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ABSTRACT

We tackle the challenging problem of efficient and accurate
seismic traveltime computation in 3D anisotropic media by
applying the fast-sweeping method to a discontinuous Galer-
kin (DG)-based eikonal solver. Using this method leads to a
stable and highly accurate scheme, which is faster than finite-
difference schemes for a given precision, and with a low com-
putational cost compared to the standard Runge-Kutta DG
formulation. The integral formulation of the DG method also
makes it easy to handle seismic anisotropy and complex
topographies. Several numerical tests on complex models,
such as the 3D SEG advanced modeling model, are given
as illustration, highlighting the efficiency and the accuracy
of this new approach. In the near future, these results will
be used together with accurate solvers for seismic amplitude
and take-off angle computation to revisit asymptotic inversion
(traveltime/slope tomography) and imaging approaches
(quantitative migration involving amplitudes and angles).

INTRODUCTION

Asymptotic approaches based on traveltime and amplitude com-
putation in the high-frequency approximation are widely used in
many seismic applications such as traveltime/slope tomography for
initial velocity model building (Le Meur, 1994; Hole and Zelt,
1995; Billette and Lambaré, 1998; Leung and Qian, 2006; Tailland-
ier et al., 2009; Lelièvre et al., 2011; Tavakoli F. et al., 2017) or
ray-based (quantitative) migration (Beylkin, 1985; Bleistein, 1987;
Beylkin and Burridge, 1990; Jin et al., 1992; Gray and May, 1994;
Lambaré et al., 2003; Operto et al., 2003). The advantage of a

slowly varying quantity (traveltime) compared with the highly os-
cillating wavefield makes possible efficient decimations/interpola-
tions over sparse grids for storage, which might be of great interest
when working with large models and data sets (Mendes, 2000;
Vanelle and Gajewski, 2002; Alkhalifah, 2011).
In the high-frequency regime, we may consider the Lagrangian

framework of the ray theory to compute traveltimes by tracing the
characteristics of the eikonal equation (Červený, 2001). Solving the
related ordinary differential equation with initial conditions (source
location and shooting angle) is straightforward and easy to handle.
However, when boundary conditions are considered (source and
receiver locations), the two-point ray tracing can be a quite challeng-
ing task because of the nonuniform sampling of the medium by
rays. Estimating traveltimes at a given point of the medium leads
to sophisticated interpolation/extrapolation techniques, especially
when considering shadow zones (Runborg, 2007). In addition, when
considering many source/receiver pairs, the ray-tracing approach
might become less efficient, as the computational cost scales as
the product between the number of sources and receivers. Alterna-
tively, when one is only interested in first-arrival traveltimes, solving
the eikonal equation within an Eulerian framework enables the com-
putation of first-arrival traveltimes everywhere in the medium, thanks
to the concept of viscosity solution (Crandall and Lions, 1983, 1984).
Somehow, the geometric theory of diffraction is handled by the vis-
cosity solution (Keller, 1962; Runborg, 2007). Moreover, the compu-
tational cost is only proportional to the number of sources, which
makes it very efficient for dense acquisition settings. The drawback
of the eikonal approach is that a nonlinear partial differential equation
(PDE) has to be solved, which requires sophisticated numerical tools
to obtain reliable and accurate results.
Vidale (1988) promotes an expanding box framework and triggers

an abundant literature about eikonal solvers. The original scheme of
Vidale (1988) only computes traveltimes corresponding to outgoing

Manuscript received by the Editor 25 July 2018; revised manuscript received 12 October 2018; published ahead of production 26 December 2018; published
online 26 February 2019.

1Université Grenoble Alpes, ISTerre, Grenoble F-38000, France. E-mail: philippe.le-bouteiller@univ-grenoble-alpes.fr (corresponding author); jean.virieux@
univ-grenoble-alpes.fr.

2University of Sfax, Laboratory of Stability and Control of Systems and Nonlinear PDE, Sfax 3029, Tunisia. E-mail: mondher.benjemaa@gmail.com.
3Université Grenoble Alpes, ISTerre, Grenoble F-38000, France and Université Grenoble Alpes, LJK, CNRS, Grenoble F-38000, France. E-mail: ludovic

.metivier@univ-grenoble-alpes.fr.
© 2019 Society of Exploration Geophysicists. All rights reserved.

C107

GEOPHYSICS, VOL. 84, NO. 2 (MARCH-APRIL 2019); P. C107–C118, 8 FIGS., 12 TABLES.
10.1190/GEO2018-0555.1

D
ow

nl
oa

de
d 

04
/2

6/
19

 to
 2

16
.6

3.
24

6.
16

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2Fgeo2018-0555.1&domain=pdf&date_stamp=2019-02-26


rays. In heterogeneous media, the first arrival is thus not guaranteed
because some rays may go back into the expanding square, for in-
stance, in the presence of high-velocity zones. Improvements of this
technique are proposed by Podvin and Lecomte (1991), van Trier and
Symes (1991), and Hole and Zelt (1995). Kim and Cook (1999)
use (weighted) essentially nonoscillatory (ENO) schemes (Shu and
Osher, 1988, 1989; Liu et al., 1994; Jiang and Shu, 1996; Jiang
and Peng, 2000) for local discretization, while choosing the expanding
box framework (“Down’N’Out,” DNO) for computing the global
solution. A postsweeping (PS) technique is added to retrieve the cau-
sality and thus the first-arrival traveltimes, which leads to the ENO-
DNO-PS algorithm. This is to some extent similar to the approach
developed by Hole and Zelt (1995) based on additional reverse propa-
gation steps. Instead of relying on an arbitrary squared-box expansion,
wavefront-tracking schemes are proposed to better fit causality by fol-
lowing the expansion of the wavefront itself (Qin et al., 1992; Cao and
Greenhalgh, 1994). Doing so, the PS technique is no longer necessary.
In their concepts, ENO-DNO-PS schemes are close to fast-sweep-

ing methods (FSMs) and wavefront-tracking schemes are similar to
fast-marching methods (FMMs), two general classes of methods
developed in the field of applied mathematics, which have found
applications in many domains in the recent years. These methods rely
on an ordering of the nodes. FMM belongs to single-pass algorithms,
based on Dijsktra’s algorithm (Dijkstra, 1959), which considers
the propagation front and makes it evolve (Tsitsiklis, 1995; Sethian,
1996, 1999). On the other hand, FSM belongs to multipass algorithms
relying on global orderings of the nodes. All nodes are updated during
each Gauss-Seidel iteration (sweep), following alternating orderings
(Boué and Dupuis, 1999; Tsai et al., 2003; Kao et al., 2004; Zhao,
2005; Luo and Zhao, 2016). The FMM and FSM have been inten-
sively applied to solve the eikonal equation in a wide range of prob-
lems. Extensive comparisons showing their numerical efficiencies
can be found in Gremaud and Kuster (2006), and they highlight that
determining which strategy is the best is highly problem dependent.
In the presence of anisotropy, the eikonal equation is more complex

and needs adequate numerical strategies. The ENO-DNO-PS princi-
ples were extended to the anisotropic case in Dellinger and Symes
(1997), Kim (1999), and Qian et al. (2001). Some extensions have
also been carried out concerning FMM (Cristiani, 2009). They are
based on approximations and are generally difficult to implement.Mir-
ebeau (2014a) and Mirebeau (2014b) propose new approaches for the
FMM for anisotropic eikonal. However, the most mature strategies
proposed so far in a geophysical context rely on FSM. The first ex-
tensions have focused on elliptical anisotropy (Tsai et al., 2003; Qian
et al., 2007a), which could be handled quite naturally because it
amounts to a dilation in space. The general 2D tilted transversely
anisotropic (TTI) eikonal comprises spatial derivatives of the travel-
time to the power of four, which is more challenging. Han et al. (2017)
propose to solve the relatedquartic equationand to select theappropriate
root, yielding a high computational cost. Tavakoli F. et al. (2015),
Waheed et al. (2015), and Waheed and Alkhalifah (2017) prefer
a fixed-point iteration technique to solve an elliptical equation at
each iterationwith a suitable right-hand side accounting for anellipticity.
Most of the FSM extensions to anisotropy considered 2D prob-

lems only, except that by Waheed et al. (2015), who consider tilted
orthorhombic (TOR) media. Moreover, all the above-mentioned
methods are developed using finite-difference (FD) schemes, gen-
erally of first order, or higher order at a high cost with noncompact
stencils. The convergence order is in general less than one, or it is

equal to one if the source point is handled correctly by using the
celerity domain, the factorization or the perturbation methods,
for instance (Pica, 1997; Zhang et al., 2005a; Fomel et al., 2009;
Luo and Qian, 2011; Noble et al., 2014). This results in eikonal
solvers that are efficient and simple to implement, but with limited
accuracy. Another strategy has been explored recently in Le Bou-
teiller et al. (2018), using a discontinuous Galerkin (DG) finite-
element discretization instead of an FD approach, to increase the
convergence order, and to obtain high accuracy on traveltimes and
spatial derivatives in heterogeneous TTI media. Obtaining derived
quantities such as angles, amplitudes, or curvatures with high ac-
curacy is crucial for tomographic/imaging methods. These quantities
are based on first- and second-order derivatives of the traveltime, so
that second- or third-order schemes are required for traveltime com-
putation. Another advantage of such a finite-element approach is that
the integral finite-element formulation can be performed in complex
geometries, so that complex topographies can be precisely handled.
This turns out to be of major interest when considering complex land
targets (Improta et al., 2002; Taillandier et al., 2009).
Inspired by the work of Cheng and Shu (2007) and Cheng and

Wang (2014), Le Bouteiller et al. (2018) consider a numerical
scheme applicable to generic time-dependent Hamilton-Jacobi
equations, a class of equations to which eikonal belongs, and they
make use of the Runge-Kutta (RK) time integration with suitable
source condition until the steady state is reached, which corre-
sponds to the sought traveltime solution. We shall refer to this
method as the RK-DG solver. In terms of computational cost,
the main bottleneck of this approach is the rather slow convergence
in pseudotime to reach the static solution through all transient states
in every part of the medium, while the evolution of the front is local-
ized. This results in an algorithmic complexity of O(dof3∕2) where
the total number of degrees of freedom is denoted by #dof.
It seems therefore natural to integrate the FSM approach in such a

formulation, with O(N) complexity, as an acceleration tool for
reaching the steady state. Such an idea is already tested in an FD
framework by Zhang et al. (2005b), using FSM as an acceleration
loop over the time-marching procedure. Regarding DG approaches,
a numerical strategy is developed in two dimensions to solve Ham-
ilton-Jacobi equations with an FSM procedure over a DG discreti-
zation by Li et al. (2008) and Zhang et al. (2011). Based on the DG
solver of Cheng and Shu (2007), this strategy exhibits some prac-
tical limitations: An initial guess is needed and deduced from a pre-
liminary FD computation; the local scheme requires a cumbersome
least-squares L2 reconstruction of the solution’s derivatives at the
cell interface. In addition, it is developed only for isotropic media,
and the point-source singularity is not cured.
We propose to integrate such FSM acceleration into the approach

developed by Le Bouteiller et al. (2018). The implementation of
FSM over this solver and the extension to three dimensions leads
to an accurate and efficient solver for 3D traveltime computation,
which we refer to as the FSM-DG solver. Based on the state-of-the-
art DG scheme of Cheng and Wang (2014), the L2 reconstruction of
spatial derivatives is avoided. Without any need of an initial solution
guess, features such as point-source singularity treatment, 2D-TTI
and 3D-TOR anisotropy, and complex topographies are integrated
in this new approach yielding highly accurate traveltime estimation
with a rather simple handling by potential users.
The remainder of the paper is organized as follows. First,

the numerical method is detailed: The eikonal equation and its
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causality-consistent DG discretization are recalled, an FSM strategy
that consists of a local solver and a global Gauss-Seidel-based strat-
egy is presented, and a mesh deformation strategy for topography
handling is exhibited. Second, the accuracy and the efficiency of the
resulting FSM-DG solver are illustrated through various examples
in two dimensions and three dimensions: first in simple media for
validation purpose, then in complex realistic media, such as the 3D
SEAM model, with heterogeneities, topography, and anisotropy to
illustrate the properties of the solver on challenging settings. In the
last example, a comparison is performed with a full-wavefield mod-
eling. A conclusion closes this study.

NUMERICAL METHOD

Eikonal equation

Hereafter, we adopt the dynamic formulation of the eikonal PDE
in the Hamiltonian framework, which is written as

∂ξuðx; ξÞ þHðx;∇xuðx; ξÞÞ ¼ 0; (1)

where the spatial coordinates x span the space Rd with d ¼ 2 or
d ¼ 3, and ξ denotes a pseudotime evolution parameter. In an
isotropic medium, one can write

HISOðx;∇xuðx; ξÞÞ ¼ k∇xuðx; ξÞk −
1

cðxÞ ; (2)

where the wave speed is denoted by cðxÞ. The stationary state of
Hamilton-Jacobi equation 1 with the Hamiltonian of equation 2
verifies the static eikonal equation H ¼ 0. At the stationary state,
we have limξ→∞uðx; ξÞ ≡ TðxÞwhere TðxÞ is the traveltime field. In
a finite computational domain, we set the source boundary condi-
tion to uðxs; ξÞ ¼ 0 at any pseudotime ξ at the source point xs, and
such a stationary state is obtained at a finite pseudotime ξ⋆ once the
source information has been propagated from the source to the en-
tire domain. Using this time-marching procedure to reach the steady
state is studied by Zhang et al. (2005b), whereas a formal link be-
tween the static and the dynamic Hamilton-Jacobi equations is pro-
posed by Osher (1993) through the level-set framework.
Following Le Bouteiller et al. (2018), we write the Hamiltonian

for the 2D vertical transversely isotropic (VTI) case as

HVTI ¼ dðu;xÞ2 þ eðu;zÞ2 þ cðu;xÞ2ðu;zÞ2 − 1; (3)

where the derivatives of uðx; z; ξÞ with respect to x and z are, re-
spectively, denoted by u;x and u;z, and with( c ¼ −2ðϵ − δÞV4

P;
d ¼ ð1þ 2ϵÞV2

P;
e ¼ V2

P;
(4)

where the Thomsen’s parameters are denoted by ϵ and δ (Thomsen,
1986) and the P-wave velocity along the vertical axis is denoted
by VP. This derivation comes from Christoffel’s dispersion relation
in an elastic medium (see, e.g., Červený, 2001; Slawinski, 2003),
considering only the coupled P − SV propagation mode, under the
acoustic approximation (Alkhalifah, 2000). The TTI case is re-
trieved by applying the local rotation by the angle θðxÞ between the
local rotation-symmetry axis and the vertical axis, yielding

HTTI¼dðu;x cosθþu;z sinθÞ2þeðu;z cosθ−u;x sinθÞ2
þcðu;xcosθþu;z sinθÞ2ðu;zcosθ−u;x sinθÞ2−1: (5)

Similarly, the 3D orthorhombic (OR) Hamiltonian is written
under the acoustic approximation:

HOR¼aðu;xÞ2þbðu;yÞ2þcðu;zÞ2þdðu;xÞ2ðu;yÞ2þeðu;xÞ2ðu;zÞ2
þfðu;yÞ2ðu;zÞ2þgðu;xÞ2ðu;yÞ2ðu;zÞ2−1; (6)

with

8>>>>>>>>>><
>>>>>>>>>>:

a¼V2
Pð1þ2ϵ2Þ;

b¼V2
Pð1þ2ϵ1Þ;

c¼V2
P;

d¼V4
Pð1þ2ϵ2Þðð1þ2ϵ2Þð1þ2δÞ−ð1þ2ϵ1ÞÞ;

e¼−2ðϵ2−δ2ÞV4
P;

f¼−2ðϵ1−δ1ÞV4
P;

g¼−V6
Pðð1þ2ϵ2Þ2ð1þ2δÞ−2ð1þ2ϵ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ2δ2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ2δ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ2δÞp
þð1þ2δ2Þð1þ2δ1Þ−4ðϵ2−δ2Þðϵ1−δ1ÞÞ;

(7)

where anisotropic parameters ϵ2 and δ2 hold in the ½x; z� plane, aniso-
tropic parameters ϵ1 and δ1 hold in the ½y; z� plane, and anisotropic
parameter δ holds in the ½x; y� plane. This parameterization comes
from Tsvankin (1997) and is consistent with an alternative parameter-
ization proposed in Alkhalifah (2003) and used in Waheed et al.
(2015). The TOR case is retrieved by applying the local 3 × 3 rotation
operator involving three rotation angles: the dip angle θðxÞ, the azi-
muth angle ϕðxÞ, and the rotation angle ψðxÞ, which is the rotation
angle of the elastic tensor in the rotated horizontal plane, correspond-
ing to the crack orientation in this plane. The rotation operatorRTOR

is written as

RTOR ¼

0
B@

cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

1
CA
0
B@

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1
CA

×

0
B@

cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

1
CA: (8)

Replacing quantities u;x, u;y, and u;z by their rotated expressions,
obtained from equation 8, into the Hamiltonian of equation 6 yields
the TORHamiltonian. The substitution is as simple as for going from
expression 3 to expression 5, although we do not explicitly write the
TOR Hamiltonian here for the sake of concision.
To increase the accuracy of the solver, we implement the point-

source factorization, as proposed by Pica (1997), Zhang et al. (2005a),
Fomel et al. (2009), and Luo and Qian (2011). Le Bouteiller et al.
(2018) extend the factorization principles to the DG discretization
and show that this makes possible to retrieve a second-order conver-
gence when using approximations by polynomials of order one. The
additive factorization embeds the source singularity inside a reference
solution u0ðxÞ such that

uðx; ξÞ ¼ u0ðxÞ þ τðx; ξÞ: (9)

We then plug expression 9 into Hamiltonian expressions 2, 3, and 6.
We adopt the additive factorization because the Hamiltonian it yields
depends only on the gradient of the unknown τ. On the contrary, the
Hamiltonian obtained with a multiplicative strategy defined by
uðx; ξÞ ¼ u0ðxÞτðx; ξÞ depends also on the unknown τ itself. The
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resulting equation would thus contain an additional term leading out
of the frame of equation 1.
Finally, the Hamiltonian obtained with the additive factorization is

plugged into the dynamic Hamilton-Jacobi equation 1 that we solve
for τðx; ξÞ. This leads to the factored Hamilton-Jacobi equation for
the isotropic case

∂ξτ þ k∇xu0 þ ∇xτk −
1

c
¼ 0: (10)

Factored equations for 2D-VTI and 3D-OR cases are given in Appen-
dix A (equations A-1 and A-2, respectively), and tilted cases are re-
trieved as described before. The reference solutions u0 are chosen to
be analytical solutions in isotropic, TTI, or TOR media with homo-
geneous elastic parameters given by their values at the source point.

DG discretization

The DG spatial discretization of equation 1 is proposed by Cheng
and Wang (2014) and further adapted to the factored TTI eikonal by
Le Bouteiller et al. (2018). We present the scheme in its most general
formulation, which handles unstructured polygonal (two dimensions)
and polyhedral (three dimensions) meshes. Note that the rectangular/
cuboid Cartesian formulation simplifies the discretization of the
medium following a natural ordering along the x-, y-, and z-axes,
which will be useful for the FSM algorithm, as we shall see. The space
Ω is partitioned into n elements denoted byKi; i ¼ 1; : : : ; n. For each
element Ki, we choose a local approximation space Pi spanned by a
basis of shape functions ϕj

i ðxÞ. In practice, we consider polynomial
spaces Pk containing all polynomials of degree at most k. In our
numerical tests, we used P1 and P2 spaces. We define nKi

to be the
outward unit normal to the boundary of the element Ki. At element
interfaces, traces v�h and jumps ½vh� of any numerical quantity vh
defined inside two neighboring elements are given, respectively, by

v�h ðxÞ ¼ lim
ϵ↓0

vhðx� ϵnKi
Þ;

½vh�ðxÞ ¼ vþh ðxÞ − v−h ðxÞ: (11)

With these expressions, as well as their spatial derivatives and their
projections on boundaries, different key quantitiesF ;G;K are defined
at the boundary between two elements to build a causality consistent
flux estimation, which is an essential ingredient of the DG formu-
lation. These quantities depend nonlinearly on the solution itself and
on the local values of the Hamiltonian function. For the sake of con-
cision, the expressions F ;G;K are given in Appendix B.
The weak formulation of equation 1 can be stated as follows:

Finduhð:;ξÞ∈fv∶vjKi
∈Pi; ∀ i∈f1; :::;ngg ∀ξ≥0such thatZ

Ki

ð∂ξuhðx;ξÞþHðx;∇xuhðx;ξÞÞÞviðxÞdx

þ
Z
∂Ki

Fðx;∇xu�h ðxÞÞ½uh�ðx;ξÞv−i ðxÞds

−CΔKi

X
Sji∈∂Ki

1

ΔSji

Z
Sji

Gðx;∇xu�h ðxÞÞ½∇xuh ·nKi
�ðx;ξÞv−i ðxÞds

−2CΔKi

X
S̄ji∈∂Ki

1

ΔS̄ji

Z
S̄ji

Kðx;∇xu�h ðxÞÞð∇xu−h ðx;ξÞ ·nKi
Þv−i ðxÞds¼0;

for each i∈f1; :::;ng and for any test functionvi∈Pi; (12)

where ΔKi (respectively ΔSji ) is the volume of the element Ki (re-
spectively, the area of the face j of element Ki). The set ∂Ki denotes
the internal faces of element Ki, which are shared with other ele-
ments. The set ∂Ki denotes the external faces of element Ki, which
are part of the domain boundary ∂Ω. The test functions vi are shape
functions as usual for Galerkin approaches (Zienkewicz and Mor-
gan, 1983). The first term of scheme 12 ensures consistency, em-
bedding a weak formulation of the Hamilton-Jacobi equation. The
second term determines the information flow direction and acts as
an upwind flux term. It also captures potential shocks, keeping the
smallest traveltime next to triplications of the wavefield. The third
term treats so-called rarefaction situations in which noncausal en-
tropy violations may occur in the traveltime solution. The scaling
factor C is chosen empirically: Numerous observations have shown
that 0.25 gives stable schemes in practice (Cheng and Wang, 2014).
The fourth term, acting on external edges only, is added to enforce
suitable radiative boundary conditions (Le Bouteiller et al., 2018).
For further technical knowledge about setting up the RK-DG
implementation, we refer the reader to Cockburn and Shu (1998).

Local solver

Instead of solving scheme 12 over the whole domain in a time-
marching approach as proposed by Le Bouteiller et al. (2018), in
this study, we evolve elements one by one to a temporary local sta-
tionary solution with a local iterative strategy. In other words, given
current solutions in its neighbors, solution inside an element evolves
until its local steady state is reached, before considering the next
element. Therefore, the local solver consists of solving scheme 12
repeatedly for a given element Ki. Formally, we introduce the var-
iable ξi as a local pseudotime variable, which is no longer global.
The local integration, which can be considered as a local fixed-point
procedure, is performed in ξi with an explicit Euler method. Using
an explicit time integration is advantageous because scheme 12 is
highly nonlinear: The numerical fluxes depend on the solution itself
in a nonlinear way. Moreover, we verify that it is not necessary to
use higher order time schemes such as second-order Runge-Kutta
method in this local solver. The implementation of the local inte-
gration is straightforwardly derived from the RK-DG formulation,
taking care of restricting the computation to the current element.
Iterations are performed until a convergence criterion is reached,
which we refer to as the real quantity local_conv.
However, in some transient configurations, such convergence

may not be reached due to the nonlinearity of the problem and cau-
sality considerations. When the upwind flux is initially oriented to-
ward a given direction at an edge of a cell (e.g., an initial orientation
given by a direct wave), the cell could be in a configuration such
that changing its orientation to another direction (e.g., a diving wave
coming through a higher velocity zone) turns out to be impossible
during the fixed-point local procedure. Once the local solver has
reached a given number max_local_iter of local iterations without
local convergence, we have designed a specific procedure, that we
call the degenerate local solver, which is activated for overcoming
such a situation. This degenerate solver detects, among the four
(two dimensions) or six (three dimensions) neighbors of the current
element, the one with the lowest traveltime values (in practice, we
compare the maximum values at edges). Once the fastest edge has
been retrieved, we simulate a (nonphysical) plane wave coming
from this edge and traveling through the element at the local wave
speed. This allows us to reconstruct a temporary solution with a
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correct orientation of fluxes and respecting the velocity inside the
element. Such a solution will not be the final solution after the
sweeping strategy we describe in the next paragraph. This tempo-
rary simple estimation enables various branches of the final solution
to propagate along the current sweep and eventually to keep the
fastest one at each location. We proceed with sweeps until this de-
generate solver is not activated anymore: This is one of the criteria
required for global convergence.
The degenerate local solver we have designed is a key procedure,

which unlocks several crucial issues for developing an efficient
FSM-DG method. First, it avoids to be trapped in a wrong causality
setting, as described above. Second, as a consequence, it exempts
from the need of a good initial solution, which was a practical limi-
tation in Zhang et al. (2011). Finally, it exempts from a severe
constraint on the Hamiltonian: the RK-DG scheme used in Le Bou-
teiller et al. (2018) required a Lipschitz continuous Hamiltonian to
define a suitable CFL condition, which would not depend on the
solution. This limitation prompted the authors to use a complicated
2D TTI Hamiltonian to ensure stability in all the elements at every
timestep. In our FSM-DG method, if an instability raises during the
local integration, then the degenerate solver acts as a posttreatment
limiter, by replacing the solution with an approximate one respect-
ing the local causality. Therefore, we are able to use standard aniso-
tropic Hamiltonians of equations 3 and 6.

Fast-sweeping algorithm

The global solution is obtained by applying the local solver
successively to all the elements in a block Gauss-Seidel approach:
Nonlinear equations are solved element by element, each element
representing several unknowns (degrees of freedom). As in Zhao
(2005), the alternating sweepings follow the four (two dimensions)
or eight (three dimensions) natural orderings of the structured Car-
tesian mesh. For unstructured grids, it could be possible to precom-
pute specific orderings of the elements for sweeping: We have not
implemented such a strategy because of the additional implemen-
tation complexity (Qian et al., 2007a, 2007b). For Cartesian grid,
the natural directions allow to sample efficiently the characteristics
of the eikonal equation.
A boundary condition is set at the source: Inside the source

element, the numerical solution τ is set to zero and does not evolve,
so that the traveltime solution equals the reference solution inside
this source element.

Initialization

Initialization steps are defined for the local solver procedure as
well as for the sweeping procedure. Regarding the sweeping, the first
four (two dimensions) or eight (three dimensions) sweeps are per-
formed from the source element toward the boundaries, respectively,
in the four (two dimensions) or eight (three dimensions) quarters of
the domain defined by the horizontal and vertical axes aligned with
the source point. We have found this to be the best initialization to
optimize the number of sweeps needed to reach the convergence. At
the local scale, the first time the local solver is called for a given
element, the degenerate solver is executed at first, then the local iter-
ative procedure occurs. The element is tagged as updated afterward.
When executing the local solver, only the at-least-once updated
neighbors are considered. At edges where a neighbor has not been

Algorithm 1. Sweeping.

1: procedure SWEEPING

2: call INIT_SWEEP

3: for k ¼ 1 → max iter do

4: select case modðk − 1; 4Þ þ 1

5: case(1) call SWEEP1

6: case(2) call SWEEP2

7: case(3) call SWEEP3

8: case(4) call SWEEP4

9: if kðu − uoldÞ∕uoldk < global conv then return

10: procedure SWEEP1

11: for i ¼ 1 → Nx do

12: for j ¼ 1 → Nz do

13: call LOCAL_SOLVER(i; j)

14: procedure SWEEP2

15: for i ¼ Nx → 1 do

16: for j ¼ 1 → Nz do

17: call LOCAL_SOLVER(i; j)

18: procedure SWEEP3

19: for i ¼ Nx → 1 do

20: for j ¼ Nz → 1 do

21: call LOCAL_SOLVER(i; j)

22: procedure SWEEP4

23: for i ¼ 1 → Nx do

24: for j ¼ Nz → 1 do

25: call LOCAL_SOLVER(i; j)

Algorithm 2. Init sweeping.

1: procedure INIT_SWEEP

2: updated(:,:)=False

3: for i ¼ ixs → Nx do

4: for j ¼ izs → Nz do

5: call LOCAL_SOLVER(i; j)

6: updatedði; jÞ =True
7: for i ¼ ixs → 1 do

8: for j ¼ izs → Nz do

9: call LOCAL_SOLVER(i; j)

10: updatedði; jÞ =True
11: for i ¼ ixs → 1 do

12: for j ¼ izs → 1 do

13: call LOCAL_SOLVER(i; j)

14: updatedði; jÞ =True
15: for i ¼ 1 → ixs do

16: for j ¼ izs → 1 do

17: call LOCAL_SOLVER(i; j)

18: updatedði; jÞ =True
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updated yet, a boundary condition is applied, which is the same as at
the domain boundaries (the fourth term in scheme 12).
For sake of conciseness, the algorithms are presented in two di-

mensions. The block Gauss-Seidel procedure and its initialization
are detailed in Algorithms 1 and 2. The structure of the local solver
is presented in Algorithm 3, and the degenerate solver is detailed in
Algorithm 4. The extension to higher dimensions of these algo-
rithms is straightforward by sweeping in the additional dimensions.

Mesh deformation for topography

Finite-element methods are able to handle complex geometries in
a natural way, thanks to the integral formulation allowing deformed

elements. Scheme 12 is written in a general formulation in which
cells could be of any polygonal type. For example, we could design
2D unstructured triangle meshes, as shown in Le Bouteiller et al.
(2018), case study 4. Instead, at the exploration scale, vertically
deformed Cartesian grids are very attractive for their simplicity
(Hestholm, 1999; Tarrass et al., 2011; Trinh et al., 2018). The main
advantages are that there is no mesh generation step to be performed
by the user: The spatial position of each element can be accessed
directly by its indices in x, y, and z. Moreover, the grid allows us to
keep the natural ordering of elements when performing the FSM
algorithm, yielding an optimal efficiency for the Gauss-Seidel pro-
cedure. The topography variation is described by a gradual vertical
deformation of elements, keeping a constant number of elements in
the x-, y-, and z-directions. After interpolating the topography z⋆

over the ðx; yÞ nodes, the explicit mapping between a reference unit
cube and each deformed element is established. The Gauss points
used for computing integrals in scheme 12 are defined in the refer-
ence cube, and the quantities in the physical space are estimated at
these Gauss points using the mapping, the local Jacobian, and chain
rules for the spatial derivatives. The quantities needed at Gauss
points are precomputed prior to solving eikonal itself, and only once
for a given deformed grid. Figure 1 shows an example of a vertically
deformed mesh in two dimensions.

NUMERICAL RESULTS

All of the 2D and 3D numerical experiments are performed on a
laptop computer using a single core of an Intel Core i7-4600U com-
puter processing unit with a frequency of 2.10 GHz, and 8 GB of
DDR3 SDRAM. The computations are done in double precision.

Vertical gradient of velocity

We first exhibit the efficiency of the FSM-DG technique in a 2D
isotropic case, in which the velocity of the medium varies linearly
with depth. In a 4 × 4 km square, the velocity varies from a value
of 2 km∕s at the surface to a value of 4 km∕s at depth. The point
source is located at the surface with coordinates xs ¼ 2 km and
zs ¼ 0 km. The knowledge of the exact solution enables error com-
putation for traveltime as well as its spatial derivatives (Fomel et al.,
2009). A refinement study is carried out, and the results are shown
in Tables 1 and 2: L2 errors are exhibited with respect to the number
of degrees of freedom when using P1 polynomial approximations,

together with a comparison of CPU times be-
tween the RK-DG and the FSM-DG techniques.
We perform similar experiments using a fast-
sweeping FD solver from Noble et al. (2014); re-
sults are given in Table 3. All of these results are
compared in Figure 2.
The convergence of the schemes are high-

lighted in Figure 2a. The FD method exhibits
a first-order convergence: When the spatial dis-
cretization step is divided by two, the error is also
divided by two. Note that RK-DG and FSM-DG
methods yield the same error because they yield
the same final state in a given discretization after
integration in ξ. As expected, the higher slope of
decrease of the error with respect to the number of
degrees of freedom (dof) highlights the second-
order convergence of the P1 DG approximation.

Algorithm 3. Local solver.

1: procedure LOCAL_SOLVER(i; j)

2: for n ¼ 1 → max_local_iter do

3: inside = HJ_integral(i; j)

4: forðk; lÞ ∈ neighborsði; jÞ do
5: if updatedðk; lÞ then
6: edges←edges + flux_integral(i; j; k; l)

7: else

8: edges←edges + boundary_integral(i; j; k; l)

9: uij ¼ uijold þ Δtðinside þ edgesÞ
10: if kðuij − uijoldÞ∕uijoldk < local conv then return

11: uijold ¼ uij

12: call DEGENERATE_SOLVER(i; j)

Algorithm 4. Degenerate solver.

1: procedure DEGENERATE_SOLVER(i; j)

2: tmin ¼ 100000

3: for ðk; lÞ ∈ neighborsði; jÞ do tmin ¼ minðtmin;maxðukledgeÞÞ
4: uij ¼ DG projectionðtmin þ distðx; edge minÞ∕minKij

ðcðxÞÞÞ

Figure 1. Vertically deformed mesh for a cross section extracted from SEAM II Foot-
hills benchmark model. The topography (the blue line) has been interpolated over 101
equally distributed points in the x-direction. The mesh is 100 × 40 elements.
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Coherently, the x-derivative of the solution exhibits a first-order
convergence (Tables 1 and 2). This result was already exhibited
in Le Bouteiller et al. (2018). In terms of computational cost,
the analysis of the slopes in Figure 2b shows that the RK-DG
method has a computational complexity in Oðdof3∕2Þ, compared
with the linear complexity (OðdofÞ) of the FSM-FD method. This
is why the RK-DG method is not efficient. However, the new FSM-
DG algorithm constitutes a huge improvement because it exhibits a

Table 1. The RK-DG results from the first numerical example
in two dimensions.

RK-DG

N #dof Error Order dx error Order CPU (s)

21 1323 1.74E-03 — 1.13E-02 — 0.36

41 5043 4.66E-04 1.97 5.51E-03 1.08 1.6

81 19,683 1.21E-04 1.98 2.71E-03 1.04 11

161 77,763 3.07E-05 1.99 1.34E-03 1.02 78

321 309,123 7.74E-06 2.00 6.69E-04 1.01 600

641 1,232,643 1.94E-06 2.00 3.34E-04 1.00 4900

Note: Number of elements along one direction (N), number of degrees of freedom
(#dof), L2 error of the solution and its derivative along the x-direction, convergence
orders, and CPU times, for P1 polynomial approximation.

Table 2. The FSM-DG results from the first numerical
example in two dimensions.

FSM-DG

N #dof Error Order dx
error

Order CPU
(s)

CPU
ratio

21 1323 1.73E-03 — 1.18E-02 — 0.21 1.7

41 5043 4.65E-04 1.96 5.60E-03 1.11 0.43 3.7

81 19,683 1.21E-04 1.98 2.73E-03 1.06 0.68 16

161 77,763 3.07E-05 1.99 1.35E-03 1.03 2.0 39

321 309,123 7.74E-06 2.00 6.70E-04 1.01 6.6 91

641 1,232,643 1.95E-06 1.99 3.35E-04 1.00 26 188

Note: Number of elements along one direction (N), number of degrees of freedom
(#dof), L2 error of the solution and its derivative along the x-direction, convergence
orders, CPU times, and CPU ratio between RK-DG and FSM-DG, for P1 polynomial
approximation. Please note the slow increase of the CPU time with respect to the
number of degrees of freedom (see Figure 2b).

Table 3. The FSM-FD results from the first numerical example
in two dimensions.

FSM-FD

N #dof Error Order CPU (s)

72 5184 6.08E-03 — 0.01

140 19,600 2.91E-03 1.06 0.05

278 77,284 1.46E-03 0.99 0.18

556 309,136 7.32E-04 1.00 0.76

1110 1,232,100 3.67E-04 1.00 3.1

2220 4,928,400 1.84E-04 1.00 12

4440 19,713,600 9.42E-05 0.97 50

Note: Number of elements along one direction (N), number of degrees of freedom
(#dof), L2 error of the solution, convergence order, and CPU times.

Figure 2. Comparison of FD and DG methods with respect to accu-
racy (L2 error), CPU time, and number of degrees of freedom. (a) The
DG scheme enables high-order approximation, yielding a lower error
for a fixed number of degrees of freedom compared with the FD
method. (b) Although the DGmethod implies a higher computational
burden for a fixed number of degrees of freedom compared with the
FD method, the fast-sweeping algorithm applied to the DG method
(FSM-DG) exhibits a linear complexity, which is more efficient than
the RK-DGmethod. (c) Finally, the resulting efficiency is higher with
the FSM-DG method than with the FD method: Reaching a fixed
level of error is done with a lower CPU time.
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linear complexity in OðdofÞ, as the FSM-FD scheme. Finally, the
analysis of Figure 2c underlines that, for reaching low levels of er-
ror, the most efficient algorithm is the new FSM-DG. For a given
level of error, this algorithm is much faster than FSM-FD because it
needs fewer degrees of freedom to reach the same accuracy.
In terms of memory requirements, in this 2D case, the FSM-FD

code requires approximately 315 MB of memory for the case in
which N ¼ 4440. This amount is obtained by summing the sizes

of the arrays allocated for the traveltime and for the velocity model.
It corresponds to 16 bytes per degree of freedom. In our current
implementation, the DG codes require approximately 115 MB of
memory for the case in which N ¼ 641. Because there are three

Table 4. The FSM-DG results from the first numerical
example in three dimensions.

FSM-DG

N #dof Error Order dx error Order CPU (s)

11 5324 1.41E-03 — 2.06E-02 — 2.4

21 37,044 3.73E-04 2.05 1.11E-02 0.96 4.3

41 275,684 9.59E-05 2.03 5.76E-03 0.98 15

81 2,125,764 2.43E-05 2.01 2.93E-03 0.99 133

161 16,693,124 6.07E-06 2.02 1.48E-03 0.99 1150

Note: Number of elements along one direction (N), number of degrees of freedom
(#dof), L2 error of the solution and its derivative along the x-direction, convergence
orders, and CPU times, for P1 polynomial approximation.

Figure 3. The FSM-DG results from the first numerical example in
three dimensions: L2 error and CPU time with respect to the number
of degrees of freedom. The curved shape for small numbers of de-
grees of freedom when the CPU time is lower than 10 s is explained
by initialization steps in the code that do not depend on the size of the
mesh, such as model reading and source handling, for instance.

Figure 4. Traveltime isocontours computed in the homogeneous
TOR model with (blue) and without (red) the topography. Panels
at z ¼ 945 m (left), x ¼ 1150 m (right), and y ¼ 50 m (bottom).
Please note that the thick zone is the contour of the topography:
The blue solution is not built above the topography, whereas the
red solution assumes a flat topography at the top of the domain.

Figure 5. The 30 × 70 × 20 vertically deformed mesh built for the
SEAM II model.
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degrees of freedom per element, it corresponds to 90 bytes per de-
gree of freedom. The difference with the FD code comes from addi-
tional arrays allocated in memory for the values of the reference
solution u0 and its spatial derivatives at all the Gauss points. This
is designed as such to optimize the CPU time. Alternatively, these
quantities could be computed on the fly. Note that the FSM-DG and
RK-DG codes have the same memory requirements.
Keeping the vertical gradient of velocity, we now perform similar

simulations on a 3D 4 × 4 × 4 km cube with the FSM-DG method.
The point source is located at the surface with coordinates xs ¼ 2 km,
ys ¼ 2 km, and zs ¼ 0 km. The results obtained with a P1 approxi-
mation are detailed in Table 4 and highlighted in Figure 3. As
expected, we retrieve a second-order convergence of the 3D
DG discretization (Figure 3a). Moreover, the FSM-DG method still

exhibits a linear complexity (Figure 3b), which makes it very efficient
in three dimensions as well.
In terms of memory requirements, in the 3D case with N ¼ 161,

the FSM-DG codes require approximately 3500 MB of memory,
yielding 200 bytes per degree of freedom. Here again, the values
of the reference solution u0 and its spatial derivatives at all the Gauss
points are stored in memory.

Homogeneous 3D TOR medium with complex
topography

In this example, we consider a homogeneous 3D TOR medium,
with anisotropic parameters chosen as follows:

8>>>>>>>><
>>>>>>>>:

VP ¼ 2000 m∕s;
ϵ2 ¼ 0.2; δ2 ¼ 0.1;
ϵ1 ¼ 0.4; δ1 ¼ 0.3;
δ ¼ 0.1;
ϕ ¼ 30°;
θ ¼ 45°;
ψ ¼ −15°:

(13)

We define a physical domain with a complex
topography using a part of the SEAM II model
(Regone et al., 2017). We consider a domain of
size 3 km along the x-axis, 7 km along the y-axis,
and 2 km along the z-axis. This domain is re-
stricted in the z-direction by a topography pro-
vided with the model, which we amplify by a

Figure 6. The VP model extracted from the SEAM II model, with traveltime isocontours
superimposed.

Figure 7. Displacement field in the x-direction from SEM46, an elas-
tic spectral-element solver, with an impulse source. The traveltime
isocontours are superimposed. Snapshots in the plane x ¼ 1500 m
and corresponding isocontours at time 0.6 (top) and 0.9 (bottom)
s. One could notice the numerical noise occurring ahead of the front,
which comes from the wave-propagation solution, and which is vis-
ible due to the saturation of the plot.

Figure 8. Displacement field in the x-direction from SEM46, an elas-
tic spectral-element solver, with an impulse source. The traveltime
isocontours are superimposed. Snapshots in the plane z ¼ 500 m and
corresponding isocontours at time 0.6 (top) and 0.9 (bottom) s. The
topographical contour is expressed by the white zone where no sol-
ution is computed. Here again, one could notice the numerical noise
occurring ahead of the front.
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factor two to clearly exhibit its imprint on the traveltimes. We build
a vertically-deformed mesh from a regular Cartesian grid to follow
this topography. The mesh spacing before deformation is 100 m in
the three directions. Traveltimes are computed with and without the
topography, for a point source located at x ¼ 1150 m, y ¼ 50 m,
and z ¼ 945 m. Both results are superimposed in Figure 4. The im-
print of the topography is clearly visible in the near-surface areas
and might be understood by applying the Huygens principle at the
bottom points of the topography, from which the upper parts of the
domain are illuminated. This example shows the importance of tak-
ing care of topography, and the good behavior of the FSM-DG
method when doing so. Let us emphasize that not only the travel-
times, but also the spatial derivatives, are modified by the topogra-
phy, which indicates the front propagation direction. These
derivatives are of major interest when considering subsequent am-
plitude or angle estimations.

3D complex SEAM II model

In this example, our FSM-DG scheme is applied onto the same
part of the isotropic SEAM II model (Regone et al., 2017). Here, we
consider the original topography as provided with the model (no
amplification factor). To do so, we build a vertically-deformed mesh
as in the previous example: The original mesh step is 100 m in
the three directions, and the resulting deformed mesh is shown in
Figure 5. The P-wave velocity model, shown in Figure 6, exhibits
complex velocity structures with layering and faulting, as well as
near-surface low-velocity areas which are known to impair imaging
and inversion results if not carefully considered. We use the P-wave
velocity of the model to compute first-arrival traveltimes for a
source located at x ¼ 375 m, y ¼ 350 m, and z ¼ 528 m. The trav-
eltime isocontours are superimposed over the P-wave velocity
model in Figure 6. To illustrate the quality of the result, we perform
a computation using a spectral-element solver of the elastic-wave
equation applied to the same model. For this computation, we use
the code SEM46 (Trinh et al., 2017) with an impulse source in a
60 × 140 × 40 mesh. In Figures 7 and 8, the traveltime isocontours
obtained by the FSM-DG method are superimposed over the dis-
placement field in the x-direction obtained with the SEM46 code,
in the vertical and horizontal planes, highlighting an almost perfect
agreement between the first-arrival traveltimes and the wavefront,
although they are based on different equations (the eikonal equation
versus the elastic-wave equation) and different numerical methods
(the DG method versus the spectral element method), respectively.
In the presence of a nonflat topography, the memory requirements

are higher than in the Cartesian 3D case. The last example requires
approximately 180 MB of memory, corresponding to 1000 bytes per
degree of freedom. This is mainly due to the values of the derivatives
of the basis functions that we keep in memory at each Gauss point.
Alternatively, these values could be computed on the fly.

CONCLUSION

An FSM algorithm has been introduced in a DG approach for solv-
ing the 3D eikonal equation. The DG approach had been previously
introduced in a 2D framework, using a Runge-Kutta solver, respon-
sible for a high computational complexity in Oðdof3∕2Þ. The new
FSM algorithm provides a significant increase of efficiency, making
it possible to reach a linear complexity as for the FSM-FD approach,
while benefiting for the high accuracy and higher-order convergence

rate associated with DG approach. For this reason, higher accuracy
for the traveltime solution and its spatial derivatives is obtained com-
pared with FD methods, while complex structures are handled in a
stable and accurate way, thanks to the FE properties. This is illus-
trated by the use of deformed Cartesian grid for handling topography.
The 2D and 3D implementations are performed, with TTI and TOR
anisotropy, thanks to the general Hamiltonian formulation of the DG
scheme. Even more general Hamiltonians could be considered in the
future, accounting, for instance, for triclinic anisotropy.
We may now use these results together with accurate solvers for

seismic amplitudes and take-off angle computations to revisit asymp-
totic inversion (traveltime/slope tomography) and imaging approaches
(quantitative migration using amplitudes and angles).
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APPENDIX A

FACTORED HAMILTON-JACOBI EQUATIONS

Plugging expression 9 into 2D-VTI Hamiltonian expression 3,
and finally, into the dynamic Hamilton-Jacobi equation 1 that we
solve for τðx; ξÞ, leads to the factored 2D-VTI Hamilton-Jacobi
equation:

∂ξτ þ dðu0;x þ τ;xÞ2 þ eðu0;z þ τ;zÞ2
þ cðu0;x þ τ;xÞ2dðu0;z þ τ;zÞ2 − 1 ¼ 0: (A-1)

Now, using the 3D-OR Hamiltonian of equation 6, the factored
3D-OR Hamilton-Jacobi equation writes

∂ξτ þ aðu0;x þ τ;xÞ2 þ bðu0;y þ τ;yÞ2 þ cðu0;z þ τ;zÞ2
þ dðu0;x þ τ;xÞ2ðu0;y þ τ;yÞ2 þ eðu0;x þ τ;xÞ2ðu0;z þ τ;zÞ2
þ fðu0;y þ τ;yÞ2ðu0;z þ τ;zÞ2
þ gðu0;x þ τ;xÞ2ðu0;y þ τ;yÞ2ðu0;z þ τ;zÞ2 − 1 ¼ 0: (A-2)

APPENDIX B

DETAILED DG SCHEME

At an interface of element Ki, we define a 2C vector by the ex-
pression:
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∇xu�hKi
¼

� ð∇xuh · nKi
Þ�

∇xuh · tKi

�
: (B-1)

The first component ð∇xuh · nKi
Þ� is the projection onto the normal

nKi
, of the gradient of the numerical solution computed inside the

Ki cell (−), or inside its neighbor (þ). The second component
∇xuh · tKi

holds for the mean of the projections onto the tangential
vector tKi

of the gradient of the numerical solution computed inside
the Ki cell and inside its corresponding neighbor.
We also introduce the following quantities:

H�
Ki

¼ Hðx�;∇xu�hKi
Þ;

HnKi
¼ ∇∇uH · nKi

;

H�
nKi

¼ HnKi
ðx�;∇xu�hKi

Þ;

~HnKi
ðxÞ ¼

� Hþ
Ki
−H−

Ki
½∇xuh·nKi

�ðxÞ ; if ½∇xuh · nKi
�ðxÞ ≠ 0;

1
2
ðHþ

nKi
þH−

nKi
Þ; otherwise;

δnKi
ðxÞ ¼ maxð0; ~HnKi

ðxÞ −H−
nKi

;Hþ
nKi

− ~HnKi
ðxÞÞ;

χnKi
ðxÞ ¼ maxðδnKi

ðxÞ; j ~HnKi
ðxÞjÞ: (B-2)

Quantities F ;G;K introduced in scheme 12 are now written as

F ¼ minð ~HnKi
ðxÞ; 0Þ;

G ¼ χnKi
ðxÞ − j ~HnKi

ðxÞj;
K ¼ minðH−

nKi
ðxÞ; 0Þ: (B-3)

The key quantity for preserving causality is ~HnK , referred to as
the Roe speed: Its sign specifies the information flow direction at an
interface between two cells. Thanks to the min operator in F , when
computing the second integral of scheme 12, the downwind cell
receives information from the upwind cell, whereas the upwind cell
is not affected by the downwind cell information. The continuity
between elements is thus weakly enforced in an upwind manner.
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