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S U M M A R Y  
We propose a new formalism for the calculation of perturbations of ray trajectories and 
amplitudes in laterally heterogeneous medium. A Hamiltonian technique leads to a unified 
approach for the calculation of paraxial rays and rays perturbed by small changes of velocity 
distribution and interface shape. Instead of using ray centred coordinates as in the classical 
approach to dynamic ray tracing, we use straightforward Cartesian coordinates. This has the 
advantage that paraxial rays may be referred to the unperturbed ray in a very flexible way. 
We first study perturbation of initial conditions or paraxial ray tracing. With this technique an 
ensemble of rays propagating in the vicinity of a central ray is traced with the help of the so-called 
paraxial ray propagator. This ray propagator is the basis of all the techniques discussed in this 
paper. Its efficient determination is discussed and we propose a finite element approach in 
which the medium is divided into a set of trapezoidal elements with simple velocity 
distribution. We propose that the simpler results are obtained when a constant gradient of the 
square of the slowness is adopted in each element. In the second part of the paper we 
calculate the effect of perturbations of the velocity structure and interfaces upon ray 
trajectories, amplitudes and waveforms. Our results can be easily adapted for the calculation 
of FrCchet derivatives for the linearized inversion of travel times, amplitudes and waveforms. 
Finally, we present an example of the calculation of synthetic seismograms in a simple 
medium with a perturbed interface. Simplified expressions for the calculation of perturbed 
rays in a few typical reference media are given. 
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1 INTRODUCTION 

The paraxial ray method is a technique to approximately 
trace rays in the vicinity of a given reference (central) ray. 
by a first-order perturbation technique. These paraxial rays 
are an essential ingredient of many applications of ray 
theory to seismological problems, for instance, in the 
computation of ray amplitudes (Popov & PSenMk 1978), in 
Gaussian beam summation (Popov 1982; Cervenq, Popov & 
PSenMk 1982) or in Maslov’s method as proposed by 
Chapman & Drummond (1982) or Thomson & Chapman 
(1985). They are also very useful for solving two-point ray 
tracing, as well as for interpolating travel times. 

When the central ray hits a discontinuity of zeroth- or 
first-order, the paraxial rays have to satisfy specific 
continuity conditions. Two equivalent methods have been 
used to derive these continuity conditions: the phase 
matching method (see Cerveng 1985) and the perturbation 
of the Snell’s law (see Chapman 1985). In the former 
technique the phase, expanded up to second-order terms, is 
matched across the discontinuity. The first-order term gives 
Snell’s law at the hitting point, while the second-order term 
gives the paraxial ray continuity conditions. In Chapman’s 
(1985) approach the perturbation of Snell’s law to first order 
gives the paraxial ray continuity conditions. 

The purpose of this paper is to develop the paraxial ray 
continuity conditions when the ray field is affected by small 
perturbations in the velocity (or slowness) and interface 
shapes. The problem of slowness perturbation has already 
been studied by Farra & Madariaga (1987) in generalized 
coordinates; Farra (1987) solved in her thesis the problem of 
interface perturbations in generalized coordinates. General- 
ized coordinates were required because paraxial rays have 
traditionally been traced using the ray centred coordinate 
system proposed by Popov & PSenEik (1978). The solution 
of continuity conditions in this curvilinear coordinate system 
is extremely complex, requiring several canonical transfor- 
mations between ray centred and interface centred 
coordinates. In Virieux, Farra & Madariaga (1988) we 
proposed that ray and paraxial ray tracing be performed 
directly in Cartesian coordinates. This increases the size of 
the ray tracing equation system but simplifies considerably 
the calculations. We are presently convinced that coupled 
with a finite element discretization of the slowness field, this 
approach is the most efficient for the- solution of ray and 
paraxial ray problems. 

In this paper we will focus our attention on the 
construction of paraxial boundary conditions in global 
Cartesian coordinates, and how to perturb them when the 
shape of interfaces is modified slightly. The solution of this 
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problem may be expressed in terms of FrCchet derivatives 
and has numerous applications. For instance in the study of 
the effect of small lateral heterogeneity on travel times, ray 
amplitudes, in the perturbation of two-point ray tracing by 
interface changes, and in non-linear tomography of 
interfaces (Nowack & Lyslo 1989). In the perturbed 
medium, central rays, as well as their paraxial rays, will be 
obtained by first-order perturbation of Snell's law at the 
interfaces. Two specific reference media of interest in 
seismology will be explicitly worked out. Illustrations on a 
simple synthetic example will hopefully demonstrate the 
possibilities of the method. 

2 R A Y  A N D  PARAXIAL R A Y  THEORY 
FOR ELASTIC MEDIA 

Let us briefly recall the Hamiltonian formulation used by 
Virieux et al. (1988). In ray theory we assume that the 
high-frequency asymptotic form of a scalar or vector wave 
field @(x, w )  is: 

@(x, w )  = s(w)A(x)ei'UH(X), (1) 

where A(x) is the first term of the expansion of A(x, w )  in 
inverse powers of w,  O(x) is the eikonal or traveltime 
function, w the circular frequency and s ( w )  the source 
function. From the wave equation, one obtains the eikonal 
equation (VO)'=u'(x), where u2 is the square of the 
slowness: compressional slowness for P-waves, shear 
slowness for S-waves (see, e.g. Cerveny, Molotkov & 
PSeni3k 1977). In order to perform ray tracing, we introduce 
the slowness vector p=VO, which is perpendicular to the 
surfaces of equal phase 0, or wavefronts. Let s be the 
arclength and T the sampling parameter along the ray 
defined by u dt = ds (Chapman 1985). Let us underline that 
t has units km's-'. Because the rays are everywhere 
tangent to the slowness vector, position along the ray x is 
related to the slowness vector by: 

dx d x  p = u - = - .  
ds dt 

Introducing the Hamiltonian proposed by Burridge (1976): 

w, p, t) = 3[P2 - U ' b ) l  (3) 

we observe that the eikonal equation implies that H = 0 
along a ray. From Hamilton's canonical equations, we find 
the ray tracing equations: 

X=V,H=p 
i = -V,H = $VX~', (4) 

where dot denotes differentiation with respect to t; V, and 
V, denote the gradients with respect to the vectors x and p, 
respectively. Let us recall (Cerveny et al. 1977) that the six 
equations in (4) are not independent since at least one of 
them may be eliminated by using the fact that p should 
satisfy the eikonal equation (3). System (4) may be reduced 
to four equations as shown by Farra & Madariaga (1987), 
but only at the expense of a more complicated curvilinear 
geometry. Our present feeling is that using Cartesian 

coordinates (Virieux et al. 1988) is much simpler than 
reducing the system. 

Suppose a ray has been traced in the medium with 
slowness distribution uo(x). Around this ray, called the 
central ray, we can obtain neighbouring rays by means of 
first-order perturbation theory, as explained by Farra and 
Madariaga (1987). Let q,(t) and po(t) be the position and 
the slowness vector of the central ray. For conciseness we 
will sometimes use the notation yo(.) = [q)(t), p(,(t)], the 
so-called canonical vector of the central ray. This is a 
6-vector in phase space, the space of position and slowness. 
The position of a paraxial ray and its slowness vector are 
given by: 

4 x 1  = + W t )  ~ ( t )  = P d t )  + S P ( ~ ) .  ( 5 )  

The perturbation of position and slowness vector 6y( t) = 
(Sx, Sp) satisfies the paraxial ray tracing equations deduced 
from (4): 

Sy = A, Sy, (6) 

with 

(7) 

where I is the identity matrix and Uo is the matrix of 
second-order partial derivatives of the square of slowness 
defined by: 

1 d'U; 

nil 2 a ~ ,  ax, 
IJ =-- 

Solutions to the linear system (6) may be found by standard 
propagator techniques. Given the initial value Sy( to) the 
subsequent evolution of the canonical vector in phase space 
is given by: 

SY(t) = P"(t? t o )  SY(t"), (9) 

where !?P{,(t, to) is the propagator matrix of system (6). 
Just as with the full non-linear ray tracing system (4), the 

six equations of the paraxial system (6) are not really 
independent. In other words, not every solution of the 
system (6) represents a paraxial ray trajectory. In fact, 6y 
should satisfy a condition derived from the perturbation of 
the eikonal equation H = O .  To first-order, when position 
and slowness are perturbed as in (5 ) ,  the perturbation of the 
Hamiltonian should satisfy 

6 H ( t )  = po. 6p - ~V,U; . 6~ = 0. (10) 

S H ( t )  = 6 H ( t , )  (11) 

Since SH is constant along any solution of the system (6), 

it is sufficient to enforce SH = 0 at the source in order to 
satisfy (10) everywhere. 

3 REFLECTION A N D  TRANSMISSION OF 
PARAXIAL RAYS 

We define the inner product of two vectors u and v by 
(u 1 v )  with (ul applied to 1.). An operator A applied to Iv) 
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will give A 1.). This will allow us to use the operator 
notation in the following transformations. 

Let us consider a reference ray whose canonical vector is 
yo(t) = (xg, po). This reference ray hits an internal velocity 
discontinuity at point 0 of coordinate %(ti) with a local 
slowness vector po(ti) (Fig. la). We consider a paraxial ray 
of this reference ray that intersects the same discontinuity at 
point I of position x ( t I ) ,  with sampling parameter ti and 
local slowness p( ti). We denote dx = x( tl) - %(ti), 
dp = p(tt!) - po(ti) and dy = (dx, dp). Paraxial rays are 
traced in the incidence medium using the perturbation 
relations (5). Let the paraxial canonical vector at sampling 
parameter ti be 6y(ti) = [ax, 6pl. Vector &(ti) defines the 
position of point Q in Fig. l a .  In general Q and I do not 
coincide so that dy f 6y. Using the ray equations (4) and 
referring to the vector diagrams in Fig. l(b) and (c) we find 
that dy and 6y are related by; 

dx = 6x(t i )  + V,H d t  
dp=6p(ti)-V,Hdt, 

where d t  = (ti - t i)  and the gradients of H are computed at 

Let the interface be defined by the relation f (x) = 0 and 
denote by Vfo the local normal to the interface at point 0 
(see Fig. 1). The condition that point I belongs to the 
interface f [%(ti) + dx] = 0, yields (dx 1 Vfo) = 0 to first 
order in dx. Taking the inner product of the first of 
equations (12) with Vfo and imposing this condition yields 
the following expression for the sampling parameter 
increment dz: 

Yo(ti). 

which follows also directly from Fig. l(b). The paraxial 
vector at point I with respect to the central ray at the 
intersection point 0, dy = (dx, dp), is obtained then as a 
linear transformation n of 6y(ti): 

dy = n6y(t i ) ,  (14) 

with: 

where the submatrices are given by: 

The notation 11)(2) represents a matrix obtained by the 
tensor product of the vectors (11 and (21. For the 
corresponding formulation in generalized coordinates, we 
refer the reader to Farra (1987). 

3.1 Continuity conditions for paraxial rays 

Let us now construct the continuity conditions for paraxial 
rays across the interface. We will denote variables in the 
reflected/transmitted medium with a caret above them. The 
new Hamiltonian will be, for example, H. The continuity of 
position of paraxial rays at the interface gives the following 

I. 

1' Q 

Figure 1. Geometry of the interaction of a ray and one of its 
paraxial rays with an interface. The central ray intersects the 
interface at 0 with slowness vector po = p o ( t i ) ,  while the paraxial 
ray arrives at I with slowness vector p,=p(t;) .  At the interface, 
paraxial vectors 6x and 6p have to be transformed into dx and dp, 
respectively. n = Vfo is the local normal to the interface at point 0. 

simple relation: 

dk = dx. (17) 

The continuity condition for slowness perturbation is more 
difficult to obtain because we have to take into account the 
local curvature of the interface. We need three conditions to 
continue the vector dp into dp. A first relation comes from 
the continuity of dH = dfi at the interface: 

(V,H 1 dp) + (V,A 1 dk) = (V,H 1 dp) + (V,H 1 dx).  (18) 
This relation is an extension of (11) to a medium with zero- 
or first-order discontinuities. The two other conditions come 
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from the local perturbation of Snell's law along the 
interface. In vector notation, Snell's law at point I is: 

(fro + dp)  X Vf = (Po + dP) X Vf (19) 

where the cross-product has been noted by X. The normal 
to the interface at point I (Fig. l ) ,  is given to first-order by: 

Vf = Vfn + VVfo Idx) 7 (20) 

where VVfo stands for the matrix of second derivatives 
(curvature) of the interface at %(rt). Inserting (20) in (19), 
we obtain to first-order: 

dp x Vfo = dp x Vfo + (PO - Po) x F f n  Idx) 1. (21) 

We are now ready to obtain dp from dp  and dx using 
relations (17), (18) and (21). Let us develop dp along the 
normal and the tangent plane to f(x) = 0 at the point 0 
(Fig. 1): 

Inserting (22) into (18) and using (17) we may express the 
inner product (dp I VA,) in terms of dx and the 
cross-product dp x Vfo. The cross-product can in turn be 
deduced from (21) in terms of dp and dx. 

After some heavy but straightforward algebra, we express 
the difference dp-dp as the sum of a term along the 
normal Vf,, and another one parallel to the tangent plane: 

with 

u=(V,H-V,H /dx)+(V,A-V,H)dp)  

Finally the continuity condition for the canonical paraxial 
vectors dfi and dy across the interface may be expressed in 
terms of the transformation matrix T defined by: 

dfi= T d y  (25) 

and which may be written in the form: 

where the submatrices Tl and T2 are given by: 

and 

All the quantities appearing in (27) are calculated on the 

reference ray. Without any further transformation the 
canonical perturbation vector dfi may be used as the new 
initial condition 6fi to propagate the reflected-transmitted 
paraxial ray in the new medium. Therefore, the complete 
transformation of the paraxial ray vectors at the 
discontinuity is given by: 

6fi = Tl7 6y( ti) (28) 

with 

When this transformation is written in local Cartesian 
coordinates with axis z along the normal to the 
discontinuity, we recover the results of Virieux et al. (1988) 
obtained with the phase matching procedure. It is worth 
noting that eerveny, Langer & PSenEik (1974) have already 
introduced similar transformations at interfaces using 
differential geometry approach. 

3.2 An example of paraxial ray tracing 

In order to illustrate paraxial rw .tracing in Cartesian 
coordinates, we consider two media with constant vertical 
velocity gradient, separated by a curved interface interpo- 
lated by B-splines. The expression of the velocity is 
(4.0 + 0.0042) km s-' in the upper layer and (4.5 + 
0.12) kms-' in the lower medium. Fig. 2 presents a 
reference ray traced by a Runge-Kutta solver, as well as 
one of its paraxial rays for a point source. The paraxial 
vectors 6x are explicitly drawn at several positions along the 
ray. We remark that unlike in ray-centred coordinates (e.g. 
Cerveny 1985) the paraxial vectors 6x are not required to be 
perpendicular to the central ray. When the reference ray 
intersects the boundary, the transformation l7 is activated in 
order to obtain dx tangent to the interface. The 
transformation 17 affects both 6x and 6p and is consistent 
with the eikonal equation, i.e. it is a linearized canonical 
transformation in the language of analytical mechanics 
(Goldstein 1980). Now that dx is parallel to the interface we 
apply the transformation T in order to obtain the initial 
perturbation vector 6y for the propagation of the paraxial 
ray transmitted into the lower medium. Transformation T 
affects only the slowness perturbation, not dx. Actually, it 
contains the perturbation of the take-off angle of the 
paraxial ray from the interface. Because of the complex 
geometry of the interface the ray passes through a caustic at 
an offset of 7.2 km. At that point the paraxial vector crosses 
the central ray and, as expected, 6x changes sign. Finally 
the ray is reflected back to the surface. Fig. 2 illustrates 
several of the transformations that have to be introduced at 
interfaces in order to continue paraxial rays across 
interfaces. 

4 PERTURBATION OF RAYS 

In this section we will develop ray perturbation theory for 
central rays when either the medium or the interfaces are 
slightly perturbed from their values in the reference 
medium. Farra & Madariaga (1987) presented ray 
perturbation theory for slowness modification in orthogonal 
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Figure 2. Illustration of paraxial rays and their transformation at the intersection with an interface. A paraxial ray is obtained by drawing its 
vector 6 x  from the central ray. Every time the ray crosses an interface the paraxial ray 6x and the associated slowness vector 6p have to be 
redefined by a transformation defined by (28). The ray goes through a caustic in its third leg. A final transformation of the paraxial ray has to 
be performed at the free surface in order to get a horizontal paraxial vector d x .  

curvilinear coordinates. This formalism is necessary when 
using the ray-centred coordinates of Popov & PSenEik 
(1978). As proposed by Virieux et al. (1988) it is very likely 
that using Cartesian coordinates both for ray tracing and 
paraxial ray tracing simplifies considerably the calculation of 
the effect of interfaces. In this section we will briefly adapt 
Farra & Madariaga (1987) results for Cartesian coordinates 
and we will then tackle the interface perturbation problem. 
A complete treatment of interfaces in curvilinear coordin- 
ates may be found in Farra (1987); the expressions are so 
unwieldy that we prefer to present the much simpler results 
in Cartesian coordinates here. To our knowledge Nowack & 
Lyslo (1988) are the only authors that have studied the 
effect of interface perturbation on central rays in a 
seismological context. Our results will extend theirs to 
arbitrary gradients in the media and, in a later section, to 
paraxial rays. 

4.1 Ray perturbation due to slowness change 

Let us consider, as in Fig. 3, a smooth perturbation of the 
model such that the slowness is slightly changed from ug to 
u = uo + Au. The perturbation in slowness produces a 
corresponding perturbation of the Hamiltonian: H = H,, + 
AH, where H, is the Hamiltonian (3) for the reference 
slowness uo(x) and AH = -4Au’ = -uo Au. 

We assume that a ray has already been traced in the 
reference medium with unperturbed slowness distribution 
u&). To first-order in Au, it is possible to obtain rays of 
the perturbed medium that deviate slightly from this 
reference ray. Following Farra & Madariaga (1987), we 
introduce the perturbed canonical vector y ( r )  = yo(t) + 
A y ( r )  of these rays as defined in Fig. 3. Inserting it and the 
slowness perturbation in the ray equations (4), we get: 

Ay = A,  Ay + AB, 

where 

0 
dB = ( fV(Au’))  

and all the derivatives are calculated on the reference ray. 
Equations (30) form a linear system which has the same 
form as that of paraxial rays in the unperturbed medium (6), 
except for the source term AB derived from Au2(x). 

perturbed 

in i t ia l  centra l  
r a y  

PO 

Figure 3. Geometry of the effect of a smooth slowness perturbation 
upon a ray and one of its paraxial rays. At the top we show the ray 
geometry and at the bottom the perturbation in slowness vector. 
The perturbation of the central ray is given by Ax, Ap, the position 
of a paraxial ray with respect to the perturbed central ray is given by 
ax, 6p. 
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Solutions to (30) may be found by standard propagator 
techniques: 

Ay(t) = Po(t, tn) AY(tn) + rpo(r, t') AB(t')  d t ' ,  (32) 
9 1  

where Ay(to) is the initial perturbation and 9'" is the 
propagator of the paraxial system (6) in the unperturbed 
medium. 

The perturbation solution (32) may be used to solve a 
number of initial and boundary value problems. For 
instance, if we want to trace a perturbed ray with the same 
initial conditions as the reference ray we would take 
Ay(to) = (0, Ap,), where Ap, = p, Au2/2ui. The perturba- 
tion of initial slowness is necessary in order to satisfy 
the perturbed eikonal equation (po I Ap) + AH = 0 at 
the source. Ap, = 0 if the medium is not perturbed at the 
source. One of the most interesting and straightforward 
applications of (32) is to ray continuation. Suppose we have 
solved the two-point ray tracing problem between a source 
and receiver. The perturbed ray passing through the same 
source (sampling parameter t,) and receiver (sampling 
parameter tr) as the unperturbed ray, is obtained using 

Ax( ts) = 0 

n; is an element of the transformation matrix (15) that 
extrapolates Ay(t,) on a local plane passing through the 
receiver. This extrapolation is necessary because the 
perturbed ray can arrive at the receiver with a different 
sampling parameter t. Because of the linear relation (32) 
between Ay(ts) and Ay(t,), inserting (33) in (32), we easily 
find the initial conditions Ay(ts). 

4.2 Ray perturbation due to interface change 

Let us now consider a smooth perturbation of an interface. 
We denote by f,(x)=O the reference interface and 
f(x) =f,(x) + A f ( x )  = 0 the perturbed interface. To first- 
order in Aft it is possible to linearize the problem 
considering rays that deviate only slightly from the reference 
ray traced in the unperturbed medium. Because of linearity, 
perturbation of interfaces may be considered independently 
of perturbation of slowness. 

Consider as before a reference ray with canonical vector 
y o ( t ) ,  and a ray in the perturbed medium that propagates in 
the neighbourhood of this reference ray. Its perturbation 
vector measured from the reference ray is Ay(t). The 
reference ray intersects the initial interface at 0 [x4t i ) ]  and 
the perturbed ray intersects the perturbed interface 
at O'[x(z,')] (Fig. 4). Denoting dx = x(t,') - qit,) and 
dp = p(t,') - po(t,) we find from Fig. 4 that to first order: 

dx = Ax + VpHo dt 
dp = Ap - V,Ho dt, (34) 

where dt  is the increment (t: - ti). In (34), the gradients of 
H, are calculated at yo(ti). These expressions are the same 
as (12) but their geometrical interpretation is quite different. 

Because 0' belongs to the perturbed interfacef[x(q!)] = 0 

reference \ \ 
\ \ 

interface 

Figure 4. Geometry of the interaction of a ray with a perturbed 
interface. The reference ray intersects the reference interface at 0, 
while the perturbed ray intersects the perturbed interface at 0'. 

and at 0, &[%(ti)] = 0, we get to first-order: 

(Vfo 1 dx) + Af = 0, (35) 
where the gradient and Af are calculated at %(ti). Using 
(34) and (35), we obtain the sampling parameter increment 
dt: 

Finally, the rotated paraxial vector dy is given by the 
canonical transformation: 

with 

where n, and n2 are matrices defined as: 

and 

(39) 

In order to propagate the transmitted and reflected rays 
away from the interface, we have to change the reference 
unperturbed ray. We choose as the new reference ray, the 
reflected-transmitted ray of the unperturbed medium 
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corresponding to the reference incident ray. We denote by 
fO(t) and j ( t )  the canonical vectors of the new reference 
ray and the perturbed ray in the reflected-transmitted 
medium. 

Let us now construct the canonical perturbation 
df = (d2, dp) of the perturbed transmitted/reflected ray. 
The perturbed ray has to satisfy fi 0. Thus, to first-order, 
the perturbations of position and slowness vector satisfy 

dH = ( VX& I d?) + ( Vpfio I dp) + A H  = 0, (41) 

where f f o ,  H = H o +  A H  are the Hamiltonians in the 
reference and the perturbed medium, respectively. In the 
incidence medium we have the corresponding relation: 

dH = (V,Hn 1 dx) + (V,Ho I dp) + A H  = 0. (42) 

The continuity of the perturbed ray gives the following 
relation: 

d2 = dx. (43) 

(a" + dP) x Vf = (Po + dP) x Vf, (44) 

Moreover, the perturbed ray satisfies the Snell's law 

The normal to the perturbed interface at ~ ( t , ' )  is given to 
first-order by: 

Vf = Vfo + VVfo Idx) + V(Af), (45) 

where the vectors Vfo and V(Af) and the matrix VVf;, are 
computed at h(t,). Thus, we obtain the perturbed Snell's 
law: 

dp X Vfo = dp X Vh + (V,H" - V,&) 

x [VVh I dx) + V(Af )I. 
As in (22) we express dp in the form: 

(47) 

Following the same procedure as before we write dp as the 
sum of three terms: 

dp = TI dx + T2dp+ Api (48) 

with 

(49) 

Finally from (43) and (48), we obtain the continuity 
conditions for the perturbed ray across interfaces: 

with 

The new canonical vector df is used as the initial condition 
A j  to propagate the reflected-transmitted perturbed ray 
away from the interface. Using (37) and (50) ,  we obtain: 

This transformation contains three terms. The first one is 
the same as the linear transformation (28) connecting the 
incident and reflected-transmitted paraxial rays at the 
interface. This term takes into account perturbations in 
initial conditions and in slowness between the source and 
the interface. Ay(t,) is given by (32). The next two terms 
include the effect of interface perturbation. A d  is due to the 
displacement Af of the interface. Ay: is a perturbation of 
the slowness of the ray that emerges from the interface. It 
contains two terms as shown in (49). The first one is due to 
slowness perturbation in the vicinity of the interface; this 
term is due to the change in Snell's law produced by velocity 
perturbation in the vicinity of the interface. The second 
term in A d  is due to the rotation of the normal to the 
interface at point 0. 

5 PERTURBATION OF PARAXIAL RAYS 

In this section we consider the more difficult problem of the 
propagation of paraxial rays in the perturbed medium. 
These are rays that propagate in the vicinity of the 
perturbed ray y ( t ) = y , ( t ) +  Ay(z). As shown in (6) 
paraxial rays are solutions of the following linear system of 
equations: 

where 6 y  is the paraxial canonical vector measured from the 
perturbed reference ray y ( t )  (see Fig. 3 for a definition of 
6x and 6p). Matrix A is of the form (7), where matrix U, is 
replaced by matrix U, which contains the second-order 
partial derivatives of the square of slowness u'(x) computed 
on the perturbed central ray. To first order A may be 
expanded in the form A ( t )  = A o ( t )  + AA(t) ,  where 

O) ,  
M = (  0 

(AX I v,) U, + A U  o 
Matrices ( A x  I V,) U,, and A l l  are defined by: 

(55) 

In (55) ,  all the quantities are calculated on the original 
unperturbed ray yo. The gradient of Uo comes from the 
perturbation Ay of the reference central ray and the matrix 
A U  is a term due to perturbations in the slowness. The 
paraxials of the perturbed ray are given by 

6y( t )  = %t, t o )  6y(r,) ,  (56) 

where P(t,  to) is the propagator of (54). To first-order in 
the slowness perturbation, s(t, to) is given by its Born 
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approximation (Farra & Madariaga 1987): 

P(T, to) = Yn(tt to) + IT90(r. t') dA(t')9,(~', t o )  dt'. (57) 
W 

Let us now consider the interaction of the paraxials of the 
perturbed ray with a perturbed interface. The continuity 
conditions of the reflected or transmitted paraxial rays are 
obtained from the transformation (28) at the interface: 

6f(tj) = TIZ6y(te'), (58)  

where matrices IZ and T are computed at y = yo( t,) + dy and 
9 = yn(ti) + df, in the perturbed medium. ti is the sampling 
parameter of the reference perturbed ray at its incident 
point. To first-order, the matrix TI7 can be expanded in a 
Taylor series in dy and df: 

~n = + (dx I V x )  T)nn + (dp 1 Vp> Tono+ (d% I Vji) GG 
(59) + ( dp 1 V, ) TOI7, + A( TIZ). 

The derivatives of Ton, come from the perturbations of the 
reference central ray and A(TI7) is a term due to 
perturbations in the Hamiltonian and in the interface. 
Explicit expressions for the different terms in (59) are given 
in the Appendix. 

Expression (57) gives the paraxial vector 6y(t,) at re, 
where t, is the sampling parameter of the reference 
unperturbed ray at its incident point on the interface. We 
obtain from (54): 

GY(S,!) = (Z+A, d t )  6y(ti), (60) 

where the increment d t  = ( tt! - ti) is given by (36) and A, is 
calculated at %(ti) from (7). The paraxial vector @(ti) 
determined from (58) and (60) can be used as the new initial 
condition to propagate the reflected-transmitted paraxial ray 
away from the perturbed interface. 

6 TRAVELTIMES AND AMPLITUDES 

In order to construct a continuous wavefront in the vicinity 
of a central ray we have to impose an additional condition to 
the paraxial rays calculated with equation (6). Without this 
condition the paraxial rays would cross each other in 
random ways. Following a notation introduced by Popov 
(1982), we require that 

6P(to) = M, Wt")? (61) 

where M, is a 3 x 3 matrix that determines the initial shape 
of the ray beam. Equation (61) is a linear relation between 
the components of slowness and position perturbation 
vectors for a given value to. For Snell-waves, M,, has the 
following form 

M O = ( i ,  :2 0 ;)> m, 
where 

1 au2 

2 P z  ax 
1 dU2 

2Pz aY 

m,=-- 

1722=--  

and 

For a point source, matrix M, is singular and is given by 

where po is the initial slowness vector of the central ray. 
Let us introduce the now classical notation for the 

submatrices of the paraxial ray propagator (see Cervenf 
1985): 

so that the paraxial solution is written 

Using the initial condition (61), (63) gives 

Wt)  = (Qi + Q2Md W t o )  

6P(t) = (Pi + P2MO) Wt") 

by 
6p(t) = M ( t )  Wt),  (65) 

(64) 

and the perturbed position and slowness are linearly related 

Matrices M ( t )  for increasing values of t may then be 
obtained from their initial value at the source 

M( t") = Mo. (67) 

With this relationship, we can write the second-order 
expansion of the traveltime around a central ray in the form: 

qX + 6 ~ )  = e(x) + p . AX + + G X ' M ( ~ )  ax, (68) 

where ~ ( t )  and p(t) are the positlon and slowness vector of 
the central perturbed ray. To first-order in the slowness 
perturbation, the traveltime O(x) along the perturbed 
reference ray is 

+ [Po(t) * A 4 4  - Po(to) - AX(%)l (69) 

with the obvious notation that O,(%) is the travel time along 
the unperturbed reference ray %(t). The second term in 
(69) comes from the slowness and interface perturbations, 
the third one is due to perturbations in position of the 
source and receiver. This expression is comparable with the 
one used by Bishop et al. (1985) in reflection tomography of 
interfaces. 

We may now determine the amplitude. Consider the 
Jacobian 

D = det ($), 
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where x,, is an initial point on a ray and x defines a ray path. 
Then, following Thomson & Chapman (1985), we can write 

where 92 is the product of reflection and transmission 
coefficients at the interfaces. Using the first relation of (64), 
we obtain 

This expression has to  be modified for point sources since in 
this case M0 is singular. This difficulty is solved 
incorporating E in the excitation function s ( w )  (see equation 
1). 

Using (68) for 8 and (71) for the amplitude, we have the 
general expression for a beam in the vicinity of a reference 
ray. These expressions are valid both in unperturbed and 
perturbed media. In the former case, Q, and P, are obtained 
partitioning the unperturbed propagator qJ( T ,  t,,), in the 
latter from the perturbed propagator (57). 

7 EXAMPLE: CELL R A Y  TRACING 

Virieux et al. (1988) proposed a finite element method for 
ray tracing in 3-D media. In this method the medium is 
discretized into triangles or tetrahedra with a linear 
distribution of the square of the slowness. Let the linear 
distribution of the square of slowness in one of the cells be 

u:(x)=(yz+(YoIx)? (73) 
where yo is the gradient. In order to obtain exact rays, we 
put the slowness distribution (73) into the ray equations (4). 
Solving the corresponding system, we find the simple 
expressions (Virieux et al. 1988): 

(74) 
~ o ( t )  = $(t - "o)yo + ~ o ( t o )  
%(X) = a ( t  - t , J2Yo + (t - to)Po(to) + % ( t o ) ,  

where x,,(to) and po(to) are the initial conditions. 
Paraxial rays in the unperturbed medium are obtained by 

a small perturbation of the initial conditions 6y(s,,). They 
satisfy the linear differential system (6) where the matrix A,, 
for the slowness distribution (73) is: 

A n = ( :  i). 
The solutions of (6) are: 

6Y(t) = %)(t, TO) 6Y(tO), 

where PO is the propagator 

(75) 

matrix given by: 

(76) 

Let us assume that the central ray has been traced inside 
one of the cells up to  one of its plane boundaries. Let, for 
instance, f(x) = (n, 1 x)  - q = 0 be the equation of this 
plane of unit normal no. The continuity conditions for the 
paraxial rays transmitted across this boundary are given by: 

The matrix IZ, has the following submatrices: 

where po is the slowness vector of the central ray on the 
interface. Moreover, because of the continuity of the 
velocity field through the boundary, the submatrix T2 
reduces to the identity matrix, while the vector &TI, 6x(t i )  
is zero. Then, transformation To acts simply as the identity 
for this case. Fig. 5 shows the results of ray tracing using 
Virieux et al. (1988) technique in a medium with a vertical 
gradient of the velocity. The  medium is divided in 
rectangular elements subdivided in triangles. The square of 
the slowness is given at  each node of the grid. Assuming a 
gradient of the square of the slowness in each triangle gives 
a continuous u2 field. This prevents any reflection or 
refraction of the central ray. But, for the paraxial ray or the 
canonical vector, this simple distribution requires that the 
operator no be applied at  each boundary, giving either a 
vector 6% along the axis x or the axis z or the anti-diagonal. 
In Fig. 5 we plot several rays shot from a point source at  a 
depth of 16km. The medium has a constant velocity 
gradient v(z) = (3.0 + 0.72) km s-'. A paraxial vector 6% is 
drawn at each intersection of the central ray with the sides 
of the triangular mesh. The widening of a ray tube might be  
estimated from this paraxial information. 

7.1 Perturbation of the medium 

Let us now consider the following perturbed slowness 
distribution u2(x) = u:(x) + Au2(x), where the perturbation 
Au2(x) is continuous at internal boundaries and has a 
constant gradient inside each cell: 

Au2(x) = Act2 + ( A y  1 x ) .  (79) 

Perturbed rays are  solutions of (30) with 

The perturbation Ay(t) of these rays is given by (32), which 
can be explicitly written as: 

(81) 
Ax(t) = Ax(t( t )  + (t - t o )  Ap(xo) + i ( t  - t o ) 2  AY 

AP(t) = AP(t,l) + i ( Z  - t o )  AY. 

Using expression (74) for the reference ray, the perturbed 
rays y(t)  = yo(t) + Ay(z) are given by: 

(82) 
4.) = X(tO) + (t - to>P(to) + a( .  - t d 2 Y  
P(t) = P(t0) + 2t - tO)Y? 

where y = yo + A y  is the gradient of the square of slowness 
in the perturbed medium. The first-order solutions (82) 
reduce to the exact ray expressions (74) for the perturbed 
medium. Thus, first-order perturbation gives the exact ray 
equations in media with constant gradient of the square of 
the slowness. 

Paraxial rays with respect to  the perturbed ray 
y( t) = yo + Ay are solutions of (54) with A( t) = A,( t). The 
perturbed propagator P reduces then to  the unperturbed 
propagator given in (76). At  internal boundaries, the 
continuity conditions for perturbed rays are given by (53) 
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Figure 5. Example of ray tracing in a triangular mesh. Four central rays radiated from a point source at 16 km depth are plotted. A paraxial 
ray is drawn for each of the central rays. The paraxial rays are represented by the relative position vectors 6% at each intersection of the central 
ray with the edge of one of the triangular elements, which can be horizontal, vertical or anti-diagonal. 

which becomes: 

Af( t i)  = no Ay( ti). (83) 
The initial conditions of the perturbed paraxial rays are 
given by (58) and (60) which can be written for the simple 
reference medium 

Sf(Zi) = [n+ n0Ao dt] 6y(tj), (84) 
where the matrix n i s  given to first-order by 

where 

0 

The matrix [no A, dz]  is given by: 

[no A, dt] = - (87) 

The perturbation of the propagator, which allows estimation 
of Frkchet derivatives for amplitudes, may be used to 
include wave amplitudes in the inversion of seismic velocity 
by the method of Aki, Christofferson & Husebye (1977). 

8 A REFERENCE MEDIUM WITH 
HOMOGENEOUS LAYERS 

The general results obtained above take a very simple form 
when the reference medium consists of homogeneous layers 
with plane interfaces. In the following we discuss only the 
case where the interfaces are perturbed. 

Inside each layer, a reference ray is of course a straight 
line. Its expression is given by (74) with yo = 0; 

(88) 
xg(t) = ( r  - t")PO(%) + % ( t o )  

Po( 7 )  = P o ( 4  

where xg(ro) and po(ro) are the initial conditions. Paraxial 
rays in the unperturbed medium are given by (9) with the 
propagator Po of equation (76). 

Let us assume that the reference ray has been traced in 
the layer up to one of its plane boundaries. Let, for 
instance, fo(x) = (n, I x) - q = 0 be the equation of this 
plane of unit normal no. The continuity conditions for 
reflected-transmitted paraxial rays are: 

69 = Tono Sy(ti), (89) 

where matrices no and To have the following submatices: 

n l = I - -  

T,=O 

(k  I Po) 

T 2 = I -  Ik) (Po - Pol 
(Po I 4 ' 
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where po and Po are the slowness vectors of the reference 
ray on the interface in the incident and the reflected- 
transmitted medium, respectively. 

Because we consider only interface perturbations, 
between two interfaces perturbed rays behave like paraxial 
rays in the original medium. The perturbation Ay( t )  of the 
reference ray is given by: 

where Po is the propagator (76). 

transmitted rays are given by (53) which becomes: 
The continuity conditions for perturbed reflected- 

A j (  Zi) = Tono Ay( ti) + Af, (92) 

with 

where 

(93) 

The continuity conditions Sf(?,) of the reflected or 
transmitted paraxial rays of the perturbed central ray are 
obtained from (58) and7(60) which can be written 

@(ti) = [ T n  + TJIoAo d t ]  6y( ti). 

The matrix TIIis given to first-order by 

TI7 = Tono + (dp I V,) Tono + (dP 1 V,) Tono 
+ A(T17). 

We obtain from the Appendix: 

We have now all the elements to calculate the ray and 
paraxial ray fields in the perturbed medium. These results 
will be used in the following section. 

9 A SIMPLE EXAMPLE 

We consider a simple 2-D acoustic wave propagation 
problem. Previous work by Farra & Madariaga (1987) gave 
examples in which they computed seismograms for a 
perturbed velocity structure using only rays traced in an 
initial velocity structure. We investigate here the perturba- 
tion of amplitude due to an interface perturbation. The 
reference medium consists of two homogeneous layers with 
velocities of 3 and 5 km s-', respectively. We perturb the 
shape of the interface between the two layers, transforming 
it into a small basin. The acoustic source was located on the 
free surface. As shown in Fig. 6, we compare the rays traced 
using the perturbation method with the result of exact ray 
tracing. The rays obtained by perturbation theory are shown 
by the dotted lines. The same rays calculated using exact ray 
tracing are shown with continuous lines. The error of the 
perturbation method is larger for the rays that intersect the 
perturbed interface at points where the curvature was 
strongly perturbed. 

We calculated synthetics at a number of receivers 
distributed every 1 km on the horizontal line z = 0 km. For 
the calculation of exact seismograms we have to solve a 
series of two point ray tracing problems in order to trace 
rays from source to receiver. We did this interpolating the 
traveltimes and amplitudes obtained from neighbouring 
rays. 

All the calculations were carried out in two dimensions. 
However, in order to simulate a 3-D medium, we chose a 
source time function of the following form: 

where H ( t )  is the Heaviside function and g( t )  is the 
derivative of the Ricker's function g ( t )  = exp -$(t/At,)' 
with At, = 0.02 s. In Figs 7 and 8 we show the synthetics 
calculated by classical ray theory in the reference and 
perturbed medium, respectively. They were computed using 
complex reflection coefficients at the interface, One can see 

x(km) 
0, 10. 

0 .  

N 
h 

x 
3 - 

I 1 3 .  
Figure 6. Geometry of a simple layered structure where the lower 
interface has been transformed into a slightly concave basin. The 
source is located at ( l . , O . ) .  Exact rays (solid lines) may be 
compared with rays calculated by perturbation theory (dotted 
lines). 
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Figure 7. Synthetic seismograms calculated at a set of receivers 
regularly distributed along the surface of the structure. At the top 
we show the seismograms calculated exactly, while at the bottom 
are those obtained by perturbation theory. 

UNPERTURBED 

100 

v 

100 l o 4  l o 8  202 206 300 
Figure 8. Synthetic seismograms calculated at a set of receivers 
regularly distributed along the free surface of the unperturbed 
layered model of Fig. 6.  

the important effect of the perturbation on some of the 
synthetics. Since we are close to critical angle, the reflection 
coefficient is very sensitive to changes in incidence angle. At 
the bottom of Fig. 7, we show the synthetics calculated by 
the perturbation method. The reflection coefficients were 
computed for the perturbed incidence angle obtained from 
po + dp and VAf. The comparison with the results given by 
classical ray theory is excellent. 

10 CONCLUSION 

In this paper we extended previous work by Farra et al. 
(1987) on ray perturbation theory in order to include small 
changes in the position and shape of interfaces. A systematic 
approach to perturbation theory based on a simple 
Hamiltonian formulation was adopted in order to simplify 
the treatment of interfaces. An important innovation is the 
use of Cartesian coordinates in order to perform paraxial ray 
tracing instead of the most commonly used ray-centred 
coordinate system. This simplifies the equations of dynamic 
(paraxial) ray tracing considerably. Paraxial ray tracing in 
Cartesian coordinates is entirely equivalent to dynamic ray 
tracing as introduced by Popov & PSenEik (1978) and by 
cervenf (1985) in the case of an unperturbed medium. An 
interesting application of these results is to the study of 
simple velocity distributions that admit analytic ray and 
paraxial ray tracing. Among many such structures, Virieux 
et al. (1988) proposed a medium with constant gradient of 
square slowness. In such a medium all standard ray 
quantities (ray tracing and paraxial propagator) can be 
calculated exactly. This medium is ideal for a finite element 
approach to ray tracing. We subdivide the continuous 
medium into large triangles with constant gradient of the 
square of slowness. Inside the elements rays and paraxial 
rays are traced analytically. Once the elements are 
assembled, ray and paraxial ray tracing reduce to the 
solution of a series of algebraic continuity conditions at the 
intersection of the rays with the sides of the triangles in the 
mesh. Finally, we studied the effect of small perturbations of 
the velocity structure or of interface shape on central and 
paraxial rays. The expressions obtained in this paper using 
Cartesian coordinates are much simpler than those of Farra 
& Madariaga (1987) who used ray-centred coordinates. 

The results for the perturbation of ray and paraxial rays 
were finally used to develop an approach for the calculation 
of synthetic seismograms when the velocity or the interfaces 
of the medium are slightly perturbed. Complete albeit 
lengthy expressions are given for the effect of perturbations 
of slowness and interface shape on synthetic seismograms. 

The results obtained in this paper should be useful in 
several problems of seismology and applied geophysics. The 
most obvious application is to the study of the effect of small 
changes in a model upon synthetic seismograms. All that is 
required to calculate these effects is to know the paraxial 
propagator matrix along the ray trajectory. A typical 
example of this type of application is the perturbation of a 
simple vertically stratified model for which we give 
expressions both for ray tracing and the calculation of the 
paraxial ray propagator. Another possibility is to use the 
finite-element approach previously described in order to 
compute rays and the paraxial ray propagator. 
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Other applications are, for instance, to  continuation 
methods for the solution of two-point ray tracing. In these 
methods a ray is traced through the source and receiver in a 
simpler medium than that in which we want to perform ray 
tracing. Then the two-point ray in the more complex 
medium is found by iterative perturbation of the rays in the 
simpler medium. Perturbation techniques provide a simple 
guess for the perturbation of the initial conditions of the ray 
when the medium properties change. Another very 
interesting application of perturbation theory is to the 
calculation of FrCchet derivatives for the inversion of 
waveforms and amplitudes of seismic waves. This approach 
has recently been used by Nowack & Lyslo (1989) for the 
inversion of interfaces and velocities. Another application 
that will be the subject of further work is the calculation of 
ray tracing and amplitudes in slightly anisotropic media. 
Anisotropy may be calculated as a perturbation with respect 
to a simpler related anisotropic medium. 
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A P P E N D I X  

Let us denote the matrix of second partial derivatives VVfo 
by 0, while U, is the matrix of second partial derivatives of 
the square of the slowness. 

where 

Derivatives: 

with 



where 

IPo)(VAf I 
(Po I Vfo) n' 

A n ,  = - 

A T = (  AT, AT2 ' )  ' 
where 

All these expressions are computed for the reference ray on 
the reference interface. 


