Analysis of several situations (with sources everywhere at the surface) [1]:

- weakly scattering, isotropic random medium (paraxial regime),

- strongly scattering, randomly layered medium,

- strong deterministic interface.

→֒ The effect of the random medium is canceled.

• Question: role of scattering when sources are not everywhere ?

→֒ Analysis in the random paraxial regime, in the randomly layered regime, in the

radiative transfer regime.

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).



Weakly scattering, isotropic random medium

• Random medium model:

1

c2(~x)
=

1

c20

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.

Cargèse April 24, 2013



Imaging below an overburden: analysis in the paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime λ ≪ lc ≪ L. More precisely, in the scaled regime

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

,

the function φ̂ε defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(

ω

ε4
,
x

ε2
, z)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

2i
ω

c0
∂zφ̂+∆⊥φ̂+

ω2

c20
Ḃ(x, z)φ̂ = 0

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(|z|, |z′|),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Imaging below an overburden: analysis in the paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime λ ≪ lc ≪ L. More precisely, in the scaled regime

ω →
ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

,

the function φ̂ε defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(

ω

ε4
,
x

ε2
, z)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂ ◦ dB(x, z)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(|z|, |z′|),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (µ ≡ 0, B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.

• In a random medium:

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

exp
(

−
γ(0)ω2|z − z0|

8c20

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz =⇒ Strong damping of the coherent wave

=⇒ Coherent imaging methods fail.

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

−
γ2(x− x

′)ω2|z − z0|

4c20

)

,

where γ2(x) =
∫ 1

0
γ(0)− γ(xs)ds (note γ2(0) = 0) =⇒ Lateral decoherence.

Cargèse April 24, 2013



−Ly

−L

0
z x~xs

~xq

~y

• Assume that:

- the source aperture is b and the receiver aperture is a (use continuum approximation

for the source and receiver arrays).

- there is a point reflector at ~y = (y,−Ly) (use the Born approximation for the

reflector).

- the covariance function γ can be expanded as γ(x) = γ(0)− γ̄2|x|
2 + o(|x|2) for

|x| ≪ lc.

- scattering is strong:
γ(0)ω2

0L

c2
0

> 1.

• There are two critical lengths:

aeff = beff
Ly − L

Ly
, b2eff = b2 +

γ̄2L
3

3
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b
bef f

L

b
bef f

L

Homogeneous medium Random medium

Effective source aperture:

b2eff = b2 +
γ̄2L

3

3
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a
aef f

b
bef f

Ly − L

L
a

aef f

b
bef f

Ly − L

L

Homogeneous medium Random medium

Effective source and receiver apertures:

aeff = beff
Ly − L

Ly
, b2eff = b2 +

γ̄2L
3

3

Cargèse April 24, 2013



Migration of the cross correlation matrix

• The Kirchhoff Migration function for the search point ~yS is

I(~yS) =
1

N2
q

Nq
∑

q,q′=1

C
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)

• The imaging function is statistically stable (λ ≪ b ≪ L).

• The cross range resolution is
λ0(Ly − L)

aeff
.

The range resolution is
c0
B

.

• Since aeff |rand> aeff |homo, this shows that scattering helps (it enhances the angular

diversity of the illumination) ! (already noticed for time reversal experiments)
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Randomly layered medium

• Random medium model (~x = (x, z)):

1

c2(~x)
=

1

c20

(

1 + µ(z)
)

c0 is a reference speed,

µ(z) is a zero-mean random process.
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Imaging below an overburden: analysis in the layered regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(z)
)

û = 0

Consider the regime lc ≪ λ ≪ L, more precisely, the scaled regime

ω →
ω

ε
, µ(z) → µ

( z

ε2
)

• For a point source located at ~xs = (xs, 0) emiting the pulse f(t), a receiver located

at ~xq = (xq,−L), the transmitted field is

u(t, ~xq; ~xs) = −
1

(2π)3

∫

R

dω

∫∫

R2

ω2dκ f̂(ω)Gω,κ exp
(

− iω
(

t−κ · (xq −xs)−
L

c0(κ)

)

)

- we use a Fourier transform in time and transverse spatial coordinates.

- c0(κ) is the mode-dependent velocity:

c0(κ) =
c0

√

1− κ2c20

- Gω,κ is the random Green’s function (transmission coefficient) whose moments are

known [1].

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.



Propagation through a randomly layered overburden: analysis (1/2)

6

−L

0

B
BBN �
��� B
BBN �
��� B
BBN �

���

B
BBN

B
BBN

B
BBNT RT R2T

• Gω,κ is the random Green’s function for pressure release boundary conditions:

Gω,κ =

∞
∑

j=0

Tω,κ(Rω,κ)
j

where Tω,κ and Rω,κ are the transmission and reflection coefficients for the random

slab in (−L, 0) (we have |Tω,κ|
2 + |Rω,κ|

2 = 1) [1].

• In a homogeneous medium Gω,κ is equal to 1 because Tω,κ = 1 and Rω,κ = 0.

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.



Propagation through a randomly layered overburden: analysis (2/2)

• In a random medium:

6

−L

0

B
BBN �
��� B
BBN �
��� B

BBN �
���

B
BBN

B
BBN

B
BBNT RT R2T

E
[

Tω,κ

]

= exp
(

−
L

Lloc(ω, κ)

)

E
[

|Tω,κ|
2] ∼ exp

(

−
L

4Lloc(ω, κ)

)

Gω,κ =

∞
∑

j=0

Tω,κ(Rω,κ)
j

E
[

|Gω,κ|
2] = 1

• E[Tω,κ] ≪ 1, i.e. most of the energy is in the incoherent fluctuations =⇒ Coherent

imaging methods fail.

• Exponential decay of E[|Tω,κ|
2] specific to randomly layered media =⇒ Transmitted

signals are very long.

• E
[

|Gω,κ|
2
]

= 1 =⇒ Good (but incoherent) illumination.

• The second-order moment E[Gω,κGω,κ′ ] is given in terms of a a transport-type

equation.

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.



−Ly

−L

0
z x~xs

~xq

~y

• Assume that:

- the source aperture is b and the receiver aperture is a (use continuum approximation

for the source and receiver arrays).

- there is a point reflector at ~y = (y,−Ly) (use the Born approximation for the

reflector).

- the localization length Lloc is smaller than L (strong scattering):

Lloc =
4c20
γω2

0

, γ =

∫ ∞

−∞

E[µ(0)µ(z)]dz

• There are two critical lengths:

aeff = beff
Ly − L

Ly
, b2eff = 4LlocL
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b
bef f

L

b
bef f

L

Homogeneous medium Randomly layered medium

Effective source aperture:

beff = b b2eff = 4LlocL (≪ b2)
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a
aef f

b
bef f

Ly − L

L
a

aef f

b
bef f

Ly − L

L

Homogeneous medium Randomly layered medium

Effective source aperture:

beff = b b2eff = 4LlocL

Effective receiver aperture:

aeff = b
Ly − L

Ly
aeff = beff

Ly − L

Ly
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Migration of the cross correlation matrix

• The Kirchhoff Migration function for the search point ~yS is

I(~yS) =
1

N2
q

Nq
∑

q,q′=1

C
( |~xq − ~yS |+ |~yS − ~xq′ |

c0
, ~xq, ~xq′

)

• The imaging function is statistically stable (λ ≪ b, L).

• The cross range resolution is
λ0(Ly − L)

aeff
.

The range resolution is
c0
B

(

1 +
B2L

4ω2
0Lloc

)1/2
.

• Since aeff |rand< aeff |homo, this shows that scattering does not help (it reduces the

angular diversity of the illumination) !
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Numerical simulations in a strongly scattering medium
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Numerical simulations

Top: computational setup.

Left: image obtained with Kirchhoff Migration using the surface array.

Middle: image obtained with Kirchhoff Migration using the bottom array.

Right: image obtained with the cross correlation technique using the bottom array.
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Conclusions

• Ideal situation for the cross correlation technique (with active sources everywhere):

~xs

~xq

~y

• What is the role of scattering if the sources are spatially localized ?

The answer depends on the scattering regime:

- in the isotropic case, random scattering helps (enhances the source aperture).

- in the layered case, random scattering is bad (reduces the source aperture).

• Same conclusion for the C3 technique.

• Here the medium was assumed to be homogeneous in the underburden (between the

secondary array and the reflector).

What happens if it is scattering ? Modify the cut-off parameters of the CINT

functional (for weakly scattering underburden).
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Perspectives

• Space surveillance and imaging with airborne passive synthetic aperture arrays.

≈15km

≈100-1000km

Object
To Be
Imaged

Passive
Array
Platform

Active
Transmitters

Turbulent
Atmosphere
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