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Wave propagation in random media

• Wave equation:

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = F (t, ~x)

• Time-harmonic source in the plane z = 0: F (t, ~x) = δ(z)f(x)e−iωt (with ~x = (x, z)).

• Random medium model:

1

c2(~x)
=

1

c2o

(

1 + µ(~x)
)

co is a reference speed,

µ(~x) is a zero-mean random process.

Cargese June 2017



Wave propagation in the random paraxial regime

• Consider the time-harmonic wave equation (with ~x = (x, z) and ∆ = ∆⊥ + ∂2
z )

(∂2
z +∆⊥)û+

ω2

c2o

(

1 + µ(x, z)
)

û = −δ(z)f(x).

The function φ̂ (slowly-varying envelope of a plane wave) defined by

û(ω,x, z) =
ico
2ω

e
iωz

co φ̂
(

ω,x, z
)

satisfies

∂2
z φ̂+

(

2i
ω

co
∂zφ̂+∆⊥φ̂+

ω2

c2o
µ
(

x, z
)

φ̂

)

= 2i
ω

co
δ(z)f(x).

• In the paraxial regime “λ ≪ lc, ro ≪ L”, the forward-scattering approximation in

direction z is valid and φ̂ satisfies the Itô-Schrödinger equation [1]

dzφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z), φ̂(z = 0,x) = f(x)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x′) min(z, z′) and

γ(x) =

∫ ∞

−∞

E[µ(0, 0)µ(x, z)]dz

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Moment calculations in the random paraxial regime

Consider

dzφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

starting from φ̂(x, z = 0) = f(x).

• By Itô’s formula,

d

dz
E[φ̂] =

ico
2ω

∆⊥E[φ̂]−
ω2γ(0)

8c2o
E[φ̂]

and therefore

E
[

φ̂(x, z)
]

= φ̂0(x, z) exp
(

−
γ(0)ω2z

8c2o

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz and φ̂0 is the solution in the homogeneous

medium.

• Strong damping of the coherent wave.

=⇒ Identification of the scattering mean free path Zsca =
8c2

o

γ(0)ω2 .

=⇒ Coherent imaging methods (such as Kirchhoff migration, Reverse-Time

migration) fail.
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Moment calculations in the random paraxial regime

• The mean Wigner transform defined by

W (x, ξ, z) =

∫

R2

exp
(

− iξ · y
)

E

[

φ̂
(

x+
y

2
, z
)

φ̂
(

x−
y

2
, z
)

]

dy,

is the angularly-resolved mean wave energy density. By Itô’s formula, it solves a

radiative transport-like equation

∂W

∂z
+

co
ω
ξ · ∇xW =

ω2

4(2π)2c2o

∫

R2

γ̂(κ)
[

W (ξ − κ)−W (ξ)
]

dκ,

starting from W (x, ξ, z = 0) = W0(x, ξ), the Wigner transform of the initial field f .

• The fields at nearby points are correlated and their correlations contain information

about the medium.

=⇒ One should use (migrate) cross correlations for imaging in random media.
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Application: Ultrasound echography in concrete

Experimental set-up Acquisition geometry (top view)

Concrete: highly scattering medium for ultrasonic waves.

Cargese June 2017



Application: Ultrasound echography in concrete
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The recorded signals are very “noisy” due to scattering.

→֒ Standard imaging techniques fail.
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Application: Ultrasound echography in concrete
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Image obtained by travel-time migration of well-chosen cross correlations of data.
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Moment calculations in the random paraxial regime

• Consider

dφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z)

starting from φ̂(x, z = 0) = f(x).

• Let us consider the fourth-order moment:

M4(r1, r2, q1, q2, z) = E

[

φ̂
(r1 + r2 + q1 + q2

2
, z
)

φ̂
(r1 − r2 + q1 − q2

2
, z
)

×φ̂
(r1 + r2 − q1 − q2

2
, z
)

φ̂
(r1 − r2 − q1 + q2

2
, z
)

]

By Itô’s formula,

∂M4

∂z
=

ico
ω

(

∇r1
· ∇q1

+∇r2
· ∇q2

)

M4 +
ω2

4c2o
U4(q1, q2, r1, r2)M4,

with the generalized potential

U4(q1, q2, r1, r2) = γ(q2 + q1) + γ(q2 − q1) + γ(r2 + q1) + γ(r2 − q1)

−γ(q2 + r2)− γ(q2 − r2)− 2γ(0).

These moment equations have been known and studied for a long time, in particular

to prove the Gaussian conjecture [1].

[1] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, San Diego, 1978.



Moment calculations in the random paraxial regime

Take Fourier transform:

M̂4(ξ1, ξ2, ζ1, ζ2, z) =

∫∫∫∫

M4(q1,q2, r1, r2, z)

× exp
(

− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)

dr1dr2dq1dq2.

• In the regime “λ ≪ lc ≪ ro ≪ L” [1]

M̂4(ξ1, ξ2, ζ1, ζ2, z) ≃ Φ(K,A, f)(ξ1, ξ2, ζ1, ζ2, z)

where

K(z) = (2π)8 exp
(

−
ω2

2c2o
γ(0)z

)

,

A(ξ, ζ, z) =
1

2(2π)2

∫

[

exp
( ω2

4c2o

∫ z

0

γ
(

x+
coζ

ω
z′
)

dz′
)

− 1
]

exp
(

− iξ · x
)

dx.

[1] J. Garnier and K. Sølna, ARMA 220 (2016) 37.



Scintillation

Assume that f(x) = exp
(

− |x|2

2r2
o

)

.

• The scintillation index defined as:

S(x, z) :=
E

[

∣

∣φ̂(x, z)
∣

∣

4
]

− E

[

∣

∣φ̂(x, z)
∣

∣

2
]2

E

[

∣

∣φ̂(x, z)
∣

∣

2
]2

satisfies:

S(x, z) = 1−
1

∣

∣

∣

1
4π

∫

R2 exp
(

ω2

4c2
o

∫ z

0
γ
(

u coz′

ωro

)

dz′ − |u|2

4
+ iu · x

ro
+ |x|2

r2
o

)

du
∣

∣

∣

2 .

The physical conjecture is that S ≃ 1 when the propagation distance is larger than

the scattering mean free path, as it should be for a (complex) Gaussian process.
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Scintillation
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Stability of the Wigner transform of the field

W (r, ξ, z) :=

∫

R2

exp
(

− iξ · q
)

φ̂
(

r +
q

2
, z
)

φ̂
(

r −
q

2
, z
)

dq.

Let us consider two positive parameters rs and ξs and define the smoothed Wigner

transform:

Ws(r, ξ, z) =
1

(2π)2r2s ξ2s

∫∫

R2×R2

W (r − r
′, ξ − ξ

′, z) exp
(

−
|r′|2

2r2s
−

|ξ′|2

2ξ2s

)

dr′dξ′.

• The coefficient of variation Cs of the smoothed Wigner transform defined by:

Cs(r, ξ, z) :=

√

E[Ws(r, ξ, z)2]− E[Ws(r, ξ, z)]2

E[Ws(r, ξ, z)]
.

satisfies

Cs(r, ξ, z) ≃





1
ξ2
s
ρ2
z

+ 1

4r2
s

ρ2
z

+ 1





1/2

, ρ2z =
ℓ2c

4Zscaz

r2o +
8c2

o
z3

3ω2ℓ2
c
Zsca

r2o +
2c2

o
z3

3ω2ℓ2
c
Zsca

,

when

γ(x) = γ(0)
[

1−
|x|2

ℓ2c
+ o

( |x|2

ℓ2c

)]

, z ≫ Zsca =
8c2o

γ(0)ω2
.
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Stability of the Wigner transform of the field
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Contour levels of the coefficient of variation of the smoothed Wigner transform. Here

rs = rs/ρz and ξs = ξsρz.
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Ghost imaging

• Noise source (laser light passed through a rotating glass diffuser).

• without object in path 1; a high-resolution detector measures the spatially-resolved

intensity I1(t,x).

• with object (mask) in path 2; a single-pixel detector measures the

spatially-integrated intensity I2(t).

Experimental result: the correlation of I1(·,x) and I2(·) is an image of the object [1,2].

[1] A. Valencia et al., PRL 94, 063601 (2005); [2] J. H. Shapiro et al., Quantum Inf. Process 1, 949 (2012).



Ghost imaging

• Wave equation in paths 1 and 2:

1

c2j (~x)

∂2uj

∂t2
−∆~xuj = e−iωotn(t,x)δ(z) + c.c., ~x = (x, z) ∈ R

2 × R, j = 1, 2

• Noise source (with Gaussian statistics):

〈

n(t,x)n(t,x′)
〉

= F (t− t′) exp
(

−
|x|2

r2o

)

δ(x− x
′)

with the width of F̂ (ω) much smaller than ωo.

• Wave fields:

uj(t, ~x) = vj(t, ~x)e
−iωot + c.c., j = 1, 2

• Intensity measurements:

I1(t,x) = |v1(t, (x, L))|
2 in the plane of the high-resolution detector

I2(t) =

∫

R2

|v2(t, (x
′, L+ L0))|

2dx′ in the plane of the bucket detector

• Correlation:

CT (x) =
1

T

∫ T

0

I1(t,x)I2(t)dt−
( 1

T

∫ T

0

I1(t,x)dt
)( 1

T

∫ T

0

I2(t)dt
)
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Ghost imaging in homogeneous media

• Resolution analysis in homogeneous media.

• Model for the object: Mask T (x) in the plane z = L.

• Result:

CT (x)
T→∞
−→ C(1)(x) =

∫

R2

h(x− z)|T (z)|2dz

with

h(x) =
r4o

28π2L2
exp

(

−
|x|2

4ρ2gi0

)

, ρ2gi0 =
c2oL

2

2ω2
or2o

Resolution: ρgi0 ∼ λoL/ro (Rayleigh resolution formula).

Sketch of ideal proof. Use the Gaussian summation rule (the fourth-order

moments of Gaussian random fields can be expressed in terms of sums of products of

second-order moments).

If v(x) is a complex symmetric circular Gaussian random field, then

Cov
(

|v(x)|2, |v(x′)|2
)

=
∣

∣Cov
(

v(x), v(x′)
)∣

∣

2
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Ghost imaging in heterogeneous media

The medium in paths 1 and 2 is heterogeneous (for instance, turbulent atmosphere).

They are two independent realizations with the same distribution.
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Ghost imaging in heterogeneous media

• Resolution analysis in randomly heterogeneous media.

• If the propagation distance is larger than the scattering mean free path, then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r4oρ

2
gi0

28π2L4ρ2gi2
exp

(

−
|x|2

4ρ2gi2

)

, ρ2gi2 = ρ2gi0 +
4c2oL

3

3ω2
oZscaℓ2c

, ρ2gi0 =
c2oL

2

2ω2
or2o

→֒ Scattering only slightly reduces the resolution !

This imaging method is robust with respect to medium noise. It gives an image even

when L/Zsca ≫ 1.
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Ghost imaging in heterogeneous identical media

The medium in paths 1 and 2 is heterogeneous.

They are the same realization.
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Ghost imaging in heterogeneous identical media

• Resolution analysis in randomly heterogeneous and identical media.

• If the propagation distance is larger than the scattering mean free path, then

C(1)(x) =

∫

R2

H(x− y)|T (y)|2dy,

with

H(x) =
r4o

28π2L4
exp

(

−
|x|2

4ρ2gi3

)

,
1

ρ2gi3
=

1

ρ2gi0
+

16L

Zscaℓ2c

→֒ the radius of the convolution kernel is reduced by scattering and can even be

smaller than the Rayleigh resolution formula: enhanced resolution compared to the

homogeneous case (similar phenomenon observed in time-reversal experiments) !
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On the role of the random medium

Random medium in region 0 is good.

Random medium in regions 1 and 2 is bad (unless they are the same realization).

Random medium in region 3 plays no role.
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Optimal focusing

• Is there an optimal way of encoding a signal to counteract the corruption by the

medium clutter ?

• Ideal case: send a probing signal from the target, record this, time reverse it and

use it as a source.
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Optimal focusing in the “ideal” case with time reversal

(a)

(b)

Time-reversal experiment through a scattering medium

(a) a point source emits a wave that propagates through the random medium and is

recorded by the time-reversal mirror (TRM) used as receivers.

(b) the time-reversal mirror is used as an array of sources, it emits the time reversed

(complex-conjugated in time harmonic case) recorded field, and the wave refocuses at

the original source location.
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Optimal focusing with Spatial Light Modulator

(a)

(b)

Focusing wave through a scattering medium

Source: time-harmonic plane wave.

(a) Without any control one gets a speckle pattern in the target plane.

(b) With a spatial light modulator (SLM) one can focus on a target point by

optimizing the phases of the elements [1].

[1] I.M. Vellekoop and A.P. Mosk, Opt. Lett. 32 (2007), 2309.



Optimal focusing: Deep probing and focusing resolution

• When L ≫ Zsca =
8c2

o

γ(0)ω2
o

, the characteristic size or resolution Rtr of the refocused

wave is

Rtr ∼
λoL

AL

√

√

√

√

√

1

6π2

1 +
A2

L

R2
o

1 +
A2

L

4R2
o

→ Effective time reversal aperture: AL =
√

γ(0)L3/(6ℓ2c) when

γ(x) = γ(0)(1− |x|2/ℓ2c + ...).

• The focusing resolution corresponds to that of the Rayleigh resolution associated

with the effective time reversal aperture.

• In a strongly scattering medium:

→ Focusing resolution depends only mildly on Ro, the radius of the SLM.

→ No dependence on ρo, the radius of the SLM elements (provided ρo ≪ AL) !

→ However, SNR sensitive to ρo !

Cargese June 2017



Optimal focusing: Signal-to-noise ratio with deep probing

• Define signal-to-noise-ratio by SNR ≡ E
2[û]/Var(û).

When L ≫ Zsca,

SNR =
1 + (AL/ρo)

2

1 + (AL/Ro)2
AL≫ρo

≃

(

min(Ro,AL)

ρo

)2

=















A2
L

ρ2o
if ρo ≪ AL ≪ Ro,

R2
o

ρ2o
if Ro ≪ AL.

→֒ SNR is the number of mirror elements N needed to cover the effective mirror size

min(Ro,AL)
2.
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Optimal focusing: Steering a beam through clutter

Focusing wave through a scattering medium.

Focusing on a prescribed point in the neighborhood of the original target point.

Impose an additional linear phase (the cross in the right image stands for the original

target point).

→ Resolution as before, however, reduced signal-to-noise ratio due to de-correlation of

wave paths (limited “memory” effect).

• Focusing region radius Rmax is limited by SNR:

R2
max ∼ 3R2

tr
1

1 + (AL/Ro)2
ln

1 + (AL/ρo)
2

1 + (AL/Ro)2
.

Cargese June 2017



Optimal focusing: Image transmission through clutter

Transmission of an image

Here a square modeled as a set of sixteen target points is transmitted with the SLM

based on one original target point. The cross in the right image stands for the original

target point.
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Speckle intensity correlation imaging through a scattering medium

Experimental set-up [1]

The source is a time-harmonic plane wave.

The object to be imaged is a mask that can be shifted transversally.

For each position of the object the spatial intensity of the transmitted field can be

recorded by the camera.

[1] J. A. Newmann and K. J. Webb, PRL 113, 263903 (2014).



Speckle intensity correlation imaging through a scattering medium

• The field just after the object is of the form

Ur(x) = U(x− r),

for some function U . The field in the plane of the camera is denoted by Er(x).

• The measured intensity correlation is

Cr,r′ =
1

|A0|

∫

A0

|Er(x)|
2|Er′(x)|2dx

−
( 1

|A0|

∫

A0

|Er(x)|
2dx

)( 1

|A0|

∫

A0

|Er′(x)|2dx
)

,

where A0 is the spatial support of the camera.

Cargese June 2017



Speckle intensity correlation imaging through a scattering medium

• Result: When L ≫ Zsca and AL ≫ diam(camera),

Cr,r′ ≈
∣

∣

∣

∫

|Û(κ)|2 exp
(

iκ · (r′ − r)
)

dκ
∣

∣

∣

2

,

up to a multiplicative constant, where

Û(κ) =

∫

U(x) exp
(

− iκ · x
)

dx.

→֒ It is possible to reconstruct the incident field U by a phase retrieval algorithm.
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Conclusion

• Fourth-order moment of the wave field is useful.

• First application: Scintillation index and stability of Wigner transform.

• Second application: Intensity correlation-based imaging, ghost imaging.

• Third application: Optimal focusing through scattering medium.

• Hopefully, many other applications !
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